含多肽嵌段共聚物的合成与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多肽链是蛋白质的基本共价结构,是生命现象的基础。因此合成与研究含有聚多肽链段的聚合物目前是一个热点的课题之一。本论文围绕着聚谷氨酸类多肽这个中心,合成了一系列聚谷氨酸类嵌段共聚物,并探讨了这些新合成的嵌段共聚物的相关性能,分析了聚谷氨酸类链段的二级结构对于嵌段共聚物性能的影响,研究了聚谷氨酸类链段的二级结构对嵌段共聚物的一维,二维,和三维自组装的作用。采用AFM,TEM,和SEM等方法,直观地分析研究了含聚谷氨酸类嵌段共聚物的自组装特性,并从微观的角度上对观察到的各种现象进行了原理分析,阐明了聚谷氨酸类嵌段共聚物结构与性能之间的关系。主要内容如下:
     含聚多肽与PEG嵌段共聚物的合成。我们的合成主要是围绕着含PSLG嵌段共聚物为中心展开,同时,将PEG这一独特的亲水性及生物相容性嵌段引入共聚物中,组合成新的嵌段共聚物,为以后的性能研究做好铺垫。在聚多肽与PEG嵌段共聚物的合成中,我们从羟基PEG出发,首先将PEG端氨基化,然后利用氨基酸的NCA开环反应合成PEG与PSLG的嵌段共聚物,同时探讨了一次性合成含PEG与聚氨基酸类胶束的路线。
     PEG-b-PSLG嵌段共聚物在溶液中自组装研究。两亲性嵌段共聚物在溶液中的自组装是高分子物理研究的一个课题,近年来人们合成了许多两亲性嵌段共聚物并探讨了其自组装的机理。在这一方面Eisenberg等人作了许多杰出的研究工作。已经有很多人研究过PEG与PBLG嵌段共聚物在液体表面的二维与在溶液中的三维自组装。我们研究主要针对在溶液中PEG-b-PSLG嵌段共聚物的三维自组装。我们采用TEM,SEM,和DLS等方法研究了其在混合溶剂中的自组装,发现PEG与PBLG嵌段共聚物在有机混合溶剂中能够自组装成囊泡状结构,分析了其自组装形貌与机理的关系。
     PEG-b-PSLG嵌段共聚物在HOPG表面上的自组装。Watanabe等人研究了聚谷氨酸烷烃酯类在HOPG表面上的二维自组装,发现了HOPG的晶向附生长对聚谷氨酸烷烃酯类二维自组装的诱导作用。我们主要采用AFM对PEG与PSLG嵌段共聚物在HOPG表面上的二维自组装进行了系统地研究。研究表明,嵌段共聚物中的PSLG嵌段首先在HOPG上进行取向附生排列,PEG则在其周围与上方排列堆积。制样浓度对嵌段共聚物在表面上的二维自组装没有本质上的影响,但浓度的增加导致了嵌段共聚物在HOPG表面上的二维组装由岛状排列逐渐到形成单分子层。浓度继续增加时,嵌段共聚物在单分子层表面上将会形成纳米棒状和圆环状结构。制样方法,如:旋涂和滴膜,对嵌段共聚物在HOPG表面上的自组装并没有本质的影响。根据试验结果,我们设计了嵌段共聚物在HOPG表面上二维自组装的模型。
     聚氨基酸嵌段共聚物凝胶的研究。我们合成了新的聚谷氨酸十八醇酯与聚谷氨酸苄酯的嵌段共聚物(PSLG-b-PBLG),研究了其在甲苯中形成凝胶的一维自组装现象与机理。通过AFM,TEM,和SAXS的研究与分析,我们发现PSLG-b-PBLG在甲苯中形成热可逆凝胶,其凝胶的外观特征与PBLG和PSLG有颜色上的区别。通过改变PSLG-b-PBLG的浓度制备凝胶并进行AFM观察发现凝胶有形成丝带装形貌的特征。将AFM,TEM,和SAXS的结果进行比较分析,我们认为PSLG-b-PBLG在甲苯中的凝胶是一种丝带状的结构。
As one of the basic components of protein and life, peptide has attracted muchattention in recent years. In this thesis we focused on the synthesis of a series ofglutamate polypeptides based copolymers, as well as the properties of polypeptidessynthesized and the effect of secondary structure of polypeptide on the properties ofcopolymers. We described here the relation between secondary structures ofpolypeptides and 2-Dimensional and 3-Dimensional self-assembly properties ofcopolymers. The self-assembly character of polyglutamate based copolymers wassystematically studied by direct visualization methods such as AFM, TEM, and SEM.Model analysis was proposed on any self-assembly phenomena observed, and therelation between properties and copolymers was clearly expressed. The main contentof this thesis is listed as below:
     Synthesis polypeptide based eopolymers. A series of poly(γ-stearyl L-glutamate)(PSLG) based copolymers was synthesized by ring-open polymerization of aminoacid NCA, which was initiated by hydrophilic polymer such as amine terminated PEG.Some specific properties would be found derived from these novel molecularstructures of PSLG-b-PEG copolymers. The amine terminated PEG was synthesizedfrom hydroxyl PEG by tosylation and the classic phthalimide-hydrazine procedure.We studied the micellization of PSLG-b-PEG contained copolymers by in-situsynthesis method also.
     Self-assembly of PEG-b-PSLG eopolymers in solvents. The self-assembly ofamphiphilic copolymers is one of the attractive topic of macromolecular physics. Aseries of studies on the synthesis and property of amphiphilic copolymers were carriedout these years, and great works have been done by Eisenberg's group on this area. Ithas been extensively investigated about 2D self-assembly on the surface of solventand 3D self-aggregate in solutions of PEG-b-PBLG these years. We focused ourinvestigation on the 3D self-aggregation of PEG-b-PSLG di-and triblock copolymersby TEM, SEM, and DLS etc. Vesicular like aggregates of PEG-b-PSLG were found in organic mixed solvents, and the self-assembly mechanism of PEG-b-PSLG wassystematically analyzed along with a designed model.
     Epitaxial array of PEG-b-PSLG eopolymers on HOPG. Watanabe andcoworkers investigated the 2D self-assembly of poly(γ-L-glutamates) with longn-alkyl side chains on graphite, and demonstrated their epitaxial array phenomena byAFM. PEG-b-PSLG di- and triblock copolymers exhibited the epitaxial array onHOPG guided by the interaction of PSLG and HOPG too, with PEG aggregatedsurround or above the parallel aligned PSLG. There is no distinct difference between2D array with variance of sample concentrations, while the 2D aggregates shapes onthe HOPG surface changing from submonolayer island into monolayer with theincreasing of sample concentration. There should be nanorods or ring-shapedaggregates on the monolayer of copolymer with even higher solution concentration.Sample preparing methods, such as castingor spin coating, carried out no diverse on2D array of copolymers on HOPG. A model of PEG-b-PSLG epitaxial array onHOPG was designed on the bases of our experiments.
     Investigation of copolypeptide organogel. A Novel copolypeptide(poly(γ-stearyl L-glutamate)-b- poly(γ,-benzyl L-glutamate)) (PSLG-b-PBLG) has beensynthesized, and it could 1D self-assemble into thermal reversible organogel intoluene. There is some visual diverse of those gels, for example, both the gels ofPBLG/toluene and PSLG/dodecane were opacity, while the PSLG-b-PBLG/tolueneexhibited transparency. PSLG-b-PBLG/toluene gel demonstrated fibrilla structureunder investigation of AFM, TEM, and SAXS. Nanoribbon structure was found withdrop-casting PSLG-b-PBLG/toluene (0.2 wt %) solution on mica by AFM observation.Nanoribbon-like model of PSLG-b-PBLG/toluene gel was proposed by all of theresults ofAFM, TEM, and SAXS.
引文
[1] Yokoyama, M.; Miyauchi, M.; Yamada, N.; Okano, T.; Sakurai, Y.; Kataoka, K.; Inoue, S. Characterization And Anticancer Activity Of The Micelle-Forming Polymeric Anticancer Drug Adriamycin-Conjugated Poly(Ethylene Glycol)-Poly(Aspartic Acid) Block Copolymer[J]. Cancer Research. 1990, 50(6): 1693-1700.
