基于目标函数优化的复杂网络社区结构发现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术和人们生产和生活实践的发展,现代社会已经进入了大数据时代。大数据时代所面临的主要挑战是,自然、社会和信息等领域的实际系统规模日益庞大、关系日益复杂,是典型的复杂系统。随着数据生成和数据采集技术的发展,人们对复杂系统的研究逐渐从理论探讨过渡到数据处理方面。
     从一般系统论的角度来看,复杂网络是复杂系统的简化表示,即将复杂系统表示成其组成元素以及组成元素间的相互作用的集合。通过这种有效的抽象,使得我们可以从数学的角度来研究复杂系统的性质。复杂网络在微观尺度具有局部积聚、马太效应等性质;在宏观尺度具有小世界、无标度等性质。除了上述两种极端情况,复杂网络还具有明显的层次结构,存在着介于宏观和微观之间的介观特性,包括结构特性和动力学特性。社区结构就是复杂网络在介观尺度的关键结构特性之一。
     通常用模块度来度量社区内部连接的密集程度,它是社区发现的一个重要的目标函数。本文研究复杂网络社区结构发现问题,围绕基于目标函数优化的复杂网络社区结构发现方法,开展了如下四个方面的工作。
     第一,提出了基于最小夹角的社区结构优化算法。模块度矩阵的谱分解的一个主要不足在于模块度矩阵没有非负性,针对这一问题从模块度的概率解释出发对模块度矩阵的对角线进行了修正使其成为随机变量的样本方差,由此得到的正定矩阵,改进了社区发现问题的向量划分描述。进一步,从向量划分的角度解释了有限分辨率现象的根源,设计了以最小化向量夹角的贪婪算法,该方法比直接优化模块度的方法有更高的异质社区分辨能力。
     第二,改进了基于局部拓扑相似性的社区结构发现方法。针对现有相似性度量存在的主要问题即对直接连接的低估倾向,提出了基于星形邻域和α-邻域的相似性度量修正了上述缺陷。在此基础上设计了相应的层次聚类算法,改善了社区发现结果。算法采用堆结构存储相似性矩阵,提高了算法速度。
     第三,提出了有限随机的模块度优化算法。直接优化模块度的贪婪算法容易陷入局部极值,同时模块度存在大量与极大值非常接近的次优解。本文提出的随机搜索算法能够跳出局部极值,多次的执行结果能够探索到模块度的平台区域,体现网络社区结构的多样性。
     第四,考虑了基于完全子图分析的社区结构发现方法。以完全子图作为基本结构单元,通过建立节点-派系二部图和构造派系图的方式进行无重叠的社区结构发现。通过建立网络的极大完全子图紧覆盖所构成的派系图,以重叠程度评估派系相似性,利用加权模块度来切割派系图,进而形成网络的重叠社区结构。
Withthedevelopmentofinformationtechnologyandtheproducingandeverydaylifepractices, modern society has entered a typical big-data era. The major challenge in thebig-data time is that we are facing increasingly big and complex systems in nature,societyandtechnologyfields. Withrapiddevelopingofdatageneratingandgatheringtechnology,the research in complex systems gradually swift from theoretical aspects to data drivingapproaches.
     Inthegeneralsystemtheory,complexnetworkisasimplifiedmodelforcomplexsys-tem which modeling the system as a set of its components and relations betweens them.This effective abstraction enables us to to study the complex systems by mathematics.The microscopic scale properties of complex networks are highly local clustering coeffi-cients, rich club phenomenon. While in the macroscopic scale complex network possesssmall-world and scale-free properties. Between the above two extreme scales there isa mesoscopic scale that complex networks show some significant properties, includingstructure and dynamic features. Community structure is one of the key structural proper-ties of complex networks at the mesoscopic scale.
     Modularity is one typical objective function for community detection which mea-sures the link density within vertexes groups. In this the thesis we study communitydetection problem, with focus on the community detection framework based on objectivefunction optimizing in the following four different ways:
     First,we propose a community optimizing algorithm based on least-angle merging.By treating the network as directed graph, we reformulate the modularity matrix as cross-covariance of vertex vectors taking directed edges as their basis. One main issue of themodularity matrix is that it has eigenvalues. The existing method treated community de-tection as a vector partition problem by spectral decomposition of modularity matrix, us-ing only a few leading positive eigenvalues and the corresponding vectors. The diagonalof the cross-covariance matrix is modified to make it positive defined and then factoredinto inner product of vertex vectors. Thus the above modification improves the trans-formation of the community detection problem as a vector partition problem. From thevector partition point of view, the resolution limit of modularity is reinterpreted.A greedyalgorithm based on merging vectors with least angle is designed.The proposed method is less resolution limited than modularity optimizing methods.
     Second,we improve the local similarity based community detection method. Sincethe existing similarities tend to underestimate the existing links, we propose new simi-larities for community detecting based on star-neighborhood and α-neighborhood to overthesedefects. Wethendesigncorrespondinghierarchicalclusteringalgorithmscoordinatewith these new metrics, greatly promoting community detection results. The similaritymatrices are stored by max-heap data structure and the algorithms run quite fast.
     Third,weproposerestrictedrandomnesssearchingalgorithmformodularityoptimiz-ing. It is known that pure greedy modularity optimizing tend to get trapped in one singlelocal maximal and there are many of them due to the fact that modularity is extremely de-generate. The random search algorithm based on the head-heap data structure proposedhere is designed to jump out of the local maximal and efficiently extract diverse commu-nity structures in multiple runs.
     Last but not least, we consider community detection methods based on clique analy-siswhichtakingcliquesasbasicbuildingblocks. ofbothdisjointandoverlappingcommu-nities. By building vertex-clique bipartite graph and evaluating weights between vertexesand cliques,we extract feature vectors for vertexes from the adjacency matrix. Spectralclustering method is carried out on the matrix of correlation coefficients of the featurevectors for disjoint community structure detection. Clique graph is built from the max-imal cliques cover of the network with edge weighted by the degree of clique overlap.This graph is further splitted by weighted modularity, forming overlapping communitystructure of the original network.
引文
[1] Sugihara G, Ye H. Complex systems: Cooperative network dynamics [J]. Nature.2009,458(7241):979–980.
    [2] Pastor-Satorras R, Vespignani A. Complex networks: Patterns of complexity [J].Nature Physics.2010,6:480–481.
    [3] LiuY,SlotineJ,BarabásiA.Controllabilityofcomplexnetworks[J].Nature.2011,473(7346):167–173.
    [4] Amaral L, Ottino J. Complex networks: Augmenting the framework for the studyof complex systems [J]. European Physical Journal B.2011,38(2):147–162.
    [5] Newman M E J. Complex systems: A survey [J]. Am. J. Phys.2011,79:800–810.
    [6] Fortuna M, Bonachela J, Levin S. Evolution of a modular software network [J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.2011,108(50):19985–19989.
    [7] Vértes P, Alexander-Bloch A, Gogtay N, et al. Simple models of human brainfunctional networks [J]. Proceedings of the National Academy of Sciences of theUnited States of America.2012,109(15):5868–5873.
    [8] González M, Barabási A. Complex networks: From data to models [J]. NaturePhysics.2007,3(4):224–225.
    [9] Slotine J, Liu Y. Complex networks: The missing link [J]. Nature Physics.2012,8(7):512–513.
    [10] Franois D. High-dimensional data analysis: From optimal metrics to feature selec-tion [M]. Saarbrücken, Germany, Germany: VDM Verlag,2008.
    [11] KoldaTG,BaderBW.Tensordecompositionsandapplications[J].SIAMReview.2009,51(3):455–500.
    [12] Kolaczyk E. Statistical analysis of network data: methods and models [M].Springer Verlag,2009.
    [13] Donoho D. High-dimensional data analysis: The curses and blessings of dimen-sionality [J]. AMS Math Challenges Lecture.2000:1–32.
    [14] Lin T, Zha H. Riemannian manifold learning [J]. Pattern Analysis and MachineIntelligence, IEEE Transactions on.2008,30(5):796–809.
