基于Luminex平台的病毒性出血热多重血清学检测方法的建立及其评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒性出血热(Viral Hemorrhagic Fever, VHF)是由不同科多达几十种病毒引起的一组病毒性疾病,顾名思义,其典型的临床表现为发热和出血,严重的会引起休克、弥散性血管内凝血(disseminated intravascular coagulation, DIC)和中枢神经系统损伤甚至导致死亡。出血热病毒主要在布尼亚病毒科、沙粒病毒科、丝状病毒科和黄病毒科四个科,部分病毒感染所引起疾病的病死率高达90%以上,病毒性出血热威胁着全球大部分人口。截止到目前,在国内发现并明确的病毒性出血热主要包括以下四种:流行性出血热、新疆出血热、登革出血热和严重发热伴血小板减少综合征。此外,随着全球自然环境的改变和现代交通的迅速发展,出现了一些新发现的出血热病毒并迅速传播,老出血热病毒的流行范围也呈不断扩散的趋势,如不加以有效控制将有可能带来严重的后果。
     快速、简便而又准确的病毒病诊断方法为病毒病治疗提供了必要的依据。不同病毒性出血热的临床表现接近,需要通过实验室特异性检测才能确定诊断。目前,病毒性出血热的实验室诊断方法主要包括病毒分离培养、ELISA法、RT-PCR法、免疫荧光法、免疫组化以及电镜等。上述方法各有优劣,但均不易实现多重血清学检测是它们的共同缺点。血清学检测是病毒病诊断不可或缺的重要手段,同时又需要在短时间内对可引起出血热的众多病毒进行筛查并最终确诊,就需要一项专门的技术来实现这一目标。
     Luminex技术是基于流式细胞技术、ELISA技术、化学发光技术、快速信号处理技术等多项技术为基础所研发的一种新型的高通量大分子检测平台,主要开发于上世纪90年代,又名悬浮芯片(suspension array)技术。本研究选取这一技术作为平台,建立起快速、敏感、高通量的病毒性出血热实验室血清学检测方法,以期达到对新发突发病毒性出血热临床样本快速筛查及诊断的目的,主要从以下几个方面开展工作:
     1.出血热病毒重组蛋白抗原的表达、纯化及鉴定
     本部分研究的主要目的是为建立病毒性出血热多重血清学检测方法提供足够量的优质检测抗原。首先完成了二十九种出血热病毒重组蛋白抗原的表达和纯化,在纯化方面每种抗原都采用了两种纯化方式,一种为金属离子亲和层析,另一种为切胶回收,前者作为检测抗原,后者作为免疫抗原免疫兔子获得多克隆兔血清作为质控标准品。在抗原表达方面,SFTSV-NP和HLV-NP分别采用了原核表达和真核表达,前者用于免疫动物,后者作为检测抗原。经鉴定,所有抗原的纯度都能达到90%以上,符合检测和免疫需求。另外,我们还完成了各抗原ELISA检测最佳包被量的优化,并评价了相应多克隆兔血清的IgG抗体滴度。
     2. Luminex多重血清学检测方法的建立和质控
     本部分研究的目的在于建立病毒性出血热多重血清学检测及其质控方法。首先利用ELISA和western-blot法评价了白蛉病毒属属内血清学交叉反应,为悬浮芯片多重检测方法的建立、评价及应用过程中可能存在的白蛉病毒属属内血清学交叉反应提供了依据。而后我们利用29种偶联了不同病毒重组蛋白抗原的荧光微球对相应兔血清进行了单重检测,评价了偶联效果以及每种兔血清中特异性IgG抗体的滴度,一般都能达到1:4096000。证明了偶联抗原后荧光微球在4℃避光保存的期限至少为一年。验证了同一批次纯化的抗原经不同批次偶联荧光微球后在检测IgG和IgM抗体过程中的批间差在统计学上无明显差异。为下一步将这一新建立的方法应用于临床血清样本奠定了基础。
     3. Luminex多重血清学检测方法对临床样本的筛查和诊断
     本部分研究的目的在于评价所建方法的临床检验效果。首先确定了10重荧光微球检测IgG抗体的cutoff值,并检测了一批HFRS病人和SFTS病人恢复期血清的IgG抗体,得到了每种抗原在检测特异性IgG抗体时的敏感度和特异度。在此前提下检测了一批未知病原感染的临床样本,确诊了部分HFRS病例和一例DHF病例。在10重荧光微球检测的基础之上,我们又进一步确定了29重荧光微球检测IgG抗体和IgM抗体的cutoff值,建立了去除血清中类风湿因子的方法。根据cutoff值检测了一批HFRS病人和SFTS病人恢复期血清的IgG抗体及急性期血清的IgM抗体,得到了每种抗原在检测特异性IgG和IgM抗体时的敏感度和特异度。在此前提下我们检测了一批未知病原感染的临床样本,检出了部分针对汉坦病毒NP抗原、SFTSV-NP抗原、HLV-NP抗原、CCHFV-NP抗原以及黄病毒-rEⅢ抗原的阳性血清,使用胶体金和RT-PCR法证实了部分SFTS感染病例。
     总之,我们建立起了一套基于Luminex技术的病毒性出血热多重血清学检测方法,并对之进行了质控和评价,证明了其在临床血清样本筛查及诊断中起到了十分重要的作用。
Viral hemorrhagic fever (VHF) is a group of a human illnesses caused by dozens of viruses mainly in four distinct of enveloped, single-strand RNA viral families including the Bunyaviridae, Arenaviridae, Filoviridae, and Flaviviridae. As the name implies, the typical clinical symptoms of VHF include fever and bleeding disorders which are often accompanied with headache, muscle joint pain, convulsions and can progress to severe disseminated intravascular coagulation (DIC) and central nervous system damage and even death. Most of the world's population is