    [2] Yokoyama, M.; Kwon, G. S.; Okano, T.; Sakurai, Y.; Seto, T.; Kataoka, K. Preparation Of Micelle-Forming Polymer Drug Conjugates[J]. Bioconjugate Chemistry. 1992, 3(4): 295-301.
    [3] Harada, A.; Cammas, S.; Kataoka, K. Stabilized alpha-helix structure of poly(L-lysine)-block-poly(ethylene glycol) in aqueous medium through supramolecular assembly [J]. Macromolecules. 1996, 29(19): 6183-6188.
    [4] Harada, A.; Kataoka, K. Chain length recognition: Core-shell supramolecular assembly from oppositely charged block copolymers[J]. Science. 1999, 283(5398): 65-67.
    [5] Hruska, Z.; Riess, G; Goddard, P. Synthesis And Purification Of A Poly(Ethylene Oxide) Poly(Gamma-Benzyl-L-Glutamate) Diblock Copolymer Beating Tyrosine Units At The Block Junction[J]. Polymer. 1993, 34(6): 1333-1335.
    [6] Kataoka, K.; Togawa, H.; Harada, A.; Yasugi, K.; Matsumoto, T.; Katayose, S. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline[J]. Macromolecules. 1996, 29(26): 8556-8557.
    [7] Sedlak, M.; Antonietti, M.; Colfen, H. Synthesis of a new class of double-hydrophilic block copolymers with calcium binding capacity as builders and for biomimetic structure control of minerals[J]. Macromolecular Chemistry And Physics. 1998, 199(2): 247-254.
    [8] Sedlak, M.; Colfen, H. Synthesis of double-hydrophilic block copolymers with hydrophobic moieties for the controlled crystallization of minerals[J]. Macromolecular Chemistry And Physics. 2001, 202(4): 587-597.
    [9] Konak, C.; Mrkvickova, L.; Nazarova, O.; Ulbrich, K.; Seymour, L. W. Formation of DNA complexes with diblock copolymers of poly(N-(2-hydroxypropyl)methacrylamide) and polycations[J]. Supramolecular Science. 1998, 5(1-2): 67-74.
    [10] Oupicky, D.; Konak, C.; Ulbrich, K. Preparation of DNA complexes with diblock copolymers of poly[N(2-hydroxypropyl)methacrylamide] and polycations[J]. Materials Science & Engineering C-Biomimetic And Supramolecular Systems. 1999, 7(1): 59-65.
    [11] Rathore, O.; Sogah, D. Y. Self-Assembly of β-Sheets into Nanostructures by Poly(alanine) Segments Incorporated in Multiblock Copolymers Inspired by Spider Silk [J]. J. Am. Chem. Soc. 2001, 123(22): 5231-5239.
    [12] Kabanov, A. V.; Vinogradov, S. V.; Suzdaltseva, Y. G.; Alakhov, V. Y. Water-Soluble Block Polycations As Carriers For Oligonucleotide Delivery[J]. Bioconjugate Chemistry. 1995, 6(6): 639-643.
    [13] Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular Self-Assembly And Nanochemistry-A Chemical Strategy For The Synthesis Of Nanostructures[J]. Science. 1991, 254(5036): 1312-1319.
    [14] Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales[J]. Science. 2002, 295(5564): 2418-2421.
    [15] Chen, J. T.; Thomas, E. L.; Ober, C. K.; Hwang, S. S. Zigzag Morphology Of A Poly(Styrene-b-Hexyl Isocyanate) Rod Coil Block-Copolymer[J]. Macromolecules. 1995, 28(5): 1688-1697.
    [16] Chen, J. T.; Thomas, E. L.; Ober, C. K.; Mao, G. P. Self-assembled Smectic Phases in Rod-Coil Block Copolymers[J]. Science. 1996, 273(5273): 343-346.
    [17] Thomas, E. L.; Chen, J. T.; ORourke, M. J. E.; Ober, C. K.; Mao, G. P. Influence of a Liquid Crystalline Block on the Microdomain Structure of Block Copolymers[J]. Macromol. Sym. 1997, 117: 241-256.
    [18] Lee, M.; Cho, B. K.; Ihn, K. J.; Lee, W. K.; Oh, N. K.; Zin, W. C. Supramolecular honeycomb by self-assembly of molecular rods in rod-coil molecule[J]. Journal Of The American Chemical Society. 2001, 123 (19): 4647-4648.
    [19] Zhang, L. F.; Yu, K.; Eisenberg, A. Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers[J]. Science. 1996, 272(5269): 1777-1779.
    [20] Zhang, L. F.; Eisenberg, A. Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions[J]. Journal Of The American Chemical Society. 1996, 118(13): 3168-3181.
    [21] Zhang, L. F.; Eisenberg, A. Multiple Morphologies Of Crew-Cut Aggregates Of Polystyrene-b-Poly(Acrylic Acid) Block-Copolymers[J]. Science. 1995,268(5218): 1728-1731.
    [22] Guo, A.; Liu, G. J.; Tao, J. Star polymers and nanospheres from cross-linkable diblock copolymers[J]. Macromolecules. 1996, 29(7): 2487-2493.
    [23] Shen, H.; Eisenberg, A. Morphological Phase Diagram for a Ternary System of Block Copolymer PS310-b-PAA_(52)/Dioxane/H_2O[J]. J. Phys. Chem. B. 1999, 103(44): 9473-9487.
    [24] Wang, Y. M.; Kausch, C. M.; Chun, M. S.; Quirk, R. P.; Mattice, W. L. Exchange Of Chains Between Micelles Of Labeled Polystyrene-Block-Poly(Oxyethylene) As Monitored By Nonradiative Singlet Energy-Transfer[J]. Macromolecules. 1995, 28(4): 904-911.
    [25] Haliloglu, T.; Bahar, I.; Erman, B.; Mattice, W. L. Mechanisms of the exchange of diblock copolymers between micelles at dynamic equilibrium[J]. Macromolecules. 1996, 29(13): 4764-4771.
    [26] Zhang, L.; Eisenberg, A. Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution[J]. Macromolecules. 1999, 32(7): 2239-2249.
    [27] Moffitt, M.; Khougaz, K.; Eisenberg, A. Micellization of ionic block copolymers[J]. Accounts Of Chemical Research. 1996, 29(2): 95-102.
    [28] Yu, K.; Eisenberg, A. Multiple morphologies in aqueous solutions of aggregates of polystyrene-block-poly(ethylene oxide) diblock copolymers[J]. Macromolecules. 1996, 29(19): 6359-6361.
    [29] Shen, H. W.; Zhang, L. F.; Eisenberg, A. Thermodynamics of crew-cut micelle formation of polystyrene-b-poly(acrylic acid) diblock copolymers in DMF/H2O mixtures[J]. Journal Of Physical Chemistry B. 1997, 101(24): 4697-4708.
    [30] Yu, K.; Eisenberg, A. Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution[J]. Macromolecules. 1998, 31 (11): 3509-3518.
    [31] Shen, H. W.; Eisenberg, A. Control of architecture in block-copolymer vesicles[J]. Angewandte Chemic-International Edition. 2000, 39(18): 3310-+.
    [32] Luo, L. B.; Eisenberg, A. One-step preparation of block copolymer vesicles with preferentially segregated acidic and basic corona chains[J]. Angewandte Chemie-International Edition. 2002, 41(6): 1001-+.
    [33] Jenekhe, S. A.; Chen, X. L. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes[J]. Science. 1998, 279(5358): 1903-1907.
    [34] Jenekhe, S. A.; Chen, X. L. Self-assembly of ordered microporous materials from rod-coil block copolymers[J]. Science. 1999, 283(5400): 372-375.
    [35] Cornelissen, J.; Donners, J.; de Gelder, R.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N.; Nolte, R. J. M. beta-helical polymers from isocyanopeptides[j]. Science. 2001, 293(5530): 676-680.