    [15] ChehJ,ZhaoH.Patternrecognitionwithweightedcomplexnetworks[J].PhysicalReview E.2008,78(5):056107.
    [16] Barthelemy M. Betweenness centrality in large complex networks [J]. The Euro-pean Physical Journal B-Condensed Matter and Complex Systems.2004,38(2):163–168.
    [17] Jiang X, Lim L, Yao Y, et al. Statistical ranking and combinatorial Hodge theo-ry [J]. Mathematical programming.2011,127(1):203–244.
    [18] Fortunato S. Community detection in graphs [J]. Physics Reports.2010,486(3-5):75–174.
    [19] Getoor L. Link-based classification [J]. Advanced methods for knowledge discov-ery from complex data.2005:189–207.
    [20] LaurilaJ,Gatica-PerezD,AadI,etal.Themobiledatachallenge:Bigdataformo-bile computing research [C]. In Proc. Mobile Data Challenge by Nokia Workshop,in conjunction with Int. Conf. on Pervasive Computing, Newcastle.2012.
    [21] Lynch C. Big data: How do your data grow?[J]. Nature.2008,455(7209):28–29.
    [22] Frankel F, Reid R. Big data: distilling meaning from data [J]. Nature.2008,455(7209):30–30.
    [23] Bizer C, Boncz P, Brodie M, et al. The meaningful use of big data: four perspec-tives–four challenges [J]. ACM SIGMOD Record.2012,40(4):56–60.
    [24] Hey T. The Fourth Paradigm–Data-Intensive Scientific Discovery [M]//Kur-banoglu S, Al U, Erdogan P L, et al. E-Science and Information Manage-mentVol.317. Springer Berlin Heidelberg,2012:2012:1–1.
    [25]巩馥洲.概率统计的研究与发展[J].中国科学院院刊.2012,27(002):175–188.
    [26] Clauset A, Newman M, Moore C. Finding community structure in very large net-works [J]. Physical review E.2004,70(6):066111.
    [27] Page L, Brin S, Motwani R. The PageRank citation ranking: Bringing order to theweb [R/OL].1998. http://citeseer.nj.nec.com/368196.html.
    [28] Alpert J, Hajaj N. We knew the web was big [R].2008.http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html.
    [29] Newman M. The structure and function of complex networks [J]. SIAM Review.2003:167–256.
    [30]吴金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展.2004,24(1):18–46.
    [31] Costa L, Rodrigues F, Travieso G, et al. Characterization of complex networks: Asurvey of measurements [J]. Advances in Physics.2007,56(1):167–242.
    [32] Costa L, Villas Boas P, Silva F, et al. A pattern recognition approach to com-plex networks [J]. Journal of Statistical Mechanics: Theory and Experiment.2010,2010: P11015.
    [33] BarabásiA,AlbertR.Emergenceofscalinginrandomnetworks[J].Science.1999,286(5439):509–512.
    [34] Newman M, Park J. Why social networks are different from other types of net-works [J]. Physical Review E.2003,68(3):036122.
    [35] Saram ki J, Kivel M, Onnela J, et al. Generalizations of the clustering coefficientto weighted complex networks [J]. Physical Review E.2007,75(2):027105.
    [36] Hamers L, Hemeryck Y, Herweyers G, et al. Similarity measures in scientometricresearch: the Jaccard index versus Salton’s cosine formula [J]. Information Pro-cessing&Management.1989,25(3):315–318.
    [37] S rensenT.Amethodofestablishinggroupsofequal amplitudeinplantsociologybased on similarity of species and its application to analyses of the vegetation onDanish commons [J]. Biol. skr.1948,5:1–34.
    [38] Jeh G, Widom J. SimRank: a measure of structural-context similarity [C]. In Pro-ceedingsoftheeighthACMSIGKDDinternationalconferenceonKnowledgedis-covery and data mining.2002:538–543.
    [39] LeichtE,HolmeP,NewmanM.Vertexsimilarityinnetworks[J].PhysicalReviewE.2006,73(2):026120.
    [40] Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: Simple building blocks ofcomplex networks [J]. Science’s STKE.2002,298(5594):824.
    [41] Milo R, Itzkovitz S, Kashtan N, et al. Superfamilies of evolved and designed net-works [J]. Science.2004,303(5663):1538–1542.
    [42] Kashtan N, Itzkovitz S, Milo R, et al. Efficient sampling algorithm for estimatingsubgraph concentrations and detecting network motifs [J]. Bioinformatics.2004,20(11):1746–1758.
    [43] Wernicke S, Rasche F. FANMOD: a tool for fast network motif detection [J].Bioinformatics.2006,22(9):1152–1153.
    [44] BaskervilleK,GrassbergerP,PaczuskiM.Graphanimals,subgraphsampling,andmotif search in large networks [J]. Physical Review E.2007,76(3):036107.
    [45] Hu Y, Trousdale J, Josi K, et al. Motif statistics and spike correlations in neuronalnetworks [J]. BMC Neuroscience.2012,13(Suppl1): P43.
    [46] Albert R, Jeong H, Barabási A. Internet: diameter of the world-wide web [J]. Na-ture.1999,401(6749):130–131.
    [47] Latora V, Marchiori M. Efficient behavior of small-world networks [J]. PhysicalReview Letters.2001,87(19):198701.
    [48] Newman M. Assortative mixing in networks [J]. Physical Review Letters.2002,89(20):208701.
    [49] Newman M, Girvan M. Mixing patterns and community structure in network-s[M]//Pastor-SatorrasR,RubiM,Diaz-GuileraA.StatisticalMechanicsofCom-plex NetworksVol.625. Springer Berlin/Heidelberg,2003:2003:66–87.
    [50] Rosvall M, Trusina A, Minnhagen P, et al. Networks and cities: An informationperspective [J]. Physical Review Letters.2005,94(2):28701.
    [51] CarlssonG.Topologyanddata[J].BulletinoftheAmericanMathematicalSociety.2009,46(2):255.
    [52] Maleti S, Rajkovi M, Vasiljevi D. Simplicial complexes of networks and theirstatistical properties [J]. Computational Science–ICCS2008.2008:568–575.
    [53] Horak D, Maleti S, Rajkovi M. Persistent homology of complex networks [J].Journal of Statistical Mechanics: Theory and Experiment.2009,2009: P03034.
    [54] Arenas A, Diaz-Guilera A, Pérez-Vicente C. Synchronization processes in com-plex networks [J]. Physica D: Nonlinear Phenomena.2006,224(1):27–34.
    [55] Wang Y, Song H, Wang W, et al. A microscopic view on community detec-tion in complex networks [C/OL]. In Proceedings of the2nd PhD workshop onInformation and knowledge management. New York, NY, USA,2008:57–64.http://doi.acm.org/10.1145/1458550.1458561.
    [56] Mucha P, Richardson T, Macon K, et al. Community structure in time-dependent,multiscale, and multiplex networks [J]. Science.2010,328(5980):876–878.
    [57] Pizzuti C. Mesoscopic analysis of networks with genetic algorithm-s [J/OL]. World Wide Web:1–21. http://dx.doi.org/10.1007/s11280-012-0174-410.1007/s11280-012-0174-4.
    [58] Porter M, Onnela J, Mucha P. Communities in networks [J]. Notices of the AMS.2009,56(9):1082–1097.
    [59] Newman M. Communities, modules and large-scale structure in networks [J]. Na-ture Physics.2011,8(1):25–31.
    [60] Zachary W. An Information flow modelfor conflict and fission in small groups [J].Journal of Anthropological Research.1977,33(4):452–473.
    [61] GirvanM,NewmanM.Communitystructureinsocialandbiologicalnetworks[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.2002,99(12):7821–7826.
    [62] Lusseau D. The emergent properties of a dolphin social network [J]. Proceedingsof the Royal Society of London. Series B: Biological Sciences.2003,270(Suppl2): S186–S188.
    [63] Arenas A, Fernandez A, Gomez S. Analysis of the structure of complex networksat different resolution levels [J]. New Journal of Physics.2008,10:053039.