now affected by the threat of VHF. So far, VHF discovered in China are mainly hemorrhagic fever with renal syndrome (HFRS), Crimean-Congo hemorrhagic fever (CCHF), dengue hemorrhagic fever (DHF) and severe fever with thrombocytopenia syndrome (SFTS). With the global change of natural environment and rapid development of modern transportation, both the new emerging and the existed hemorrhagic fever viruses (HFVs) showed the trend of rapid spread. Therefore, it is critical to develop laboratory diagnostic system for VHFs control.
     Currently, diagnosis of VHFs is achieved by RT-PCR, immunofluorescence, ELISA, immunohistochemistry, virus isolation and electron microscopy, and so on. Each method mentioned above cannot meet the requirements of multi-pathogen detection and high-throughput. Serological detection methods are indispensible for viral disease diagnosis including VHF and it needs to screen dozens of viruses that caused VHF and make diagnosis in a short time. Luminex xMAP technology, also known as suspension array or liquid chip, is designed to perform a wide variety of bioassays including multiplexing of up to100specific targets. It combines advanced fluidics, optics, and digital signal processing with proprietary microsphere technology and can be used for high-throughput analysis in a short time, and requires minimal sample volume.
     In this study, xMAP technology was used as a platform to establish a rapid, sensitive and high-throughput laboratory serological detection method for VHF specific antibodies in order to achieve the purpose of rapid screening and diagnosis for new emerging hemorrhagic fever viruses. Our work can be divided into three parts:
     1. Expression and purification of29HFVs recombinant proteins.
     The main purpose of this part was to provide sufficient amounts of high-quality recombinant antigens for establishing VHF multi-serological detection method.29recombinant proteins of HFVs were expressed and then purified using two methods, one was metal ion affinity chromatography or cut specific band of target proteins from gel after SDS-PAGE, and the proteins were eluted from the band of gel which were used for rabbits'immunization to obtain polyclonal sera. SFTSV-NP and HLV-NP were produced from both prokaryotic and eukaryotic systems. The former was used for immunization and the latter for detection. The purity for all29HFVs proteins was above90%as assessed by gel gray scan analysis, meeting the standards for both immunization and detection. In addition, the optimization for each antigen-coating amounts of ELISA detection and evaluation of the corresponding polyclonal rabbit serum were also achieved.