    [36] Vriezema, D. M.; Hoogboom, J.; Velonia, K.; Takazawa, K.; Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. J. M. Vesicles and polymerized vesicles from thiophene-containing rod-coil block copolymers[J]. Angewandte Chemic-International Edition. 2003, 42(7): 772-776.
    [37] Duan, H. W.; Chen, D. Y.; Jiang, M.; Gan, W. J.; Li, S. J.; Wang, M.; Gong, J. Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent[J]. Journal Of The American Chemical Society. 2001, 123(48): 12097-12098.
    [38] Kuang, M.; Duan, H. W.; Wang, J.; Chen, D. Y.; Jiang, M. A novel approach to polymeric hollow nanospheres with stabilized structure[J]. Chemical Communications. 2003, (4): 496-497.
    [39] Duan, H. W.; Kuang, M.; Wang, J.; Chen, D. Y.; Jiang, M. Self-assembly of rigid and coil polymers into hollow spheres in their common solvent[J]. Journal Of Physical Chemistry B. 2004, 108(2): 550-555.
    [40] Kuang, M.; Duan, H. W.; Wang, J.; Jiang, M. Structural factors of rigid-coil polymer pairs influencing their self-assembly in common solvent[J]. Journal Of Physical Chemistry B. 2004, 108(41): 16023-16029.
    [41] Pallai, V. N. R.; Mutter, M. Conformational Studies of Poly(oxyethy 1 ene)-Bound Peptides and Protein Sequences[J]. Ace. Chem. Res. 1981, 14:122-130.
    [42] Osadal, K.; Kataoka, K. Drug and Gene Delivery Based on Supramolecular Assembly of PEG-Polypeptide Hybrid Block Copolymers[J]. Adv. Polym. Sci. 2006, 202: 113-153.
    [43] Yang, Z. Y., J.; Cheng, S. Self-assembling of Biocompatible BAB Amphiphilic Triblock Copolymers PLL(Z)-PEG-PLL(Z) in Aqueous Medium[J]. European Polymer Journal. 2005, 41 : 267-274.
    [44] Kimura, S.; Kim, D.-H.; Sugiyama, J.; Imanishi, Y. Vesicular Self-Assembly of a Helical Peptide in Water[J]. Langmuir. 1999, 15(13): 4461-4463.
    [45] Luo, X.; Miao, W.; Wu, S.; Liang, Y. Spontaneous Formation of Vesicles from Octadecylamine in Dilute Aqueous Solution Induced by Ag(I) Ion[J]. Langmuir. 2002, 18(24): 9611-9612.
    [46] Watanabe, J.; Ono, H.; Uematsu, I.; Abe, A. Thermotropic Polypeptides. 2. Molecular Packing and Thermotropic Behavior of Poly(γ-glutamates) with Long n-Alkyl Side Chains [J]. Macromolecules. 1985, 18(11): 2141-2148.
    [47] Watanabe, J.; Nagase, T. Thermotropic Polypeptides. 5. Temperature Dependence of Cholesteric Pitches Exhibiting a Cholesteric Sense Inversion [J]. Macromolecules. 1987, 21(1): 171-175.
    [48] Watanabe, J.; Goto, M.; Nagase, T. Thermotropic Polypeptides. 3. Investigation of Cholesteric Mesophase Properties of Poly(gamma.-benzyl L-glutamate-co-.gamma.-dodecyl L-glutamates) by Circular Dichroic Measurements [J]. Macromolecules. 1987, 20(2): 298-304.
    [49] Watanabe, J.; Fukuda, Y.; Gebani, R.; Uematsu, I. Thermotropic Polypeptides. 1. Investigation of Cholesteric Mesophase Properties of Poly(methyl-D-glutamate-co-hexyl-D-glutamate)s [J]. Macromolecules. 1984, 17(5): 1004-1009.
    [50] Kim, G.; Kim, J.-Y.; Sohn, D. Synthesis and Characterization of Poly(alkyl α, L-glutamate-co-ethylene oxide)[J]. Macromol. Res. 2002, 10 (1): 49-52.
    [51] Lehn, J. M. Toward Complex Matter: Supramolecular Chemistry and Self-organization[J]. Proc. Natl. Acad. Sci. U.S.A. 2002, 99(8): 4763-4768.
    [52] Lehn, J. M. Toward self-organization and complex matter[J]. Science. 2002, 295 (5564): 2400-2403.
    [53] Mamdouh, W.; Uji-I, H.; Ladislaw, J. S.; Dulcy, A. E.; Percec, V.; De Schryver, F. C.; De Feyter, S. Solvent Controlled Self-assembly at the Liquid-solid Interface Revealed by STM [J]. J. Am. Chem. Soc. 2006, 128(1): 317-325.
    [54] Mamdouh, W.; Uji-i., H.; Dulcey, A. E.; Percec, V.; De Feyter, S.; De Schryver, F. C. Expression of Molecular Chirality and Two-dimensional Suprarnolecular Self-assembly of Chiral, Racemic, and Achiral Monodendrons at the Liquid-solid Interface[J]. Langmuir. 2004, 20(18): 7678-7685.
    [55] De Feyter, S.; Gesquie're, A.; Abdel-Mottaleb, M. M.; Grim, P. C. M.; De Schryver, F. C.; Meiners, C.; Sieffert, M.; Valiyaveettil, S.; Mu"llen, K. Scanning Tunneling Microscopy: A Unique Tool in the Study of Chirality, Dynamics, and Reactivity in Physisorbed Organic Monolayers [J]. Acc. Chem. Res. 2000, 33(8): 520-531.
    [56] De Feyter, S.; De Schryver, F. C. Two-dimensional Supramolecular Self-assembly Probed by Scanning Tunneling Microscopy [J]. Chem. Soc. Rev. 2003, 32(3): 139-150.
    [57] Qiu, X.; Wang, C.; Zeng, Q.; Xu, B.; ~in, S.; Wang, H.; Xu, S.; Bai, C. Alkane-Assisted Adsorption and Assembly of Phthalocyanines and Porphyrins[J]. J. Am. Chem. Soc. 2000, 122(23): 5550-5556.
    [58] Kumaki, J. H., T. Conformational Change in an Isolated Single Synthetic Polymer Chain on a Mica Sm'face Observed by Atomic Force Microscopy[J]. J. Am. Chem. Soc. 2003, 125(16): 4907-4917.
    [59] Sergei, S. S.; Moiler, M. Visualization of Macromolecules-A First Step to Manipulation and Controlled Response[J]. Chem. Rev. 2001, 101 (12): 4099-4123.
    [60] Schluter, A. D.; Rabe, J. P. Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation[J]. Angew. Chem. lnt. Ed. 2000, 39(5): 864-883.
    [61] Sheiko, S. S. Imaging of Polymers Using Scanning Force Microscopy: From Superstructures to Individual Molecules [J]. Adv. Polym. Sci. 2000, 151: 61-174.
    [62] Jeon, S.; Choo, J.; Sohn, D.; Lee, S. N. Hydrogen bonding effects on the conformational changes of polyglutamates containing long flexible side chains[J]. Polymer. 2001, 42(25): 9915-9920.
    [63] Holland, N. 13.; Qiu, Y.; Ruegsegger, M.; Marchant, R. E. Biomimetic Engineering of Non-adhesive Glycocalyx-like Surfaces Using Oligosaccharide Surfactant Polymers[J]. Nature. 1998, 392(6678): 799-801.
    [64] Rabe, J. P.; 13uchholz, S. Commensurability and Mobility in Two-Dimensional Molecular Patterns on Graphite[J]. Science. 1991,253(5018): 424-427.
    [65] Manne, S. G., H. E. Molecular Organization of Surfactants at Solid-Liquid Interfaces[J]. Science. 1995, 270(5241): 1480-1482.
    [66] Manne, S. C., J. P.; Gaub, H. E.; Stucky, G. D.; Hansma, P. K. Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double-Layer[J]. Langmuir. 1994, 10(12): 4409-4413.
    [67] McGonigal, G. C.; Bernhardt, R. H.; Thomson, D. Imaging Alkane Layers at the Liquid Graphite Interface with the Scanning Tunneling Microscope[J]. J. Appl. Phys. Lett. 1990, 57(1): 28-30.