    [64] Newman M, Girvan M. Finding and evaluating community structure in network-s [J]. Physical review E.2004,69(2):026113.
    [65] PallaG,DerényiI,FarkasI,etal.Uncoveringtheoverlappingcommunitystructureofcomplexnetworksinnatureandsociety[J].Nature.2005,435(7043):814–818.
    [66] Karrer B, Levina E, Newman M. Robustness of community structure in network-s [J]. Physical Review E.2008,77(4):046119.
    [67] Guimera R, Sales-Pardo M, Amaral L. Modularity from fluctuations in randomgraphs and complex networks [J]. Physical Review E.2004,70(2):025101.
    [68] Hu Y, Nie Y, Yang H, et al. Measuring the significance of community structure incomplex networks [J]. Phys. Rev. E.2010,82:066106.
    [69] Karrer B, Newman M E J. Stochastic blockmodels and community structure innetworks [J]. Physical Review E.2011,83(1):16107.
    [70] Li Z, Hu Y, Xu B, et al. Detecting the optimal number of communities in complexnetworks [J]. Physica A: Statistical Mechanics and its Applications.2012,391(4):1770–1776.
    [71] He Z, Cichocki A, Xie S, et al. Detecting the number of clusters in n-way proba-bilistic clustering [J]. Pattern Analysis and Machine Intelligence, IEEE Transac-tions on.2010,32(11):2006–2021.
    [72] Brandes U, Delling D, Gaertler M, et al. On Finding Graph Clusterings with Maxi-mumModularity[M]//Brandsta¨dtA,KratschD,MüllerH.Graph-TheoreticCon-cepts in Computer ScienceVol.4769. Springer Berlin/Heidelberg,2007:2007:121–132.
    [73] Chen W, Dress A, Yu W. Community structures of networks [J]. Mathematics inComputer Science.2008,1(3):441–457.
    [74] Agarwal G, Kempe D. Modularity-maximizing graph communities via mathemat-ical programming [J]. The European Physical Journal B-Condensed Matter andComplex Systems.2008,66(3):409–418.
    [75] MassenC,DoyeJ.Identifyingcommunitieswithinenergylandscapes[J].PhysicalReview E.2005,71(4):046101.
    [76] Leung I, Hui P, Liò P, et al. Towards real-time community detection in large net-works [J]. Physical Review E.2009,79(6):066107.
    [77] Lehmann S, Hansen L. Deterministic modularity optimization [J]. The EuropeanPhysicalJournalB-CondensedMatterandComplexSystems.2007,60(1):83–88.
    [78] Pons P, Latapy M. Computing communities in large networks using random walk-s [J]. Computer and Information Sciences-ISCIS2005.2005:284–293.
    [79] Cheng X, Shen H. Uncovering the community structure associated with the dif-fusion dynamics on networks [J]. Journal of Statistical Mechanics: Theory andExperiment.2010,2010: P04024.
    [80] ViamontesEsquivelA,RosvallM.CompressionofFlowCanRevealOverlapping-Module Organization in Networks [J/OL]. Phys. Rev. X.2011,1:021025. http://link.aps.org/doi/10.1103/PhysRevX.1.021025.
    [81] Sun J, Faloutsos C, Papadimitriou S, et al. GraphScope: Parameter-free mining oflarge time-evolving graphs [C]. In Proceedings of the13th ACM SIGKDD inter-national conference on Knowledge discovery and data mining.2007:687–696.
    [82] Palla G, Barabasi A, Vicsek T. Quantifying social group evolution [J]. Nature.2007,446(7136):664–667.
    [83] Sun J, Papadimitriou S, Yu P S, et al. Community Evolution and Change PointDetection in Time-Evolving Graphs [M]//Yu P S S, Han J, Faloutsos C. LinkMining: Models, Algorithms, and Applications. Springer New York,2010:2010:73–104.
    [84] FortunatoS,BarthelemyM.Resolutionlimitincommunitydetection[J].Proceed-ings of the National Academy of Sciences of the United States of America.2007,104(1):36–41.
    [85] Traag V, Van Dooren P, Nesterov Y. Narrow scope for resolution-limit-free com-munity detection [J]. Physical Review E.2011,84(1):016114.
    [86] Ronhovde P, Nussinov Z. Local resolution-limit-free Potts model for communitydetection [J]. Physical Review E.2010,81(4):046114.
    [87] Khadivi A, Rad A, Hasler M. Network community-detection enhancement byproper weighting [J]. Physical Review E.2011,83(4):046104.
    [88] Good B, de Montjoye Y, Clauset A. Performance of modularity maximization inpractical contexts [J]. Physical Review E.2010,81(4):046106.
    [89] Schaeffer S. Graph clustering [J]. Computer Science Review.2007,1(1):27–64.
    [90]汪小帆,刘亚冰.复杂网络中的社团结构算法综述[J].电子科技大学学报.2009,38(005):537–543.
    [91]杨博,刘大有, Jiming L, et al.复杂网络聚类方法[J].软件学报.2009,20(1):54–66.
    [92] Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolicnetworks [J]. Nature.2000,407(6804):651–654.
    [93] ClausetA,MooreC,NewmanM.Hierarchicalstructureandthepredictionofmiss-ing links in networks [J]. Nature.2008,453(7191):98–101.
    [94] Ahn Y, Bagrow J, Lehmann S. Link communities reveal multiscale complexity innetworks [J]. Nature.2010,466(7307):761–764.
    [95] Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying communitiesin networks [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America.2004,101(9):2658–2663.
    [96] Newman M, Leicht E. Mixture models and exploratory analysis in networks [J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.2007,104(23):9564.
    [97] RosvallM,BergstromC.Mapsofrandomwalksoncomplexnetworksrevealcom-munity structure [J]. Proceedings of the National Academy of Sciences of the U-nited States of America.2008,105(4):1118.
    [98] Zhao Y, Levina E, Zhu J. Community extraction for social networks [J]. Proceed-ings of the National Academy of Sciences of the United States of America.2011,108(18):7321–7326.
    [99] Reichardt J, Bornholdt S. Detecting fuzzy community structures in complex net-works with a Potts model [J]. Physical Review Letters.2004,93(21):218701.
    [100] Leicht E, Newman M. Community structure in directed networks [J]. Physical Re-view Letters.2008,100(11):118703.
    [101] ZhouH.Distance,dissimilarityindex,andnetworkcommunitystructure[J].Phys-ical Review E.2003,67(6):061901.
    [102] Newman M. Fast algorithm for detecting community structure in networks [J].Physical Review E.2004,69(6):066133.
    [103] Fortunato S, Latora V, Marchiori M. Method to find community structures basedon information centrality [J]. Physical Review E.2004,70(5):056104.
    [104] Raghavan U, Albert R, Kumara S. Near linear time algorithm to detect communitystructures in large-scale networks [J]. Physical Review E.2007,76(3):036106.
    [105] Boccaletti S, Ivanchenko M, Latora V, et al. Detecting complex network modular-ity by dynamical clustering [J]. Physical Review E.2007,75(4):045102.
    [106] Hu Y, Li M, Zhang P, et al. Community detection by signaling on complex net-works [J]. Physical Review E.2008,78(1):016115.
    [107] Evans T, Lambiotte R. Line graphs, link partitions, and overlapping communi-ties [J]. Physical Review E.2009,80(1):016105.
    [108] Brandes U, Delling D, Gaertler M, et al. On modularity clustering [J]. Knowledgeand Data Engineering, IEEE Transactions on.2008,20(2):172–188.
    [109] Chan J, Lam S, Hayes C. Increasing the scalability of the fitting of generalisedblock models for social networks [C]. In Proceedings of the Twenty-Second in-ternational joint conference on Artificial Intelligence-Volume Volume Two.2011:1218–1224.
    [110] Chen W, Liu Z, Sun X, et al. Community detection in social networks throughcommunity formation games [C]. In Proceedings of the Twenty-Second inter-national joint conference on Artificial Intelligence-Volume Volume Three.2011:2576–2581.