     2. Establishment and quality control of Luminex-based immunoassay.
     The purpose of this part is to establish multiplexed serological detection method for VHF. Serological cross-reactivity among genus Phlebovirus was firstly evaluated by ELISA and Western blot analysis, which provided basis for the study of probable existence of cross reactions in the process of the establishment, evaluation and application of Luminex-based immunoassay. Then the coupling effect of each protein to a coded bead set was assessed using corresponding rabbit immune serum and IgG antibody titers were investigated, which could reach to1:4096000for almost all sera. Besides, we also verified that the detection efficiency was not affected obviously after the fluorescent microspheres coupling with antigens stored at4℃for one year and the inter-assay for IgM and IgG detection has no statistical difference. All these work provided foundation for applying this method to practical diagnosis.
     3. Screening and diagnosis of VHF clinical samples using Luminex-based immunoassay
     This part aims to evaluate the clinical diagnostic effect of this newly established method. Cut-off values of10-plexed Luminex-based immunoassay for IgG detection were firstly determined. Numbers of convalescent sera of confirmed HFRS and SFTS patients were selected for IgG detection and sensitivity and specificity were both calculated. Then a number of clinical samples with unknown pathogen infection were detected using this10-plexed immunoassay and several HFRS cases and one DHF case were diagnosed. Based on the above study, cut-off values of29-plexed Luminex-based immunoassay for both IgM and IgG detections were determined and method for removing serum rheumatoid factor was also established. Numbers of sera in both acute and convalescent phase of HFRS and SFTS patients were detected for IgM and IgG antibodies and sensitivity and specificity were determined. A number of clinical samples with unknown pathogen infection were then detected using this29-plexed immunoassay and several VHF positive sera were picked out.
     In summary, a rapid, sensitive and high-throughput Luminex-based serological detection method for VHF specific antibodies were establish and evaluated, which played an important role in the clinical screening and diagnosis of serum samples and provided a potentially reliable diagnostic tool for serological detection of VHF.
引文
[1]宋干(2006)病毒性出血热新进展.Infect Dis Info.19(1):12.
    [2]Aileen M. Marty, et al. Viral hemorrhagic fevers.2006, Clin Lab Med.26: 345-386.
    [3]Peters CJ, et al. Hantavinm pulmonary syndrome:the new American hemorrhagic fever[J]. Clin Infect Dis.2002,34(9):1224-1231.
    [4]Mohammed Mir. Hantaviruses. Clin Lab Med.2010 March; 30(1):67-91.
    [5]Dharmendra S Prajapati, et al. Crimean-Congo Hemorrhagic Fever From Tick-Borne Viral Disease. Pharmacie Globale (IJCP) 2011,3 (02)
    [6]Shawky S. Rift Valley fever[J]. Saudi Med J,2000,21(12):1109-1115.
    [7]Briese, T, et al. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from Southern Africa.2009, PLoS Pathog.4:e1000455.
    [8]Sanchez A, Khan AS, Zaki SR, et al. Filoviridae:Marburg and Ebola viruses. In: Fields BN, Knipe DM, Howley PM, et al, editors. Fields Virology. Philadelphia: Lippincott Williams & Wilkins; 2001.
    [9]Kurane I, Takasaki T. Dengue fever and dengue haemorrhagic fever:challenges of controlling an enemy still at large. Rev Med Virol 2001;11:301-11.
    [10]Monath TP. Yellow fever:Victor Victoria? Conqueror, conquest? Epidemics and research in the last forty years and prospects for the future. Am J Trop Med Hyg 1991;45:1-43.
    [11]McKay DG, Margaretten W. Disseminated intravascular coagulation in virus diseases. Arch Intern Med 1967;120:129-52.
    [12]Hooper JW, Li D. Vaccines against hantaviruses. Curr Top Microbiol Immunol 2001; 256:171-91.
    [13]Monath TP. Yellow fever vaccine. Expert Rev Vaccines 2005;4:553-74.
    [14]McKee KT Jr, Oro JG, Kuehne AI, et al. Candid No.1 Argentine hemorrhagic fever vaccine protects against lethal Junin virus challenge in rhesus macaques. Intervirology 1992; 34:154-63.