    [68] Herwig, K. W.; Matthies, B.; Taab, H. Solvent Effects on the Monolayer Structure of Long n-alkane Molecules Adsorbed on Graphite[J]. Phys. Rev. Lett. 1995, 75(17): 3154-3157.
    [69] Frey, H.; Lach, C.; Lorenz, K. Heteroatom-based Dendrimers [J]. Adv. Mater. 1998, 10(4): 279-293.
    [70] Ponomarenko, S. A.; Boiko, N. I.; Shibaev, V. R Atomic Force Microscopy Study of Structural Organization of Carbosilane Liquid Crystalline Dendrimer [J]. Langmuir. 2000, 16(12): 5487-5493.
    [71] Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonov, S. N.; Vinogradov, S. A. Self-assembly of Amphiphilic Dendritic Dipeptides into Helical Pores [J]. Nature. 2004, 430(7001): 764-768.
    [72] Percec, V.; Cho, W.-D.; Mo"ller, M.; Prokhorova, S. A.; Ungar, G.; Yeardley, D. J. P. Design and Structural Analysis of the First Spherical Monodendron Self-organizable in a Cubic Lattice [J]. J. Am. Chem. Soc. 2000, 122(17): 4249-4250.
    [73] Gerle, M.; Fischer, K.; Roos, S.; Mu"ller, A. H. E.; Schmidt, M.; Sheiko, S. S.; Prokhorova, S.; Moller, M. Main Chain Conformation and Anomalous Elution Behavior of Cylindrical Brushes as Revealed by GPC/MALLS, Light Scattering, and SFM [J]. Macromolecules. 1999, 32(8): 2629-2637.
    [74] Percec, V.; Holerca, M. N.; Magonov, S. N.; Yeardley, D. J. R; Ungar, G.; Duan, H.; Hudson, S. D. Poly(oxazolines)s with Tapered Minidendritic Side Groups. the Simplest Cylindrical Models to Investigate the Formation of Two-dimensional and Three-dimensional Order by Direct Visualizatio[J]. Biomacromolecules. 2001, 2(3): 706-728.
    [75] Kumaki, J.; Nishikawa, Y.; Hashimoto, T. Visualization of Single-chain Conformations of a Synthetic Polymer with Atomic Force Microscopy[J]. J. Am. Chem. Soc. 1996, 118(13): 3321-3322.
    [76] Lee, H.-I. J., W.; Matyjaszewski, K.; Yu, S.; Sheiko, S. S. Cylindrical Core-Shell Brushes Prepared by a Combination of ROP and ATRP[J]. Macromolecules. 2006, 39(15): 4983-4989.
    [77] Kajitani, T. O., K.; Sakurai, S.-I.; Kumaki, J.; Yashima, E. Helix-sense Controlled Polymerization of a Single Phenyl Isocyanide Enantiomer Leading to Diastereomeric Helical Polyisocyanides with Opposite Helix-Sense and Cholesteric Liquid Crystals with Opposite Twist-Sense[J]. J. Am. Chem. Soc. 2006, 128(3): 708-709.
    [78] Watanabe, J.; Ono, H.; Uematsu, I.; Abe, A. Thermotropic Polypeptides. 2. Molecular Packing and Thermotropic Behavior of Poly(L-glutamates) with Long n-alkyl Side Chains [J]. Macromolecules. 1985, 18(11): 2141-2148.
    [79] Watanabe, J.; Ono, H. X-ray Evidence of an Helical Coiled Coil in Poly(dodecyl L-glutamate) [J]. Macromolecules. 1986, 19(4): 1079-1083.
    [80] Sanda, F.; Gao, G.; Masuda, T. Helical Polymer Carrying Helical Grafts from Peptide-based Acetylene Macromonomers: Synthesis [J]. Macromolecular Bioscience. 2004, 4(6): 570-574.
    [81] Imase, T.; Ohira, A.; Okoshi, K.; Sano, N.; Kawauchi, S.; Watanabe, J.; Kunitake, M. AFM Study of Two-Dimensional Epitaxial Arrays of Poly(γ-L-glutamates) With Long n-alkyl Side Chains on Graphite[J]. Macromolecules. 2003, 36(6): 1865-1869.
    [82] Zhu, J.; Lennox, R. B.; Eisenberg, A. Polymorphism of (Quasi) 2-Dimensional Micelles[J]. J. Phys. Chem. 1992, 96(12): 4727-4730.
    [83] Li, S.; Hanley, S.; Khan, I.; Varshney, S. K.; Eisenberg, A.; Lennox, R. B. Surface Micelle Formation at the Air/Water Interface from Nonionic Diblock Copolymers [J]. Langmuir. 1993, 9(8): 2243-2246.
    [84] Zhu, J.; Eisenberg, A.; B., L. R. Interfacial Behavior of Block Polyelectrolytes.1. Evidence for Novel Surface Micelle Formation [J]. J. Am. Chem. Soc. 1991, 113(15): 5583-5588.
    [85] Zhang, J.; Cao, H.; Wan, X.; Zhou, Q. Molecular Reorganization of Rod-Coil Diblock Copolymers at the Air-Water Interface [J]. Langmuir. 2006, 22(15): 6587-6592.
    [86] Peppas, N. A.; Huang, Y.; Torres-Lugo, M.; Ward, J. H.; Zhang, J. Physicochemical, foundations and structural design of hydrogels in medicine and biology[J]. Annual Review Of Biomedical Engineering. 2000, 2: 9-29.
    [87] Schmidtke, S.; Russo, P.; Nakamatsu, J.; Buyuktanir, E.; Turfan, B.; Temyanko, E.; Negulescu, I. Thermoreversible Gelation of Isotropic and Liquid Crystalline Solutions of a "Sticky" Rodlike Polymer[J]. Macromolecules. 2000, 33 (12): 4427-4432.
    [88] Prystupa, D. A.; Donald, A. M. Infrared Study Of Molecular Aggregation In The Poly(Alpha-Benzyl L-Glutamate) Benzyl Alcohol System[J]. Macromolecules. 1993, 26(8): 1947-1955.
    [89] Dorgan, J. R.; Yan, D. Kinetics of spinodal decomposition in liquid crystalline polymers: Processing effects on the phase separation morphology[J]. Macromolecules. 1998, 31 (1): 193-200.
    [90] Tipton, D. L.; Russo, P. S. Thermoreversible Gelation of a Rodlike Polymer[J]. Macromolecules. 1996, 29(23): 7402-7411.
    [91] Doty, P.; Bradury, J. H.; Holtzer, A. M. Polypeptides. IV. The Molecular Weight, Configuration and Association of Poly(γ-benzyl-L-glutamate in Various Solvents [J]. J. Am. Chem. Soc. 1956, 78(5): 947-954.
    [92] Frey, M. W.; Cuculo, J. A.; Ciferri, A.; Theil, M. H. A Review of Lattice Theory for Lyotropic Liquid-Crystalline Polymers, Spinodal Decomposition, and GeI Formation[J]. J. Macromol. Sci.-Rev. MacromoL Chem.Phys. 1995, 35(2): 287-325.
    [93] Yu, S. J. M.; Conticello, G.; Zhang, C.; Kayser, M. J.; Fournier, T. L.; Mason, T. L.; Tirrell, D. A. Smectic Ordering in Solutions and Films of a Rod-like Polymer Owing to Monodispersity of Chain Length[J]. Nature. 1997, 389(6647): 167-170.
    [94] Tadmor, R.; Khalfin, R. L.; Cohen, Y. Reversible Gelation in Isotropic Solutions of the Helical Polypeptide Poly(γ-benzyl-L-glutamate): Kinetics and Formation Mechanism of the Fibrillar Network[J]. Langmuir. 2002, 18(19): 7146-7150.
    [95] Hentschel, J.; Krause, E.; Borner, H. G. Switch-Peptides to Trigger the Peptide Guided Assembly of Poly(ethylene oxide)-Peptide Conjugates into Tape Structures[J]. J. Am. Chem. Soc. 2006, 128(24): 7722-7723.