    [111] Leskovec J, Lang K, Dasgupta A, et al. Statistical properties of community struc-ture in large social and information networks [C]. In Proceeding of the17th inter-national conference on World Wide Web.2008:695–704.
    [112] LeskovecJ,LangK,MahoneyM.Empiricalcomparisonofalgorithmsfornetworkcommunity detection [C]. In Proceedings of the19th international conference onWorld wide web.2010:631–640.
    [113] Lin W, Kong X, Yu P, et al. Community detection in incomplete information net-works [C]. In Proceedings of the21st international conference on World WideWeb.2012:341–350.
    [114] Sachan M, Contractor D, Faruquie T, et al. Using content and interactions for dis-covering communities in social networks [C]. In Proceedings of the21st interna-tional conference on World Wide Web.2012:331–340.
    [115] Moore C, Yan X, Zhu Y, et al. Active learning for node classification in assortativeand disassortative networks [C]. In Proceedings of the17th ACM SIGKDD inter-national conference on Knowledge discovery and data mining.2011:841–849.
    [116] Wang G, Zhao Y, Shi X, et al. Magnet community identification on social net-works [C]. In Proceedings of the18th ACM SIGKDD international conference onKnowledge discovery and data mining.2012:588–596.
    [117] Francisco A, Oliveira A. Improved algorithm and data structures for modularityanalysis of large networks [C]. In NIPS Workshop on Analyzing Graphs.2008.
    [118] JainA.Dataclustering:50yearsbeyondK-means[J].PatternRecognitionLetters.2010,31(8):651–666.
    [119] WattsD,StrogatzS.Collectivedynamicsof‘small-world’networks[J].Nature.1998,393(6684):440–442.
    [120] Newman M, Strogatz S, Watts D. Random graphs with arbitrary degree distribu-tions and their applications [J]. Physical Review E.2001,64(2):026118.
    [121] NewmanM.Clusteringandpreferentialattachmentingrowingnetworks[J].Phys-ical Review E.2001,64(2):025102.
    [122] Soffer S, Vázquez A. Network clustering coefficient without degree-correlationbiases [J]. Physical Review E.2005,71(5):057101.
    [123] Brautbar M, Kearns M. A clustering coefficient network formation game [J]. Al-gorithmic Game Theory.2011:224–235.
    [124]何东晓,周栩,王佐, et al.复杂网络社区挖掘—基于聚类融合的遗传算法[J].自动化学报.2010,36(8):1160–1170.
    [125]李兆南,杨博,刘大有.复杂网络社区挖掘的距离相似度算法[J].计算机科学与探索.2011,5(4):336–346.
    [126]姜雅文,贾彩燕,于剑.基于节点相似度的网络社团检测算法研究[J].计算机科学.2011,38(7):185–189.
    [127]付立东,高琳,马小科.基于社团检测的复杂网络中心性方法[J].中国科学:信息科学.2012,42(5):550–560.
    [128]刘婷,胡宝清.基于聚类分析的复杂网络中的社团探测[J].复杂系统与复杂性科学.2007,4(1):28–35.
    [129]王艳,熊淑华,梁云.一种改进的组织发现算法研究[J].通信技术.2012,45(2):76–80.
    [130] Wassermann S, Faust K. Social network analysis: Methods and applications [M].Cambridge, UK: Cambridge University Press,1994.
    [131] Luce R, Perry A. A method of matrix analysis of group structure [J]. Psychome-trika.1949,14(2):95–116.
    [132] Flake G, Lawrence S, Giles C, et al. Self-organization and identification of webcommunities [J]. Computer.2002,35(3):66–70.
    [133] LancichinettiA,FortunatoS,KertészJ.Detectingtheoverlappingandhierarchicalcommunity structure in complex networks [J]. New Journal of Physics.2009,11:033015.
    [134] Molloy M, Reed B. A critical point for random graphs with a given degree se-quence [J]. Random Structures&Algorithms.1995,6(2-3):161–180.
    [135] Chung F, Lu L. Connected components in random graphs with given expecteddegree sequences [J]. Annals of combinatorics.2002,6(2):125–145.
    [136] Newman M. Modularity and community structure in networks [J]. Proceedings oftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.2006,103(23):8577–8582.
    [137] DelongA,BoykovY.Ascalablegraph-cutalgorithmforndgrids[C].InComputerVision and Pattern Recognition,2008. CVPR2008. IEEE Conference on.2008:1–8.
    [138] Murtagh F. A survey of recent advances in hierarchical clustering algorithms [J].The Computer Journal.1983,26(4):354–359.
    [139] Simon H. Partitioning of unstructured problems for parallel processing [J]. Com-puting Systems in Engineering.1991,2(2-3):135–148.
    [140] Hendrickson B. Graph partitioning and parallel solvers: Has the emperor noclothes?[M]//Ferreira A, Rolim J, Simon H, et al. Solving Irregularly StructuredProblems in ParallelVol.1457. Springer Berlin/Heidelberg,1998:1998:218–225.
    [141] Kernighan B, Lin S. An efficient heuristic procedure for partitioning graphs [J].Bell System Technical Journal.1970,49(2):291–307.
    [142] Ng A, Jordan M, Weiss Y. On spectral clustering: Analysis and an algorithm [J].Advances in neural information processing systems.2002,2:849–856.
    [143] Dhillon I S, Guan Y, Kulis B. Kernel k-means: Spectral clustering and normalizedcuts [C/OL]. In Proceedings of the tenth ACM SIGKDD international conferenceon Knowledge discovery and data mining. New York, NY, USA,2004:551–556.http://doi.acm.org/10.1145/1014052.1014118.
    [144] Ding C H Q, He X. On the equivalence of nonnegative matrix factorization andspectral clustering [C]. In SIAM International Conference on Data Mining.2005:606–610.
    [145] Von Luxburg U. A tutorial on spectral clustering [J]. Statistics and Computing.2007,17(4):395–416.
    [146] VonLuxburgU,BelkinM,BousquetO.Consistencyofspectralclustering[J].TheAnnals of Statistics.2008:555–586.
    [147] Newman M. Finding community structure in networks using the eigenvectors ofmatrices [J]. Physical review E.2006,74(3):036104.
    [148] Sleit A, Abusharkh S, AlMobaideen W. Enhancing modularity-based graph clus-tering [J]. World Applied Sciences Journal.2010,9(9):984–996.
    [149] Fiduccia C M, Mattheyses R M. A linear-time heuristic for improving networkpartitions [C]. In Proceedings of the19th Design Automation Conference. Piscat-away, NJ, USA,1982:175–181.
    [150] LarssonTr ffJ.Directgraphk-partitioningwithaKernighan–Linlikeheuristic[J].Operations research letters.2006,34(6):621–629.
    [151] Chung F. Spectral graph theory [M]. Amer Mathematical Society,1997.
    [152] MahoneyMW,OrecchiaL,VishnoiNK.Alocalspectralmethodforgraphs:Withapplications to improving graph partitions and exploring data graphs locally [J].Journal of Machine Learning Research.2012,13(8):2339–2365.
    [153] Lafon S, Lee A. Diffusion maps and coarse-graining: a unified framework for di-mensionality reduction, graph partitioning, and data set parameterization [J]. Pat-tern Analysis and Machine Intelligence, IEEE Transactions on.2006,28(9):1393–1403.
    [154] Samukhin A, Dorogovtsev S, Mendes J. Laplacian spectra of, and random walkson, complex networks: Are scale-free architectures really important?[J]. PhysicalReview E.2008,77(3):036115.
    [155] Barahona M, Pecora L. Synchronization in small-world systems [J]. Physical Re-view Letters.2002,89(5):054101.
    [156] FiedlerM.Algebraicconnectivityofgraphs[J].CzechoslovakMathematicalJour-nal.1973,23(2):298–305.
    [157]程云鹏,张凯院,徐仲.矩阵论[M].西北工业大学出版社,2006.
    [158] Alpert C, Kahng A, Yao S. Spectral partitioning with multiple eigenvectors [J].Discrete Applied Mathematics.1999,90(1):3–26.