    [15]Pittman PR, Liu CT, Cannon TL, et al. Immunogenicity of an inactivated Rift Valley fever vaccine in humans. Vaccine 1999; 18:181-9.
    [16]Douglas S. Watson, et al. A multiplexed immunoassay for detection of antibodies against avian influenza virus. Journal of Virological Methods 183 (2012) 99-105
    [17]Thomas B. Martins. Development of Internal Controls for the Luminex Instrument as Part of a Multiplex Seven-Analyte Viral Respiratory Antibody Profile. Clin Diag Lab Immun, Jan.2002, p.41-45
    [18]Fimme J. van der Wal, et al. Bead-based suspension array for simultaneous detection of antibodies against the Rift Valley fever virus nucleocapsid and Gn glycoprotein. Journal of Virological Methods 183 (2012) 99-105
    [19]Susan J. Wong, et al. Detection of Human Anti-Flavivirus Antibodies with a West Nile Virus Recombinant Antigen Microsphere Immunoassay. Journal of Clinical Microbiology, Jan.2004, p.65-72
    [20]Holbrook, M. R., R. E. Shope, and A. D. Barrett (2004) Use of recombinant E protein domain Ⅲ-based enzyme-linked immunosorbent assays for differentiation of tick-borne encephalitis serocomplex flaviviruses from mosquito-borne flaviviruses. J. Clin. Microbiol.42:4101-4110.
    [1]McElroy A, Albarino C, Nichol S. Development of a RVFV ELISA that can distinguish infected from vaccinated animals, Virol. J. (2009) 6:125.
    [2]Meisel, H., Wolbert, A., Razanskiene, A., et al.2006. Development of novel immunoglobulin G(IgG), IgA, and IgM enzyme immunoassays based on recombinant Puumala and Dobrava hantavirus nucleocapsid proteins. Clinical and Vaccine Immunology:CVI 13 (12),1349-1357.
    [3]Paweska JT, Burt FJ, Swanepoel R. Validation of IgG-sandwich and IgM-capture ELISA for the detection of antibody to Rift Valley fever virus in humans. J Virol Methods (2005) 124:173-81.
    [4]Yongjun Jiao, Xiaoyan Zeng, Xiling Guo, et al.2011. Preparation and Evaluation of Recombinant Severe Fever with Thrombocytopenia Syndrome Virus Nucleocapsid Protein for Detection of Total Antibodies in Human and Animal Sera by Double-Antigen Sandwich Enzyme-Linked Immunosorbent Assay. J. Clin. Microbiol.2012.50(2):372.
    [5]Saijo, M., Georges-Courbot, M.C., Marianneau, P., Romanowski, V., Fukushi, S., Mizu-tani, T., Georges, A.J., Kurata, T., Kurane, I., Morikawa, S., 2007. Development ofrecombinant nucleoprotein-based diagnostic systems for Lassa fever. Clinicaland Vaccine Immunology:CVI14 (9),1182-1189.
    [6]Saijo, M., M. Niikura, T. Ikegami, I. Kurane, T. Kurata, and S. Morikawa. Laboratory diagnostic systems for Ebola and Marburg hemorrhagic fevers developed with recombinant proteins.2006. Clin. Vaccine Immunol.13:444-451.
    [7]Calisher CH, Francy DB, Smith GC, Muth DJ, Lazuick JS, Karabatsos N, et al. Distribution of Bunyamwera serogroup viruses in North America, 1956-1984. Am J Trop Med Hyg 1986.35:429-43.
    [8]Calisher CH, Pretzman CI, Muth DJ, Parsons MA, Peterson ED. Serodiagnosis of La Crosse virus infections in humans by detection of immunoglobulin M class antibodies. J Clin Microbiol 1986.23:667-71.
    [9]Buescher EL, Scherer WF. Ecologic studies of Japanese encephalitis virus in Japan. IX. Epidemiologic correlations and conclusions. Am J Trop Med Hyg. 1959.8:719-722.
    [10]T.S Gritsun, V.A Lashkevich, E.A Gould. Tick-borne encephalitis. Antiviral Research.2003,57:129-146.