    [96] Smeenk, J. M.; Otten, M. B. J.; Thies, J.; Tirrell, D. A.; Stunnenberg, H. G.; Hest, J. C. M. v. Controlled Assembly of Macromolecular β-Sheet Fibrils[J]. Angew. Chem. Int. Ed. 2005, 44:1968-1971.
    [97] Doty, P.; Bradbury, J. H.; Holtzer, A. M. Polypeptides. IV. The Molecular Weight, Configuration and Association of Poly(γ-benzyl-L-glutamate) in Various Solvents [J]. J. Am. Chem. Soc. 1956, 78(5): 947-954.
    [98] Guenet, J.-M. Thermoreversible Gelation of Polymers and Biopolymers[M]. London: Academic Press, 1992.
    [99] Miller, W. G.; Lee, K.; Tohyama, K.; Voltaggio, V. Mechanism of the Thermal Reversible Gelation of PBLG [J]. J. Polym. Sci. Polym. Symp. 1978, 65:91-106.
    [100] Tipton, D. L. R., P. S. Thermoreversible Gelation of a Rodlike Polymer[J]. Macromolecules. 1996, 29(23): 7402-7411.
    [101] Bu, Z. R., P. S.; Yipton, D. L.; Negulescu, I. I. Self-diffusion of Rodlike Polymers in Isotropic Solutions[J]. Macromolecules. 1994, 27(23): 6871-6882.
    [102] Watanabe, J.; Ono, H.; Uematsu, I.; Abe, A. Thermotropic Polypeptides. 2. Molecular Packing and Thermotropic Behavior of Poly(L-glutamates) with Long n-alkyl Side Chains [J]. Macromolecules. 1985, 18(11): 2141-2148.
    [103] Gallot, B. Comb-like and Block Liquid Crystalline Polymers for Biological Applications[J]. Prog. Polym. Sci. 1996, 21(6): 1035-1088.
    [104] Kim, K. T.; Vandermeulen, G. W. M.; Winnik, M. A.; Manners, I. Organometallic-polypeptide block copolymers: Synthesis and properties of poly(ferrocenyldimethylsilane)-b-poly(gamma-benzyl-L-glutamate)[J]. Macromolecules. 2005, 38(12): 4958-4961.
    [105] Kim, K. T.; Park, C.; Vandermeulen, G. W. M.; Rider, D. A.; Kim, C.; Winnik, M. A.; Manners, I. Gelation of Helical Polypeptide-Random Coil Di block Copolymers by a Nanoribbon Mechanism[J]. Angew. Chem. Int. Ed. 2005, 44(48): 7964-7968.
    [106] Kim, K. T.; Park, C.; Kim, C.; Winnik, M. A.; Manners, I. Self-Assembly of Dendron-Helical Polypeptide Copolymers: Organogels and Lyotropic Liquid Crystals[J]. Chem. Commun. 2006, 13: 1372-1374.
    [107] Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T. C. B.; Semenov, A. N.; Boden, N. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils, and fibers[J]. Proceedings Of The National Academy Of Sciences Of The United States Of America. 2001, 98(21): 11857-11862.
    [108] Hentschel, J.; Borner, H. G. Peptide-directed microstructure formation of polymers in organic media[J]. Journal Of The American Chemical Society. 2006, 128(43): 14142-14149.
    [109] Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.; Deming, T. J. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles[J]. Nature. 2002, 417(6887): 424-428.
    [1] Eastmond, G. C.; Ledwith, A.; Russo, S.; Sigwalt, P., Eds. Comprehensive Polymer Science. The Synthesis, Characterization, Reactions and Applications of Polymers[M]. Pergamon Press: New York, 1989.
    [2] Saegusa, T.; Higashimura, T.; Abe, A. Frontiers of Macromolecular Science[M]. Blackwell Scientific Publications: Oxford, 1989.
    [3] Webster, O. W. Living Polymerization Methods[J]. Science. 1991, 251(4996): 887-893.
    [4] Hertler, W. R.; Webster, O. W.; Cohen, G. M.; Sogah, D. Y. Group Transfer Polymerization - Polymerization of Acrylic Monomers[J]. Macromolecules. 1987, 20(7): 1473-1488.
    [5] Rizzardo, E.; Chiefari, J.; Chong, B. Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Thang, S. H. Tailored Polymers by Free Radical Processes[J]. Macromol. Symp. 1999, 143: 291-307.
    [6] Hawker, C. J. Dendritic and Hyperbranched Macromolecules - Precisely Controlled Macromolecular [J]. Adv. Polym. Sci. 1999, 147: 113-160.
    [7] Frechet, J. M. J. Functional Polymers and Dendrimers: Reactivity, Molecular Architecture, and Interfacial Energy[J]. Science. 1994, 263: 1710-1715.
    [8] Newkome, G. R.; Baker, G. R.; Young, J. K.; Traynham, J. G. A Systematic Nomenclature For Cascade Polymers[J]. J. Polym. Sci., Polym. Chem. 1993, 31(3): 641-645.
    [9] Tomalia, D. A. Starburst Cascade Dendrimers - Fundamental Building-Blocks for a New Nanoscopic Chemistry Set[J]. AdV. Mater. 1994, 6(7): 529-532.
    [10] Sunder, A.; Mulhaupt, R.; Haag, R.; Frey, H. Hyperbranched polyether polyols: A modular approach to complex polymer architectures[J]. AdV. Mater. 2000, 12 (3): 235-239.
    [11] Aggeli, A.; Fytas, G.; Vlassopoulos, D.; McLeish, T. C. B.; Mawer, P. J.; Boden, N. Structure and Dynamics of Self-Assembling β-Sheet Peptide Tapes by Dynamic Light Scattering[J]. Biomacromolecules. 2001, 2(2): 378-388.
    [12] Barron, A. E.; Zuckermann, R. N. Bioinspired Polymeric Materials: In-Between Proteins and Plastics[J]. Curr. Opin. Chem. Biol. 1999, 3(6): 681-687.
    [13] Krejchi, M. T.; Atkins, E. D. T.; Waddon, A. J.; Fournier, M. J.; Mason, T. L.; Tirrell, D. A. Chemical Sequence Control of β-sheet Assembly in Macromolecular Crystals of Periodic Polypeptides[J]. Science. 1994, 265(5177): 1427-1429.
    [14] Yu, S. M.; Soto, C. M.; Tirrell, D. A. Nanometer-Scale Smectic Ordering of Genetically Engineered Rodlike Polymers: Synthesis and Characterization of Monodisperse Derivatives of Poly(γ-benzyl -L-glutarnate)[J]. J. Am. Chem. Soc. 2000, 122(28): 6552-6559.
    [15] McMillan, R. A.; Conticello, V. P. Synthesis and Characterization of Elastin-Mimetic Protein Gels Derived from a Well-Defined Polypeptide Precursor[J]. Macromolecules. 2000, 33(13): 4809-4821.
    [16] Buchko, C. J.; Slattery, M. J.; Kozloff, K. M.; Martin, D. C. Mechanical Properties of Biocompatible Protein Polymer Thin Films [J]. J. Mater. Res. 2000, 15(1): 231-242.
    [17] Kobatake, E.; Onoda, K.; Yanagida, Y.; Aizawa, M. Design and Gene Engineering Synthesis of an Extremely ThermostableProtein with Biological Activity [J]. Biomacromolecules. 2000, 1(3): 382-386.
    [18] McGrath, K. P.; Kaplan, D. L. Recognition and Assembly Using Protein Building-Blocks[J]. Macromol. Symp. 1994, 77:183-189.
    [19] Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Supramolecular Materials: Self-organized Nanostructures [J]. Science. 1997, 276 (5311): 384-389.
    [20] Krejchi, M. T.; Cooper, S. J.; Deguchi, Y.; Atkins, E. D. T.; Fournier, M. J.; Mason, T. L.; Tirrell, D. A. Crystal Structures of Chain-folded Antiparallel β-sheet Assemblies from Sequence-designed Periodic Polypeptides [J]. Macromolecules. 1997, 30(17): 5012-5024.