    [159] ShenH,ChengX,FangB.Covariance,correlationmatrix,andthemultiscalecom-munity structure of networks [J]. Physical Review E.2010,82(1):016114.
    [160] ShenH,ChengX.Spectralmethodsforthedetectionofnetworkcommunitystruc-ture: A comparative analysis [J]. Journal of Statistical Mechanics: Theory and Ex-periment.2010,2010: P10020.
    [161] Guo C, Zhao H. Community structure discovery method based on the Gaussiankernel similarity matrix [J]. Physica A: Statistical Mechanics and its Applications.2012,391(6):2268–2278.
    [162] ZareiM,SamaniK.Eigenvectorsofnetworkcomplementrevealcommunitystruc-ture more accurately [J]. Physica A: Statistical Mechanics and its Applications.2009,388(8):1721–1730.
    [163] Zhang S, Wang R, Zhang X. Uncovering fuzzy community structure in complexnetworks [J]. Physical Review E.2007,76(4):046103.
    [164] Seung D, Lee L. Algorithms for non-negative matrix factorization [J]. Advancesin neural information processing systems.2001,13:556–562.
    [165] SmythS,WhiteS.Aspectralclusteringapproachtofindingcommunitiesingraph-s [C]. In Proceedings of the5th SIAM International Conference on Data Mining.2005:76–84.
    [166] Zhang S, Wang R, Zhang X. Identification of overlapping community structurein complex networks using fuzzy c-means clustering [J]. Physica A: StatisticalMechanics and its Applications.2007,374(1):483–490.
    [167] Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting com-pact well-separated clusters [J]. Cybernetics and Systems.1973,3(3):32–57.
    [168] Ma X, Gao L. Non-traditional spectral clustering algorithms for the detection ofcommunity structure in complex networks: a comparative analysis [J]. Journal ofStatistical Mechanics: Theory and Experiment.2011,2011(05): P05012.
    [169] Golub G, Van Loan C. Matrix computations [M]. The Johns Hopkins UniversityPress,1996.
    [170] Friedman J, Hastie T, Tibshirani R. The elements of statistical learning [M].Springer Series in Statistics,2001.
    [171] Newman M E J. Scientific collaboration networks. II. Shortest paths, weightednetworks, and centrality [J]. Physical Review E.2001,64(1):016132.
    [172]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].清华大学出版社,2006.
    [173] Latora V, Marchiori M. A measure of centrality based on network efficiency [J].New Journal of Physics.2007,9:188.
    [174] Bollobás B. Modern graph theory [M]. Springer Verlag,1998.
    [175] Freeman L, Borgatti S, White D. Centrality in valued graphs: A measure of be-tweenness based on network flow [J]. Social networks.1991,13(2):141–154.
    [176] Tyler J, Wilkinson D, Huberman B. E-mail as spectroscopy: Automated discoveryof community structure within organizations [J]. The Information Society.2005,21(2):143–153.
    [177] Brandes U, Pich C. Centrality estimation in large networks [J]. International Jour-nal of Bifurcation and Chaos in Applied Sciences and Engineering.2007,17(7):2303.
    [178] Ercsey-RavaszM,ToroczkaiZ.CentralityScalinginLargeNetworks[J].PhysicalReview Letters.2010,105:038701.
    [179] Gregory S. A fast algorithm to find overlapping communities in networks [J]. Ma-chine Learning and Knowledge Discovery in Databases.2008:408–423.
    [180]淦文燕,赫南,李德毅, et al.一种基于拓扑势的网络社区发现方法[J].软件学报.2009,20(8):2241–2254.
    [181] Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms [M].3rded. MIT Press,2009.
    [182] Francisco A, Oliveira A. On Community Detection in Very Large Networks [C].In Complex Networks: Second International Workshop, CompleNet2010, Rio deJaneiro, Brazil, October13-15,2010, Revised Selected Papers.2011:208.
    [183] WakitaK,TsurumiT.Findingcommunitystructureinmega-scalesocialnetworks:[extended abstract][C]. In Proceedings of the16th international conference onWorld Wide Web. New York, NY, USA,2007:1275–1276.
    [184] SchuetzP,CaflischA.Efficientmodularityoptimizationbymultistepgreedyalgo-rithm and vertex mover refinement [J]. Physical Review E.2008,77(4):046112.
    [185] Noack A, Rotta R. Multi-level Algorithms for Modularity Cluster-ing [M]//Vahrenhold J. Experimental AlgorithmsVol.5526. Springer Berlin/Heidelberg,2009:2009:257–268.
    [186] Zhu X. Semi-supervised learning literature survey [R]. Computer Sciences, Uni-versity of Wisconsin-Madison,2005.
    [187] Tibély G, Kertész J. On the equivalence of the label propagation method of com-munity detection and a Potts model approach [J]. Physica A: Statistical Mechanicsand its Applications.2008,387(19):4982–4984.
    [188] Cordasco G, Gargano L. Community detection via semi-synchronous label propa-gationalgorithms[C].InBusinessApplicationsofSocialNetworkAnalysis(BAS-NA),2010IEEE International Workshop on.2010:1–8.
    [189] Liu X, Murata T. Advanced modularity-specialized label propagation algorithmfor detecting communities in networks [J]. Physica A: Statistical Mechanics andits Applications.2010,389(7):1493–1500.
    [190] Xie J, Szymanski B K. Community detection using a neighborhood strength driv-en label propagation algorithm [C]. In Network Science Workshop (NSW),2011IEEE.2011:188–195.
    [191] Blondel V, Guillaume J, Lambiotte R, et al. Fast unfolding of communities inlargenetworks[J].JournalofStatisticalMechanics:TheoryandExperiment.2008,2008: P10008.
    [192] Arenas A, Duch J, Fernández A, et al. Size reduction of complex networks pre-serving modularity [J]. New Journal of Physics.2007,9:176.
    [193] Donetti L, Munoz M. Detecting network communities: a new systematic and ef-ficient algorithm [J]. Journal of Statistical Mechanics: Theory and Experiment.2004,2004: P10012.
    [194] Xiaodong D, Cunrui W, Xiangdong L, et al. Web community detection model us-ing particle swarm optimization [C/OL]. In2008IEEE Congress on Evolution-ary Computation, CEC2008. Hong Kong, China,2008:1074–1079. http://dx.doi.org/10.1109/CEC.2008.4630930.
    [195]李峻金,向阳,牛鹏, et al.一种新的复杂网络聚类算法[J].计算机应用研究.2010,27(6).
    [196] Kirkpatrick S, Gelatt Jr C, Vecchi M. Optimization by simulated annealing [J].science.1983,220(4598):671–680.
    [197] Guimera R, Amaral L. Functional cartography of complex metabolic networks [J].Nature.2005,433(7028):895–900.
    [198] Medus A, Acuna G, Dorso C. Detection of community structures in networks vi-a global optimization [J]. Physica A: Statistical Mechanics and its Applications.2005,358(2):593–604.
    [199] Boettcher S, Percus A G. Optimization with extremal dynamics.[J]. Physical Re-view Letters.2001,86(23):5211–5214.
    [200] Boettcher S, Sibani P. Comparing extremal and thermal explorations of energylandscapes [J]. The European Physical Journal B-Condensed Matter and ComplexSystems.2005,44(3):317–326.
    [201] Zhang X, Li Z, Wang R, et al. A combinatorial model and algorithm for globallysearching community structure in complex networks [J]. Journal of CombinatorialOptimization.2011:1–18.
    [202] Pizzuti C. Ga-net: a genetic algorithm for community detection in social network-s [J]. Parallel Problem Solving from Nature–PPSN X.2008:1081–1090.
    [203]刘发升,罗延榕.基于多种群遗传算法的复杂网络社区结构发现[J].计算机应用研究.2012,29(4):1237–1240.
    [204] Pizzuti C. Mesoscopic analysis of networks with genetic algorithms [J]. WorldWide Web:1–21.10.1007/s11280-012-0174-4.