    [1]Keita Matsuno, Carla Weisend, Amelia P. A. Travassos da, et al. Characterization of the Bhanja Serogroup Viruses (Bunyaviridae) a Novel Species of the Genus Phlebovirus and Its Relationship with Other Emerging Tick-Borne Phleboviruses. Journal of Virology,2013,87 (7):3719.
    [2]D. T. Mourya, P. D. Yadav, A. Basu, et al. Malsoor virus, a novel bat Phlebovirus is closely related to STFS and Heartland viruses. Journal of Virology,2014,88 (6):3605-9.
    [3]Andrea Swei, Brandy J. Russell, Samia N. Naccache, et al. The Genome Sequence of Lone Star Virus, a Highly Divergent Bunyavirus Found in the Amblyomma americanum Tick. PLoS One,2013,8 (4):e62083.
    [4]李德新,舒跃龙等。《病毒学方法》,科学出版社。
    [5]Carson RT, Vignali DA., Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. J Immunol Methods,1999,227:41
    [6]Wong SJ, Demarest VL, Boyle RH, Wang T, Ledizet M, Kar K, Kramer LD, Fikrig E, Koski RA Detection of human anti-flavivirus antibodies with a West Nile Virus recombinant antigen microsphere immunoassay. Journal of Clinical Microbiology,2004,42:65
    [7]Pickering JW, McMillin GA, Gedge F, Hill HR, Lyon E. Flow cytometric assay for genotyping Cytochrome P450 2C9 and 2C19:Comparison with a microelectronic DNA array. Am J Pharmacogenomics,2004,4:199
    [8]Bellisario R, Colinas RJ, Pass KA. Simultaneous measurement of thyroxine and thyrotropin from newborn dried blood-spot specimens using a multiplexed fluorescent microsphere immunoassay. Clin Chem,2000,46:1422
    [9]Lim DV, Simpson JM, Kearns EA, Kramer MF. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol, 2005, Rev18(4):583
    [10]Naciff JM, Richardson BD, Oliver KG, Jump ML, Torontali SM, Juhlin KD, Carr GJ, Paine JR, Tiesman JP, Daston GP. Design of a microsphere-based high-throughput gene expression assay to determine estrogenic potential. Environ Health Prespect,2005,113(9):1164
    [11]Dunbar SA, Jacobson JW. Rapid screening for 31 mutations and polymorphisms in the cystic fibrosis transmembrane conductance regulator gene by Luminex xMAP suspension array. Methods Mol Med,2005,114:147
    [12]Komatsu N, Shichijo S, Nakagawa M, Iton K. New multiplexed flow cytometric assay to measure anti-peptide antibody:a novel tool for monitoring immune responses to peptides used for immunization. Scandinavian Journal of Clinical and Laboratory Investigation,2004,64:535
    [13]Pelech S. Tracking cell signaling protein expression and phosphorylation by innovative proteomic solutions. Current Pharmaceutical Biotechnology,2004, 5:69
    [14]Miller BB, Mandell JW. Multiplex method for measuring biomarker of Alzheimer disease in cerebrospinal fluid. Clinical Chemistry,2005,51:289
    [15]Iannone MA, Consler TG, Pearce KH, Stimmel JB, Parks DJ, Gray JG. Multiplexed molecular interactions of nuclear receptors using fluorescent microspheres. Cytometry,2001,44:326
    [16]Muro M, Llorente S, Marin L, Moya-Quiles MR, Gonzalez-Soriano MJ, Prieto A,Gimeno L, Alvarez-Lopez MR. Acute vascular rejection mediated by HLA antibodies in a cadaveric kidney recipient:discrepancies between FlowPRATM, ELISA and CDC vs luminex screening. Nephrology Dialysis Transplantation, 2005,20:223
    [17]Gustavo Palacios, Nazir Savji, Amelia Travassos da Rosa, et al. Characterization of the Uukuniemi Virus Group (Phlebovirus:Bunyaviridae):Evidence for Seven Distinct Species. J Virol,2013 March,87(6):3187-3195.