    [21] McGrath, K. P.; Fournier, M. J.; Mason, T. L., Tirrell, D. A. Genetically Directed Syntheses of new Polymeric Materials-expression of Artificial Genes Encoding Proteins with Repeating Proglugly Elements[J]. J. Am. Chem. Soc. 1992, 114 (2): 727-733.
    [22] Sogah, D. Y.; Perle-Treves, D., Voyer, N.; DeGrado, W. F. Design and Synthesis of Polytripeptide based upon the Matrix Protein Amelogenin [J]. Macromol. Symp. 1994, 88: 149-163.
    [23] West, J. L.; Halas, N. J. Applications of Nanotechnology to Biotechnology-Commentary[J]. Curr. Opin. Biotechnol. 2000, 11(2): 215-217.
    [24] Wooley, K. L. Shell Crosslinked Polymer Assemblies: Nanoscale Constructs Inspired from Biological Systems[J]. J. Polym. Sci., Part A: Polym. Chem. 2000, 38(9): 1397-1407.
    [25] Niemeyer, C. M.; Adler, M.; Pignataro, B.; Lenhert, S., Gao, S.; Chi, L.; Fuchs, H.; Blohm, D. Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR[J]. Nucleic Acids Res. 1999, 27(23): 4553-4561.
    [26] Niemeyer, C. M.; Burger, W.; Peplies, J. Covalent DNA-Streptavidin Conjugates as Building Blocks for Novel Biometallic Nanostructures[J]. Angew. Chem., Int. Ed. Engl. 1998, 37(16): 2265-2268.
    [27] Petka, W. A.; Hardin, J. L.; McGrath, K. P.; Wirtz, D.; Tirrell, D. A. Reversible Hydrogels from Self-assembling Artificial Proteins[J]. Science. 1998, 281(5275): 389-392.
    [28] Bayley, H. Self-assembling Biomolecular Materials in Medicine[J]. J. Cell. Biochem. 1994, 56(2): 168-170.
    [29] Pillai, R. V. N.; Mutter, M. Conformational Studies of Poly(oxyethylene)-Bound Peptides and Protein Sequences[J]. Acc. Chem. Res. 1981, 14: 122-130.
    [30] Vandermeulen, G. W. M.; Tziatzios, C.; Klok, H.-A. Reversible Self-Organization of Poly(ethylene glycol)-Based Hybrid Block Copolymers Mediated by a De Novo Four-Stranded R-Helical Coiled Coil Motif [J]. Macromolecules. 2003, 36 (11): 4107-4114.
    [31] Kimura, S.; Kim, D.-H.; Sugiyama, J.; Imanishi, Y. Vesicular Self-Assembly of a Helical Peptide in Water[J]. Langmuir. 1999, 15(13): 4461-4463.
    [32] Rathore, O.; Sogah, D. Y. Self-Assembly of fl-Sheets into Nanostructures by Poly(alanine) Segments Incorporated in Multiblock Copolymers Inspired by Spider Silk[J]. J. Am. Chem. Soc. 2001, 123 (22): 5231-5239.
    [33] Ashton, P. R.; Boyd, S. E.; Brown, C. I.; Nepogodiev, S. A.; Meijer, E. W.; Peerlings, H. W. I.; Stoddart, J. F. Synthesis of glycodendrimers by modification of poly(propylene imine) dendrimers[J]. Chem. Eur. J. 1997, 6(3): 974-984.
    [34] Dubois, P.; Degee, P.; Jerome, R.; Teyssie, P. Macromolecular engineering of polylactones and polylactides. 8. Ring-opening polymerization of ε-caprolactone initiated by primary amines and trialkylaluminum [J]. Macromolecules. 1992, 25: 2614-2618.
    [35] Degee, P.; Dubios, R.; Jerome, R.; Teyssie, P. Macromolecular engineering of polylactones and polylactides. 9. Synthesis, characterization, and application of-primary amine poly(ε-caprolactone)[J]. Macromolecules. 1992, 25(17): 4242-4248.
    [36] Tian, D.; Dubios, P.; Jerome, R.; Teyssie, P. Macromolecular Engineering of Polylactones and Polylactides. 18. Synthesis of Star-branched Aliphatic Polyesters Bearing Various Functional End-groups [J]. Macromolecules. 1994, 27(15): 4134-4144.
    [37] Kricheldorf, H. R.; Hauser, K. Macrocycles. 3. Telechelic Polylactones via Macrocylic Polymerization[J]. Macromolecules. 1998, 31(3): 614-620.
    [38] Yuan, M. L.; Wang, Y. H.; Li, X. H.; Xiong, C. D.; Deng, X. M. Polymerization of Lactides and Lactones. 10. Synthesis,Characterization, and Application of Amino-Terminated Poly(ethylene glycol)-co-poly(-caprolactone) Block Copolymer [J]. Macromolecules. 2000, 33(5): 1613-1617.
    [39] Lu, F.-Z.; Xiong, X.-Y.; Li, Z.-C.; Du, F.-S.; Zhang, B.-Y.; Li, F.-M. A Convenient Method for the Synthesis of Amine-Terminated Poly(ethyleneoxide) and Poly(ε-caprolactone)[J]. Bioconjugate Chem. 2002, 13:1159-1162.
    [40] Kataoka, K.; Kwon, G. S.; M., Y.; Okano, T.; Sakurai, Y. Block-copolymer Micelles as Vehicles for Drug Delivery [J]. J Contr Release. 1993, 24(1): 119-132.
    [41] Duncan, R. The dawning era of polymer therapeutics[J]. Nature Reviews Drug Discovery. 2003, 2(5): 347-360.
    [42] Haag, R. Supramolecular drug-delivery systems based on polymeric core-shell architectures[J]. Angewandte Chemic-International Edition. 2004, 43(3): 278-282.
    [43] Lavasanifar, A.; Samuel, J.; Kwon, G. S. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery[J]. Advanced Drug Delivery Reviews. 2002, 54(2): 169-190.
    [44] H., O.; Y., N.; K, K. Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications [J]. Curr Opin Colloid Interface Sci. 2001, 6(1): 3-10.
    [45] Osada, K.; Kataoka, K. Drug and Gene Delivery Based on Supramolecular Assembly of PEG-Polypeptide Hybrid Blcok Copolymers[J]. Adv. Polym. Sci. 2006, 202: 113-153.
    [46] Brzezinska, K. R.; Curtin, S. A.; Deming, T. J. Polypeptide End-Capping Using Functionalized Isocyanates: Preparation of Pentablock Copolymers [J]. Macromolecules. 2002, 35(8): 2970-2976.
    [47] Zhang, S.; Qing, J.; Xiong, C.; Peng, Y. Synthesis of End-Functionalized AB Copolymers. Ⅱ. Synthesis and Characterization of Carboxyl-Terminated Poly(ethylene glycol)-Poly(amino acid) Block Copolymers[J]. J. Polym. Sci.: Part A: Polym. Chem. 2004, 42: 3527-3536.
    [48] Nah, J.-W.; Jeong, Y.-I.; Cho, C.-S.; Kim, S.-I. Drug-Delivery System Based on Core-Shell-Type Nanoparticles Composed of Poly(g-benzyl-L-glutamate) and Poly(ethylene oxide)[J]. J. Appl. Polym. Sci. 2000, 75:1115-1126.
    [49] Cho, C.-S.; Jeong, Y.-I.; Kim, S.-H.; Nah, J.-W.; Kubota, M.; Komoto, T. Thermoplastic hydrogel based on hexablock copolymer composed of poly(g-benzyl 1-glutamate) and poly(ethylene oxide) [J]. Polymer. 2000, 41: 5185-5193.
    [50] Nah, J.-W.; Jeong, Y.-I.; Cho, C.-S. Polymeric Micelle Formation of the Multiblock Copolymer Composed of Poly(γ-benzyl-L-glutamate) and Poly(ethylene oxide) [J]. Bull. Korean Chem. Soc. 2000, 21(4): 383-388.
    [51] Inomata, K.; Itoh, M.; Nakanishi, E. Helix-Coil Transition and Micellar Structure of Poly(ethylene glycol)-block-Poly [N~5-(2-hydroxythyl) L-glutamine] in Cyclohexanol/Water Mixed Solvents [J]. Polym. J. 2005, 37(6): 404-412.