    [205] Mei J, He S, Shi G, et al. Revealing network communities through modularitymaximization by a contraction–dilation method [J]. New Journal of Physics.2009,11:043025.
    [206] Albert R, Barabási A. Statistical mechanics of complex networks [J]. Reviews ofModern Physics.2002,74(1):47–97.
    [207] Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynam-ics [J]. Physics reports.2006,424(4):175–308.
    [208] DorogovtsevS,GoltsevA,MendesJ.Criticalphenomenaincomplexnetworks[J].Reviews of Modern Physics.2008,80(4):1275–1335.
    [209] Zhou H. Network landscape from a Brownian particle’s perspective [J]. PhysicalReview E.2003,67(4):041908.
    [210] Zhou H, Lipowsky R. Network Brownian Motion: A New Method to Mea-sure Vertex-Vertex Proximity and to Identify Communities and Subcommuni-ties [M]//Bubak M, van Albada G, Sloot P, et al. Computational Science-ICCS2004Vol.3038. Springer Berlin/Heidelberg,2004:2004:1062–1069.
    [211] Pons P, Latapy M. Computing Communities in Large Networks Using RandomWalks [M]//Yolum p, Güng?r T, Gürgen F, et al. Computer and Information Sci-ences-ISCIS2005Vol.3733. Springer Berlin/Heidelberg,2005:2005:284–293.
    [212] Li T, Vanden-Eijnden E, et al. Optimal partition and effective dynamics of com-plex networks [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America.2008,105(23):7907–7912.
    [213] Wu F. The potts model [J]. Reviews of Modern Physics.1982,54(1):235–268.
    [214] Reichardt J, Bornholdt S. Statistical mechanics of community detection [J]. Phys-ical Review E.2006,74(1):016110.
    [215] Son S, Jeong H, Noh J. Random field Ising model and community structure incomplex networks [J]. The European Physical Journal B-Condensed Matter andComplex Systems.2006,50(3):431–437.
    [216] Moreno Vega Y, Vázquez-Prada M, F Pacheco A. Fitness for synchronization ofnetwork motifs [J]. Physica A: Statistical Mechanics and its Applications.2004,343:279–287.
    [217] Park K, Lai Y, Gupte S, et al. Synchronization in complex networks with a modu-lar structure [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science.2006,16(1):015105–015105.
    [218] Arenas A, Diaz-Guilera A, Pérez-Vicente C. Synchronization reveals topologicalscales in complex networks [J]. Physical Review Letters.2006,96(11):114102.
    [219] Kuramoto Y. Chemical oscillations, waves, and turbulence [M]. Berlin and NewYork: Springer-Verlag,2003.
    [220] Fortunato S, Latora V, Pluchino A, et al. Vector Opinion Dynamics in a Bound-ed Confidence Consensus Model [J]. International Journal of Modern Physics C.2005,16:1535–1551.
    [221] Pluchino A, Latora V, Rapisarda A. Compromise and synchronization in opiniondynamics [J]. The European Physical Journal B-Condensed Matter and ComplexSystems.2006,50:169–176.
    [222] WangX-H,JiaoL-C,WuJ-S.Extractinghierarchicalorganizationofcomplexnet-works by dynamics towards synchronization [J]. Physica A: Statistical Mechanicsand its Applications.2009,388(14):2975–2986.
    [223] Farkas I, ábel D, Palla G, et al. Weighted network modules [J]. New Journal ofPhysics.2007,9:180.
    [224] Lehmann S, Schwartz M, Hansen L. Biclique communities [J]. Physical ReviewE.2008,78(1):016108.
    [225] Kumpula J, Kivel M, Kaski K, et al. Sequential algorithm for fast clique percola-tion [J]. Physical Review E.2008,78(2):026109.
    [226] Godsil C, Royle G, Godsil C. Algebraic graph theory [M]. New York: SpringerVerlag,2001.
    [227] Shen H, Cheng X, Cai K, et al. Detect overlapping and hierarchical communitystructure in networks [J]. Physica A: Statistical Mechanics and its Applications.2009,388(8):1706–1712.
    [228] Lázár A, ábel D, Vicsek T. Modularity measure of networks with overlappingcommunities [J]. EPL (Europhysics Letters).2010,90:18001.
    [229] Nepusz T, Petróczi A, Négyessy L, et al. Fuzzy communities and the concept ofbridgeness in complex networks [J]. Physical Review E.2008,77(1):016107.
    [230] Hastings M B. Community detection as an inference problem [J]. Physical ReviewE, Statistical, nonlinear, and soft matter physics.2006,74(3).
    [231] Dempster A, Laird N, Rubin D. Maximum Likelihood from Incomplete Data viathe EM Algorithm [J]. Journal of the Royal Statistical Society. Series B (Method-ological).1977,39(1):1–38.
    [232] Copic J, Jackson M, Kirman A. Identifying community structures from networkdata via maximum likelihood methods [J]. The BE Journal of Theoretical Eco-nomics.2009,9(1):1–38.
    [233] M rup M, Schmidt M. Bayesian community detection [J]. Neural Computation.2012,24(9):2434–2456.
    [234] Andrieu C, De Freitas N, Doucet A, et al. An introduction to MCMC for machinelearning [J]. Machine learning.2003,50(1):5–43.
    [235] Holland P, Laskey K, Leinhardt S. Stochastic blockmodels: First steps [J]. Socialnetworks.1983,5(2):109–137.
    [236] Choi D, Wolfe P, Airoldi E. Stochastic blockmodels with a growing number ofclasses [J]. Biometrika.2012,99(2):273–284.
    [237] Rohe K, Chatterjee S, Yu B. Spectral clustering and the high-dimensional stochas-tic blockmodel [J]. The Annals of Statistics.2011,39(4):1878–1915.
    [238] Arenas A, Fernandez A, Fortunato S, et al. Motif-based communities in complexnetworks [J]. Journal of Physics A: Mathematical and Theoretical.2008,41(22):224001.
    [239] Mohar B. The Laplacian spectrum of graphs [J]. Graph theory, combinatorics, andapplications.1991,2:871–898.
    [240] Jain A, Murty M, Flynn P. Data clustering: a review [J]. ACM computing surveys(CSUR).1999,31(3):264–323.
    [241] Han J, Kamber M. Data mining: concepts and techniques [M]. Morgan Kaufmann,2006.
    [242] BernM,EppsteinD,GilbertJ.Provablygoodmeshgeneration[J].JournalofCom-puter and System Sciences.1994,48(3):384–409.
    [243] Shieh A, Hashimoto T, Airoldi E. Tree preserving embedding [J]. Proceedings oftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.2011,108(41):16916–16921.
    [244] Van der Maaten L, Hinton G. Visualizing data using t-SNE [J]. Journal of MachineLearning Research.2008,9(2579-2605):85.
    [245] CharlesJAlpertS-ZY.Spectralpartitioning:Themoreeigenvectors,thebetter[C].In Design Automation,1995. DAC’95.32nd Conference on.1995:195–200.
    [246] Stewart G. Matrix Algorithms: Eigensystems [M]. Society for Industrial Mathe-matics,2001.
    [247] BezdekJ,EhrlichR,etal.FCM:Thefuzzyc-meansclusteringalgorithm[J].Com-puters&Geosciences.1984,10(2-3):191–203.
    [248] Wang G, Shen Y, Ouyang M. A vector partitioning approach to detecting commu-nity structure in complex networks [J]. Computers&Mathematics with Applica-tions.2008,55(12):2746–2752.
    [249] Cohen R, Erez K, Ben-Avraham D, et al. Resilience of the Internet to randombreakdowns [J]. Physical Review Letters.2000,85(21):4626–4628.
    [250] Newman M. Power laws, Pareto distributions and Zipf’s law [J]. ContemporaryPhysics.2005,46(5):323–351.
    [251] Dodge Y. The concise encyclopedia of statistics [M]. Springer,2008.
    [252] Rudin W. Real and complex analysis [M]. Tata McGraw-Hill Education,2006.
    [253]北京大学数学系几何与代数教研室代数小组.高等代数[M].2nd ed.高等教育出版社,1988.