    [18]G Robeson, L H el Said, W Brandt, J Dalrymple, D H Bishop. Biochemical studies on the Phlebotomus fever group viruses (Bunyaviridae family). J Virol. 1979 April,30(1):339-350.
    [19]Carson RT, Vignali DA., et al. Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. J Immunol Methods,1999,227:41.
    [20]Wei Wu1, Shuo Zhang1, Jing Qu, et al. Simultaneous detection of IgG antibodies associated with viralhemorrhagic fever by a multiplexed Luminex-based immunoassay. Virus Research,2014 Mar 12. pii:S0168-1702(13)00483-8.
    [21]De Jager W, te Velthuis H, Prakken BJ, Kuis W, Rijkers GT. Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clinical and Diagnostic Laboratory Immunology.10(1):133.
    [1]宋干(2006)病毒性出血热新进展.Infect Dis Info.19(1):12.
    [2]Yu XJ, Liang MF, Zhang SY, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med 2011.
    [3]Jiang XL, Wang XJ, Li JD, et al. Isolation, identification and characterization of SFTS bunyavirus from ticks collected on the surface of domestic animals. Bing Du Xue Bao.2012 May; 28(3):252-7.
    [4]Wang Y, Deng B, Zhang J, et al. Person-to-person asymptomatic infection of severe fever with thrombocytopenia syndrome virus through blood contact. Intern Med.2014; 53(8):903-6.
    [5]Niu G, Li J, Liang M, Jiang X, et al. Severe fever with thrombocytopenia syndrome virus among domesticated animals, China. Emerg Infect Dis.2013 May; 19(5):756-63.
    [6]Bowen MD, Peters CJ, Nichol ST. The phylogeny of New World (Tacaribe
    complex) arenaviruses. Virology 1996;219:285-90.
    [7]McCormick JB, Webb PA, Krebbs JW, et al.Aprospective study of epidemiology and ecology of Lassa fever. J Infect Dis 1987; 155:437-44.
    [8]Maiztegui J, Feuillade M, Briggiler A. Progessive extension of the endemic area and changing incidence of Argentine hemorrhagic fever. Med Microbiol Immunol (Berl) 1986; 175:149-52.
    [9]Salas R, de Manzione N, Tesh RB, et al. Venezuelan haemorrhagic fever. Lancet 1991; 338:1033-6.
    [10]Lisieux T, Coimbra M, Nassar ES, et al. New arenavirus isolated in Brazil. Lancet 1994; 343:391-2.
    [11]Centers for Disease Control and Prevention. Fatal illness associated with a new world arenavirus-California. MMWR Morb Mortal Wkly Rep 2000; 49:709-11.
    [12]Centers for Disease Control and Prevention (CDC). Outbreak of Marburg virus hemorrhagic fever-Angola, October 1,2004-March 29,2005. MMWR Morb Mortal Wkly Rep 2005; 54:308-9.
    [13]World Health Organization International Study Team. Ebola haemorrhagic fever in Zaire,1976. Bull World Health Organ 1978; 56:271-93.
    [14]Jahrling PB, Geisbert TW, Dalgard DW, et al. Preliminary report:isolation of Ebola virus from monkeys imported to the USA. Lancet 1990; 335:502-5.
    [15]Le Guenno B, Formentry P, Wyers M, et al. Isolation and partial characterisation of a new strain of Ebola virus. Lancet 1995; 345:1271-4.
    [16]Paul Roddy, Natasha Howard, Maria D. Van Kerkhove, et al. Clinical Manifestations and Case Management of Ebola Haemorrhagic Fever Caused by a Newly Identified Virus Strain, Bundibugyo, Uganda,2007-2008. PLoS One.2012; 7(12)
    [17]Swanepoel R, Leman PA, Burt FJ, et al. Experimental inoculation of plants and animals with Ebola virus. Emerg Infect Dis 1996; 2:321-5.
    [18]Monath TP. Yellow fever:Victor Victoria? Conqueror, conquest? Epidemics and research in the last forty years and prospects for the future. Am J Trop Med Hyg 1991; 45:1-43.