    [52] Schlaad, H. Solution Properties of Polypeptide-based Copolymers[J]. Adv. Polym. Sci. 2006, 202: 53-73.
    [53] Jeong, J. H.; Kang, H. S.; Yang, S. R.; J.-D., K. Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(caprolactone) [J]. Polymer. 2003, 44(3): 583-591.
    [54] Yoshida, Y.; Sakakura, Y.; Aso, N.; Okada, S.; Tanabe, Y. Practical and efficient methods for sulfonylation of alcohols using Ts(Ms)Cl/Et_3N and catalytic Me_3N·HCl as combined base: Promising alternative to traditional pyridine[J]. Tetrahedron. 1999, 55:2183-2192.
    [55] Benaglia, M.; Cinquini, M.; Cozzi, F. Improved Procedure for the Purification of PEG Bound Molecules by the Use of Trioctylamine [J]. Tetrahedron Letter. 1999, 40: 2019-2020.
    [56] Vos, R. J. D.; Goethals, E. J. Convenient synthesis of α-tosyl-ω-tosyloxypoly(oxyethylene)[J]. Makromol. Chem., Rapid Commun. 1985, 6: 53-56.
    [57] Fishman, A.; Farrah, M. E.; Zhong, J.-H.; Paramanantham, S.; Carrera, C.; L.-R., E. Synthesis and Investigation of Novel Branched PEG-Based Soluble Polymer Supports[J]. J. Org. Chem. 2003, 68: 9843-9846.
    [58] Lottner, C.; Bart, K.-C.; Bernhardt, G.; Brunner, H. Soluble Tetraarylporphyrin-Platinum Conjugates as Cytotoxic and Phototoxic Antitumor Agents[J]. J. Med. Chem. 2002, 45: 2079-2089.
    [59] Pillai, V. N. R.; Mutter, M.; Bayer, E.; Gatfield, I. New, Easily Removable Poly(ethylene glycol) Supports for the Liquid-Phase Method of Peptide Synthesis [J]. J. Org. Chem. 1980, 45(26): 5364-5370.
    [60] Daly, W. H.; Poche, D. The Preparation ofN-Carbooxyanhydrides of Amono Acid Using Bis(trichloromethyl)carbonate[J]. Tetradron Lett. 1988, 29: 5859-5862.
    [61] Kim, G.; Kim, J.-Y.; Sohn, D. Synthesis and Chararcterization of Poly(alkyl a, L-glutamate-co-ethylene oxide)[J]. Macromol. Res. 2002, 10: 49-52.
    [1] Forster, S.; Antonietti, M. Amphiphilic block copolymers in structure-controlled nanomaterial hybrids [J]. Adv. Mater. 1998, 10(3): 195-197.
    [2] Bates, F. S.; Fredrickson, G. H. Block copolymers - Designer soft materials [J]. Physics Today. 1999, 52(2): 32-38.
    [3] Colfen, H. Double-hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifiers[J]. Macromol. Rapid Commun. 2001, 22(4): 219-225.
    [4] Forster, S.; Konrad, M. From Self-organizing Polymers to Nano-and Biomaterials [J]. J. Mater. Chem. 2003, 13 (11): 2671-2675.
    [5] Antonietti, M.; Forster, S. Vesicles and Liposomes: A Self-assembly Principle Beyond Lipids[J]. Adv. Mater. 2003, 15(11): 1323-1326.
    [6] 江明;A.艾森伯格;刘国军;张希.大分子自组装[M].科学出版社,2006年9月.
    [7] Halperin, A.; Tirrell, M.; Lodge, T. P. Tethered Chains in Polymer Microstructures[J]. Adv. Polym. Sci. 1992, 100(31-37).
    [8] Choucair, A.; Eisenberg, A. Control of Amphiphilic Block Copolymer Morphologies Using Solution Conditions[J]. Eur. Phys. J. 2003, 10(1): 37-44.
    [9] Discher, B. M.; Won, Y.-Y.; Ege, D. S.; Lee, J. C.-M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Polymersomes: Tough Vesicles Made From Diblock Copolymers [J]. Science. 1999, 284(5417): 1143-1146.
    [10] Discher, D. E.; Eisenberg, A. Polymer Vesicles[J]. Science. 2002, 297(5583): 967-973.
    [11] Taubert, A.; Napoli, A.; Meier, W. Self-assembly of Reactive Amphiphilic Block Copolymers as Mimetics for Biological Membranes[J]. Curr. Opin. Chem. Biol. 2004, 8(6): 598-603.
    [12] Kita, T. K.; Grumelard, J.; Haefele, T.; Meier, W. Block Copolymer Vesicles-Using Concepts From Polymer Chemistry to Mimic Biomembranes[J]. Polymer. 2005, 46(11): 3540-3563.
    [13] Osada, K.; Kataoka, K. Drug and Gene Delivery Based on Supramolecular Assembly of PEG-Polypeptide Hybrid Block Copolymers[J]. Adv. Polym. Sci. 2006, 202: 113-153.
    [14] Kataoka, K.; Kwon, G. S.; Yokoyama, M.; Okano, T.; Sakurai, Y. Block-copolymer Micelles as Vehicles for Drug Delivery[J]. J. Contr. Release. 1993, 24(1-3): 119-132.
    [15] Duncan, R. The Dawning era of Polymer Therapeutics [J]. Nat Rev Drug Discovery. 2003, 2(5): 347-360.
    [16] Haag, R. Supramolecular Drug-delivery Systems Based on Polymeric Core-shell Architectures[J]. Angew. Chem. Int. Ed. 2004, 43(3): 278-282.
    [17] Lavasanifar, A.; Samuel, J.; Kwon, G. S. Poly(ethylene oxide)-block-poly(L-amino acid) Micelles for Drug Delivery[J]. Adv. Drug Deliv. Rev. 2002, 54(2): 169-190.
    [18] Kakizawa, Y.; Kataoka, K. Block Copolymer Micelles for Delivery of Gene and Related Compounds[J]. Adv. Drug Delivery Rev. 2002, 54(2): 203-222.
    [19] Otsuka, H.; Nagasaki, Y.; Kataoka, K. Self-assembly of Poly(ethylene glycol)-based Block Copolymers for Biomedical Applications[J]. Curr. Opin. Colloid Interface Sci. 2001, 6(1): 3-10.
    [20] Lu, F.-Z.; Xiong, X.-Y.; Li, Z.-C.; Du, F.-S.; Zhang, B.-Y.; Li, F.-M. A Convenient Method for the Synthesis of Amine-Terminated Poly(ethyleneoxide) and Poly(ε-caprolactone)[J]. Bioconjugate Chem. 2002, 13(5): 1159-1162.
    [21] Brzezinska, K. R.; Curtin, S. A.; Deming, T. J. Polypeptide End-Capping Using Functionalized Isocyanates: Preparation of Pentablock Copolymers[J]. Macromolecules. 2002, 35(8): 2970-2976.
    [22] Zhang, S.; Qing, J.; Xiong, C.; Peng, Y. Synthesis of End-Functionalized AB Copolymers. Ⅱ. Synthesis and Characterization of Carboxyl-Terminated Poly(ethylene glycol)-Poly(amino acid) Block Copolymers[J]. J. Polym. Sci.: A: Polym. Chem. 2004, 42: 3527-3536.
    [23] Li, J.; Kao, W. J. Synthesis of Polyethylene Glycol (PEG) Derivatives and PEGylated-Peptide Biopolymer Conjugates[J]. Biomacromolecules. 2003, 4(4): 1055-1067.
    [24] Nah, J.-W.; Jeong, Y.-I.; Cho, C.-S.; Kim, S.-I. Drug-Delivery System Based on Core-Shell-Type Nanoparticles Composed of Poly(γ-benzyl-L-glutamate) and Poly(ethylene oxide)[J]. Journal of Applied Polymer Science. 2000, 75:1115-1126.