    [254] Duch J, Arenas A. Community detection in complex networks using extremal op-timization [J]. Physical review E.2005,72(2):027104.
    [255] Berry J, Hendrickson B, LaViolette R, et al. Tolerating the community detectionresolution limit with edge weighting [J]. Physical Review E.2011,83(5):056119.
    [256] Danon L, Diaz-Guilera A, Duch J, et al. Comparing community structure identifi-cation [J]. Journal of Statistical Mechanics: Theory and Experiment.2005,2005:P09008.
    [257] ShannonCE.Amathematicaltheoryofcommunication[J].BellSystemTechnicalJournal.1948,27:379––423,623––656.
    [258] Borda M. Fundamentals in Information Theory and Coding [M]. Springer Verlag,2011.
    [259] Adamic L A, Glance N. The political blogosphere and the2004U.S. election:divided they blog [C/OL]. In Proceedings of the3rd international workshop onLink discovery. New York, NY, USA,2005:36–43. http://doi.acm.org/10.1145/1134271.1134277.
    [260] Gleiser P, Danon L. Community structure in Jazz [J]. Advances in Complex Sys-tems.2003,6(4):565–573.
    [261] Guimerà Manrique R, Danon L, Díez Guilera A, et al. Self-similar communitystructure in a network of human interactions [J]. Physical Review E.2003,68(6):065103.
    [262] Jeong H, Mason S, Barabasi A, et al. Lethality and centrality in protein network-s [J]. Nature.2001,411(6833):41–42.
    [263] Clauset A. Finding local community structure in networks [J]. Physical Review E.2005,72(2):026132.
    [264] Aslam J A, Frost M. An information-theoretic measure for document similari-ty [C]. In Proceedings of the26th annual international ACM SIGIR conference onResearch and development in informaion retrieval. New York, NY, USA,2003:449–450.
    [265] Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks [J].Journal of the American society for information science and technology.2007,58(7):1019–1031.
    [266] Herbiet G, Bouvry P. SHARC: community-based partitioning for mobile ad hocnetworks using neighborhood similarity [C]. In World of Wireless Mobile andMultimedia Networks (WoWMoM),2010IEEE International Symposium on a.2010:1–9.
    [267] Lü L, Zhou T. Link prediction in complex networks: A survey [J]. Physica A:Statistical Mechanics and its Applications.2011,390(6):1150–1170.
    [268] Cilibrasi R, Vitanyi P. The google similarity distance [J]. Knowledge and DataEngineering, IEEE Transactions on.2007,19(3):370–383.
    [269] Lin D. An information-theoretic definition of similarity [C]. In Proceedings of the15th international conference on Machine Learning.1998:296–304.
    [270] Choi S, Cha S, Tappert C. A survey of binary similarity and distance measures [J].Journal of Systemics, Cybernetics and Informatics.2010,8(1):43–48.
    [271] Jaccard P. Etude comparative de la distribution florale dans une portion des Alpeset du Jura [J]. Bulletin de la Société Vaudoise des Sciences Naturelles.1901,37:547–579.
    [272] Katz L. A new status index derived from sociometric analysis [J]. Psychometrika.1953,18(1):39–43.
    [273] Fouss F, Pirotte A, Renders J, et al. Random-walk computation of similaritiesbetween nodes of a graph with application to collaborative recommendation [J].Knowledge and Data Engineering, IEEE Transactions on.2007,19(3):355–369.
    [274] Blondel V, Gajardo A, Heymans M, et al. A measure of similarity between graphvertices: Applications to synonym extraction and web searching [J]. SIAM Re-view.2004,46(4):647–666.
    [275]吕琳媛.复杂网络链路预测[J].电子科技大学学报.2010,39(5):651–661.
    [276] Cason T P. Role extraction in networks [D]. Louvain,Belgium: école polytech-nique,2012.
    [277] Moore E. On the reciprocal of the general algebraic matrix [J]. Bulletin of theAmerican Mathematical Society.1920,26(9):394–395.
    [278] Penrose R. A generalized inverse for matrices [C]. In Proceedings of the Cam-bridge Philosophical Society.1955:406–413.
    [279] Salton G, McGill M. Introduction to modern information retrieval [M]. McGraw-Hill, Inc.,1983.
    [280] Zhou T, Lü L, Zhang Y. Predicting missing links via local information [J]. The Eu-ropean Physical Journal B-Condensed Matter and Complex Systems.2009,71(4):623–630.
    [281] Pan Y, Li D, Liu J, et al. Detecting community structure in complex networks vianode similarity [J]. Physica A: Statistical Mechanics and its Applications.2010,389(14):2849–2857.
    [282]孙即祥.现代模式识别[M].国防科技大学出版社,2002.
    [283] Bien J, Tibshirani R. Hierarchical clustering with prototypes via minimax link-age [J]. Journal of the American Statistical Association.2011,106(495):1075–1084.
    [284] Day W, Edelsbrunner H. Efficient algorithms for agglomerative hierarchical clus-tering methods [J]. Journal of Classification.1984,1(1):7–24.
    [285] XuR,WunschD,etal.Surveyofclusteringalgorithms[J].NeuralNetworks,IEEETransactions on.2005,16(3):645–678.
    [286] Yeung D, Wang X. Improving performance of similarity-based clustering by fea-ture weight learning [J]. Pattern Analysis and Machine Intelligence, IEEE Trans-actions on.2002,24(4):556–561.
    [287] Ward Jr J. Hierarchical grouping to optimize an objective function [J]. Journal ofthe American statistical association.1963,58(301):236–244.
    [288] MirkinB,MirkinB.HierarchicalClustering[M]//MackieI.CoreConceptsinDa-ta Analysis: Summarization, Correlation and Visualization, Undergraduate Topicsin Computer Science. Springer London,2011:2011:283–313.
    [289] Johnson S. Hierarchical clustering schemes [J]. Psychometrika.1967,32:241–254.
    [290] Gower J C, Ross G J S. Minimum spanning trees and single linkage cluster analy-sis [J]. Journal of the Royal Statistical Society. Series C (Applied Statistics).1969,18(1):54–64.
    [291] Sibson R. SLINK: an optimally efficient algorithm for the single-link clustermethod [J]. The Computer Journal.1973,16(1):30–34.
    [292] Seifoddini H. Single linkage versus average linkage clustering in machine cell-s formation applications [J]. Computers&Industrial Engineering.1989,16(3):419–426.
    [293] StuetzleW,NugentR.Ageneralizedsinglelinkagemethodforestimatingtheclus-ter tree of a density [J]. Journal of Computational and Graphical Statistics.2010,19(2):397–418.
    [294] Morgan T. Complete linkage in the second chromosome of the male of Drosophi-la [J]. Science.1912,36:719–720.
    [295] Ao S, Yip K, Ng M, et al. CLUSTAG: hierarchical clustering and graph methodsfor selecting tag SNPs [J]. Bioinformatics.2005,21(8):1735–1736.
    [296] McQuitty L. Similarity analysis by reciprocal pairs for discrete and continuousdata [J]. Educational and Psychological Measurement.1966,26(4):825–831.
    [297] Ihaka R, Gentleman R. R: A language for data analysis and graphics [J]. Journalof computational and graphical statistics.1996,5(3):299–314.
    [298] Sorensen D. Implicit application of polynomial filters in a k-step Arnoldimethod [J]. SIAM Journal on Matrix Analysis and Applications.1992,13(1):357–385.
    [299] Reichardt J, Reichardt J. Standard approaches to network structure: Block mod-eling [M]//Reichardt J, Reichardt J. Structure in Complex NetworksVol.766.Springer Berlin/Heidelberg,2009:2009:13–30.
    [300]曹广福.实变函数论[M].高等教育出版社,2000.
    [301] Lai D, Lu H, Nardini C. Enhanced modularity-based community detection by ran-dom walk network preprocessing [J]. Physical Review E.2010,81(6):066118.
    [302] Milgram S. The small world problem [J]. Psychology Today.1967,2(1):60–67.