    [19]Pavri K. Clinical, clinicopathological, and hematologic features of Kyasanur Forest disease. Rev Infect Dis 1989; 11(Suppl 4):S854-9.
    [20]Chumakov MP. (1959) Studies of virus hemorrhagic fevers. J Hyg Epidemiol Microbiol Immunol 1959; 7:125-35.
    [21]Watson DS, Reddy SM, Brahmakshatriya V, Lupiani B, et al. A multiplexed immunoassay for detection of antibodies against avian influenza virus. J Immunol Methods.2009 Jan 30; 340(2):123-31.
    [22]Martins TB. Development of internal controls for the Luminex instrument as part of a multiplex seven-analyte viral respiratory antibody profile. Clin Diagn Lab Immunol.2002 Jan; 9(1):41-5.
    [23]Hamza IA, Jurzik L, Wilhelm M. Development of a Luminex assay for the simultaneous detection of human enteric viruses in sewage and river water. J Virol Methods.2014 Apr 18; 204C:65-72.
    [24]Johnson AJ, Noga AJ, Kosoy O, et al. Duplex microsphere-based immunoassay for detection of anti-West Nile virus and anti-St. Louis encephalitis virus immunoglobulin m antibodies. Clin Diagn Lab Immunol.2005 May; 12(5): 566-74.
    [1]赵敏.病毒性出血热研究进展.传染病信息.1007-8134(2008)01-0027-04.
    [2]Hooper JW, Li D. Vaccines against hantaviruses. Curr Top Microbiol Immunol 2001; 256:171-91.
    [3]Monath TP. Yellow fever vaccine. Expert Rev Vaccines 2005;4:553-74.
    [4]McKee KT Jr, Oro JG, Kuehne AI, et al. Candid No.1 Argentine hemorrhagic fever vaccine protects against lethal Junin virus challenge in rhesus macaques. Intervirology 1992; 34:154-63.
    [5]Pittman PR, Liu CT, Cannon TL, et al. Immunogenicity of an inactivated Rift Valley fever vaccine in humans. Vaccine 1999; 18:181-9.
    [6]Yu XJ, Liang MF, Zhang SY, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med 2011.
    [7]Jiang XL, Wang XJ, Li JD, et al. Isolation, identification and characterization of SFTS bunyavirus from ticks collected on the surface of domestic animals. Bing Du Xue Bao.2012 May; 28(3):252-7.
    [8]Wang Y, Deng B, Zhang J, et al. Person-to-person asymptomatic infection of severe fever with thrombocytopenia syndrome virus through blood contact. Intern Med.2014; 53(8):903-6.
    [9]Niu G, Li J, Liang M, Jiang X, et al. Severe fever with thrombocytopenia syndrome virus among domesticated animals, China. Emerg Infect Dis.2013 May; 19(5):756-63.
    [10]McCormick JB, Webb PA, Krebbs JW, et al.Aprospective study of epidemiology and ecology of Lassa fever. J Infect Dis 1987; 155:437-44.
    [11]Maiztegui J, Feuillade M, Briggiler A. Progessive extension of the endemic area and changing incidence of Argentine hemorrhagic fever. Med Microbiol Immunol (Berl) 1986; 175:149-52.
    [12]Salas R, de Manzione N, Tesh RB, et al. Venezuelan haemorrhagic fever. Lancet 1991; 338:1033-6.
    [13]Lisieux T, Coimbra M, Nassar ES, et al. New arenavirus isolated in Brazil. Lancet 1994; 343:391-2.
    [14]Centers for Disease Control and Prevention. Fatal illness associated with a new world arenavirus-California. MMWR Morb Mortal Wkly Rep 2000; 49:709-11.
    [15]Centers for Disease Control and Prevention (CDC). Outbreak of Marburg virus hemorrhagic fever-Angola, October 1,2004-March 29,2005. MMWR Morb Mortal Wkly Rep 2005; 54:308-9.
    [16]World Health Organization International Study Team. Ebola haemorrhagic fever in Zaire,1976. Bull World Health Organ 1978; 56:271-93.