    [303] Cohen R, Havlin S. Scale-free networks are ultrasmall [J]. Physical Review Let-ters.2003,90(5):58701.
    [304] Elmacioglu E, Lee D. On six degrees of separation in DBLP-DB and more [J].ACM SIGMOD Record.2005,34(2):33–40.
    [305] LancichinettiA,FortunatoS,RadicchiF.Benchmarkgraphsfortestingcommunitydetection algorithms [J]. Physical Review E.2008,78(4):046110.
    [306] Clauset A, Shalizi C, Newman M. Power-law distributions in empirical data [J].SIAM Review.2009,51(4):661–703.
    [307] Newman M. The structure of scientific collaboration networks [J]. Proceedings ofthe National Academy of Sciences of the United States of America.2001,98(2):404–409.
    [308] Bogu á M, Pastor-Satorras R, Díaz-Guilera A, et al. Models of social networksbased on social distance attachment [J]. Physical Review E.2004,70(5):056122.
    [309] Moser L, Wyman M. Stirling numbers of the second kind [J]. Duke MathematicalJournal.1958,25(1):29–43.
    [310] Pak K. Stirling numbers of the second kind [J]. Formalized Mathematics.2005,13(2):337–345.
    [311] Rota G. The number of partitions of a set [J]. The American Mathematical Month-ly.1964,71(5):498–504.
    [312] Dobinski G. Summirung der Reihenmn!für m=1,2,3,4,5[J]. Arch. für Mat. undPhysik.1877,61:333–336.
    [313] MeilǎM.Comparingclusterings:Anaxiomaticview[C/OL].InProceedingsofthe22nd international conference on Machine learning. New York, NY, USA,2005:577–584. http://doi.acm.org/10.1145/1102351.1102424.
    [314] Lee J A, Verleysen M. Nonlinear Dimensionality Reduction [M].1st ed. SpringerPublishing Company, Incorporated,2007.
    [315] Huss M, Holme P. Currency and commodity metabolites: their identification andrelation to the modularity of metabolic networks [J]. Systems Biology, IET.2007,1(5):280–285.
    [316] McDaid A, Hurley N. Detecting highly overlapping communities with model-based overlapping seed expansion [C]. In Advances in Social Networks Analysisand Mining (ASONAM),2010International Conference on.2010:112–119.
    [317] Pardalos P, Xue J. The maximum clique problem [J]. Journal of global Optimiza-tion.1994,4(3):301–328.
    [318] Bomze I, Budinich M, Pardalos P, et al. The maximum clique problem [J]. Hand-book of combinatorial optimization.1999,4(1):1–74.
    [319] Karp R. Reducibility among combinatorial problems [J]. Kibern. Sb., Nov. Ser.1975,12:16–38.
    [320] Karp R M. Reducibility Among Combinatorial Problems [M]//Jünger M,Liebling T M, Naddef D, et al.50Years of Integer Programming1958-2008.Springer Berlin Heidelberg,2010:2010:219–241.
    [321] Carraghan R, Pardalos P. An exact algorithm for the maximum clique problem [J].Operations Research Letters.1990,9(6):375–382.
    [322] Berman P, Schnitger G. On the complexity of approximating the independent setproblem [J]. Information and Computation.1992,96(1):77–94.
    [323] Feige U, Goldwasser S, Lovasz L, et al. Approximating clique is almost NP-complete [C]. In Foundations of Computer Science,1991. Proceedings.,32nd An-nual Symposium on.1991:2–12.
    [324]骆挺,钟才明,陈辉.基于完全子图的社区发现算法[J]. Computer Engineering.2011,37(18).
    [325] Derényi I, Palla G, Vicsek T. Clique percolation in random networks [J]. PhysicalReview Letters.2005,94(16):160202.
    [326] Adamcsek B, Palla G, Farkas I, et al. CFinder: locating cliques and overlappingmodules in biological networks [J]. Bioinformatics.2006,22(8):1021–1023.
    [327] Pan L, Wang C, Xie J. Link Communities Detection via Local Ap-proach [M]//Li T, Nguyen H, Wang G, et al. Rough Sets and Knowledge Tech-nologyVol.7414. Springer Berlin/Heidelberg,2012:2012:282–291.
    [328] Gregory S. Finding overlapping communities using disjoint community detec-tion algorithms [M]//Fortunato S, Mangioni G, Menezes R, et al. Complex Net-worksVol.207. Springer Berlin/Heidelberg,2009:2009:47–61.
    [329] Newman M. Analysis of weighted networks [J]. Physical Review E.2004,70(5):056131.
    [330] Palla G, Farkas I, Pollner P, et al. Directed network modules [J]. New Journal ofPhysics.2007,9:186.
    [331] Fern X Z, Davidson I, Dy J G. MultiClust2010: discovering, summarizing andusing multiple clusterings [J]. SIGKDD Explor. Newsl.2011,12(2):47–49.
    [332] Krogh A, Sollich P. Statistical mechanics of ensemble learning [J]. Physical Re-view E.1997,55(1):811.
    [333] ZhouZ,TangW.Clustererensemble[J].Knowledge-BasedSystems.2006,19(1):77–83.
    [334] Du N, Wu B, Xu L, et al. A Parallel Algorithm for Enumerating All MaximalCliques in Complex Network [C/OL]. In Proceedings of the Sixth IEEE Interna-tional Conference on Data Mining-Workshops. Washington, DC, USA,2006:320–324. http://dx.doi.org/10.1109/ICDMW.2006.17.
    [335] Wu B, Pei X. A Parallel Algorithm for Enumerating All the Maximal k-Plexes [M]//Washio T, Zhou Z-H, Huang J, et al. Emerging Technologies inKnowledge Discovery and Data MiningVol.4819. Springer Berlin/Heidelberg,2007:2007:476–483.
    [336] XuM,YangPP,MaJ.Parallelknowledgecommunitydetectionalgorithmresearchbased on mapreduce [J]. Advanced Materials Research.2011,204:1646–1650.
    [337]林旺群,卢风顺,丁兆云, et al.基于带权图的层次化社区并行计算方法[J].Journal of Software.2012,23(6):1517–1530.
    [338] Sun J, Faloutsos C, Papadimitriou S, et al. GraphScope: parameter-free mining oflarge time-evolving graphs [C/OL]. In Proceedings of the13th ACM SIGKDDinternational conference on Knowledge discovery and data mining. New York,NY, USA,2007:687–696. http://doi.acm.org/10.1145/1281192.1281266.
    [339] Guha S, McGregor A. Graph synopses, sketches, and streams: a survey [J]. Proc.VLDB Endow.2012,5(12):2030–2031.
    [340] Tang L, Liu H, Zhang J, et al. Community evolution in dynamic multi-mode net-works [C]. In Proceeding of the14th ACM SIGKDD international conference onKnowledge discovery and data mining.2008:677–685.
    [341] Long B, Wu X, Zhang Z M, et al. Unsupervised learning on k-partite graph-s [C/OL]. In Proceedings of the12th ACM SIGKDD international conference onKnowledge discovery and data mining. New York, NY, USA,2006:317–326.http://doi.acm.org/10.1145/1150402.1150439.
    [342] YangB,LiuJ,LiuD.CharacterizingandExtractingMultiplexPatternsinComplexNetworks [J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Trans-actions on.2011(99):1–13.
    [343] Mandayam Comar P, Tan P, Jain A. A framework for joint community detectionacross multiple related networks [J]. Neurocomputing.2012,76(1):93–104.
    [344] Liu X, De Lathauwer L, Janssens F, et al. Hybrid Clustering of Multiple Infor-mation Sources via HOSVD [M]//Zhang L, Lu B-L, Kwok J. Advances in Neu-ral Networks-ISNN2010Vol.6064. Springer Berlin/Heidelberg,2010:2010:337–345.
    [345] Bickel P, Chen A. A nonparametric view of network models and Newman-Girvanand other modularities [J]. Proceedings of the National Academy of Sciences ofthe United States of America.2009,106(50):21068–21073.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700