    [17]Jahrling PB, Geisbert TW, Dalgard DW, et al. Preliminary report:isolation of Ebola virus from monkeys imported to the USA. Lancet 1990; 335:502-5.
    [18]Le Guenno B, Formentry P, Wyers M, et al. Isolation and partial characterisation of a new strain of Ebola virus. Lancet 1995; 345:1271-4.
    [19]Paul Roddy, Natasha Howard, Maria D. Van Kerkhove, et al. Clinical Manifestations and Case Management of Ebola Haemorrhagic Fever Caused by a Newly Identified Virus Strain, Bundibugyo, Uganda,2007-2008. PLoS One.2012; 7(12).
    [20]Pavri K. Clinical, clinicopathological, and hematologic features of Kyasanur Forest disease. Rev Infect Dis 1989; 11(Suppl 4):S854-9.
    [21]Chumakov MP. (1959) Studies of virus hemorrhagic fevers. J Hyg Epidemiol Microbiol Immunol 1959; 7:125-35.
    [22]Carson RT, Vignali DA., Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. J Immunol Methods,1999,227:41
    [23]Wong SJ, Demarest VL, Boyle RH, Wang T, Ledizet M, Kar K, Kramer LD, Fikrig E, Koski RA Detection of human anti-flavivirus antibodies with a West Nile Virus recombinant antigen microsphere immunoassay. Journal of Clinical Microbiology,2004,42:65
    [24]Pickering JW, McMillin GA, Gedge F, Hill HR, Lyon E. Flow cytometric assay for genotyping Cytochrome P450 2C9 and 2C19:Comparison with a microelectronic DNA array. Am J Pharmacogenomics,2004,4:199
    [25]Bellisario R, Colinas RJ, Pass KA. Simultaneous measurement of thyroxine and thyrotropin from newborn dried blood-spot specimens using a multiplexed fluorescent microsphere immunoassay. Clin Chem,2000,46:1422
    [26]Lim DV, Simpson JM, Kearns EA, Kramer MF. Current and developing technologies for monitoring agents of bioterrorism and bio warfare. Clin Microbiol, 2005, Rev18(4):583
    [27]Naciff JM, Richardson BD, Oliver KG, Jump ML, Torontali SM, Juhlin KD, Carr GJ, Paine JR, Tiesman JP, Daston GP. Design of a microsphere-based high-throughput gene expression assay to determine estrogenic potential. Environ Health Prespect,2005,113(9):1164
    [28]Dunbar SA, Jacobson JW. Rapid screening for 31 mutations and polymorphisms in the cystic fibrosis transmembrane conductance regulator gene by Luminex xMAP suspension array. Methods Mol Med,2005,114:147
    [29]Komatsu N, Shichijo S, Nakagawa M, Iton K. New multiplexed flow cytometric assay to measure anti-peptide antibody:a novel tool for monitoring immune responses to peptides used for immunization. Scandinavian Journal of Clinical and Laboratory Investigation,2004,64:535
    [30]Pelech S. Tracking cell signaling protein expression and phosphorylation by innovative proteomic solutions. Current Pharmaceutical Biotechnology,2004, 5:69
    [31]Miller BB, Mandell JW. Multiplex method for measuring biomarker of Alzheimer disease in cerebrospinal fluid. Clinical Chemistry,2005,51:289
    [32]Iannone MA, Consler TG, Pearce KH, Stimmel JB, Parks DJ, Gray JG. Multiplexed molecular interactions of nuclear receptors using fluorescent microspheres. Cytometry,2001,44:326
    [33]Muro M, Llorente S, Marin L, Moya-Quiles MR, Gonzalez-Soriano MJ, Prieto A,Gimeno L, Alvarez-Lopez MR. Acute vascular rejection mediated by HLA antibodies in a cadaveric kidney recipient:discrepancies between FlowPRATM, ELISA and CDC vs luminex screening. Nephrology Dialysis Transplantation, 2005,20:223
    [34]Wu W, Zhang S, Qu J, Simultaneous detection of IgG antibodies associated with viral hemorrhagic fever by a multiplexed Luminex-based immunoassay. Virus Res. 2014 Mar 12. pii:S0168-1702(13)00483-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700