    [25] Pallai, V. N. R.; Mutter, M. Conformational Studies of Poly(oxyethylene)-Bound Peptides and Protein Sequences[J]. Acc. Chem. Res. 1981, 14: 122-130.
    [26] Cho, C.-S.; Jeong, Y.-I.; Kim, S.-H.; Nah, J.-W.; Kubota, M.; Komoto, T. Thermoplastic Hydrogel Based on Hexablock Copolymer Composed of Poly(γ-benzyl L-glutamate) and Poly(ethylene oxide)[J]. Polymer. 2000, 41: 5185-5193.
    [27] Cho, C.-S.; Nah, J.-W.; Jeong, Y.-I.; Cheon, J.-B.; Asayama, S.; Ise, H.; Akaike, T. Conformational Transition of Nanoparticles Composed of Poly(γ-benzyl L-glutamate) as the Core and Poly(ethylene oxide) as the Shell[J]. Polymer. 1999, 40: 6769-6775.
    [28] Rosier, A.; Klok, H. A.; Hamley, I. W.; Castelletto, V.; Mykhaylyk, O. O. Nanoscale Structure of Poly(ethylene glycol) Hybrid Block Copolymers Containing Amphiphilic b-strand Peptide Sequences[J]. Biomaroomolecules. 2003, 4(4): 859-863.
    [29] Inomata, K.; Itoh, M.; Nakanishi, E. Helix-Coil Transtion and Micellar Structure of Poly(ethylene glycol)-block-Poly[N~5-(2-hydroxyethyl) L-glutamine] in Cyclohexanol/Water Mixed Solvents[J]. Polym. J. 2005, 37(6): 404-412.
    [30] Kwon, G.; Naito, J. M.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataokatfs, K. Micelles Based on AB Block Copolymers of Poly(ethylene oxide) and Poly(β-benzyl L-aspartate)[J]. Langmuir. 1993, 9(4): 945-949.
    [31] Vandermeulen, G. W. M.; Tziatzios, C.; Klok, H.-A. Reversible Self-Organization of Poly(ethylene glycol)-Based Hybrid Block Copolymers Mediated by a De Novo Four-Stranded α-Helical Coiled Coil Motif[J]. MacromolecuIes. 2003, 36(11): 4107-4114.
    [32] Luo, X.; Miao, W.; Wu, S.; Liang, Y. Spontaneous Formation of Vesicles from Octadecylamine in Dilute Aqueous Solution Induced by Ag(I) Ion[J]. Langmuir. 2002, 18(24): 9611-9612.
    [33] Kimura, S.; Kim, D.-H.; Sugiyama, J.; Imanishi, Y. Vesicular Self-Assembly of a Helical Peptide in Water[J]. Langmuir. 1999, 15(13): 4461-4463.
    [34] Yang, Z.; Yuan, J.; Cheng, S. Self-assembling of Biocompatible BAB Amphiphilic Triblock Copolymers PLL(Z)-PEG-PLL(Z) in Aqueous Medium[J]. European Polymer Journal. 2005, 41: 267-274.
    [35] Yokoyama, M.; Miyauchi, M.; Yamada, N.; Okano, T.; Sakurai, Y.; Kataoka, K.; Inoue, S. Polymer Micelles as Novel Drug Carrier-adriamycin-conjugated Poly(ethylene glycol) Poly(aspartic acid) Block Copolymer[J]. J. Contr. Release. 1990, 11(1-3): 269-278.
    [36] Bazile, D.; Prudhomme, C.; Bassoulett, M.-T.; Marland, M.; Spenlehauer, G.; Vrillard, M.; Stealyh, M. Stealth MPEG-PLA Nanoparticles Avoid Uptake by the Mononuclear Phagocytes System[J]. J. Pharm. Sci. 1995, 84(4): 493-498.
    [37] Hagan, S. A.; Coombes, A. G. A.; Garnett, M. C.; Dunn, S. E.; Davis, M. C.; Illum, L.; Davis, S. S.; Harding, S. E.; Purkiss, S.; Gellert, P. R. Polylactide-poly(ethylene glycol) Copolymers as Drug Delivery Systems.1. Characterization of Water Dispersible Micelle-forming Systems[J]. Langmuir. 1996, 12(9): 2153-2161.
    [38] Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable Long-circulating Polymeric Nanospheres[J]. Science. 1994, 263(5153): 1600-1603.
    [39] Zhang, X.; Jackson, J. K.; Burt, H. M. Development of Amphiphilic Diblock Copolymers as Micellar Carriers of Taxol[J]. Int. J. Pharm. 1996, 132(1-2): 195-206.
    [40] Yasugi, K.; Nagasaki, Y.; Kato, M.; Kataoka, K. Preparation and Characterization of Polymer Micelles from Poly(ethylene glycol)-poly(D,L-lactide) Block Copolymers as Potential Drug Carrier[J]. J. Contr. Release. 1999, 62(1-2): 89-100.
    [41] Harada, A.; Kataoka, K. Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-charged Block-copolymers with Poly(ethylene glycol) Segments [J]. Macromolecules. 1995, 28(15): 5294-5299.
    [42] Harada, A.; Kataoka, K. Chain Length Recognition: Core-shell Supramolecular Assembly from Oppositely Charged Block Copolymers [J]. Science. 1999, 283(5398): 65-67.
    [43] Kabanov, A. V.; Bronich, T. K.; Kabanov, V. A.; Yu, K.; Eisenberg, A. Soluble Stoichiometric Complexes from Poly(N-ethyl-4-vinylpyridinium) Cations and Poly(ethylene oxide)-block-polymethacrylate Anions[J]. Macromolecules. 1996, 29(21): 6797-6802.
    [44] Bronich, T. K.; Kabanov, A. V.; Kabanov, V. A.; Yu, K.; Eisenberg, A. Soluble Complexes from Poly(ethylene oxide)-block-polymethacrylate Anions and N-alkylpyridinium Cations[J]. Macromolecules. 1997, 30(12): 3519-3525.
    [45] Kataoka, K.; Togawa, H.; Harada, A.; Yasugi, K.; Matsumoto, T.; Katayose, S. Spontaneous Formation of Polyion Complex Micelles with Narrow Distribution from Antisense Oligonucleotide and Cationic Block Copolymer in Physiological Saline [J]. Macromolecules. 1996, 29(26): 8556-8557.
    [46] Harada, A.; Kataoka, K. Novel Polyion Complex Micelles Entrapping Enzyme Molecules in the Core: Preparation of Narrowly-distributed Micelles from Lysozyme and Poly(ethylene glycol)-poly(aspartic acid) Block Copolymer in Aqueous Medium[J]. Macromolecules. 1998, 31 (2): 288-294.
    [47] Yokoyama, M.; Okano, T.; Sakurai, Y.; Suwa, S.; Kataoka, K. Introduction of Cisplatin into Polymeric Micelle[J]. J. Contr Release. 1996, 39(2-3): 351-356.
    [48] Nishiyama, N.; Yokoyama, M.; Aoyagi, T.; Okano, T.; Sakurai, Y.; Kataoka, K. Preparation and Characterization of Self-assembled Polymer-metal Complex Micelle from Cis-dichlorodiammineplatinum(Ⅱ) and Poly(ethylene glycol)-poly(alpha, beta-aspartic acid) Block Copolymer in an Aqueous Medium[J]. Langmuir. 1999, 15(2): 377-383.
    [49] Kataoka, K.; Ishihara, A.; Harada, A.; Miyazaki, H. Effect of the Secondary Structure of Poly(L-lysine) Segments on the Micellization in Aqueous Milieu of Poly(ethylene glycol) poly(L-lysine) Block Copolymer Partially Substituted with a Hydrocinnamoyl Group at the N-epsilon-position[J]. Macromolecules. 1998, 31(18): 6071-6076.
    [50] Watanabe, J.; Ono, H.; Uematsu, I.; Abe, A. Thermotropic Polypeptides. 2. Molecular Packing and Thermotropic Behavior of Poly(γ-glutamates) with Long n-Alkyl Side Chains[J]. Macromolecules. 1985, 18(11): 2141-2148.
    [51] Kim, G.; Kim, J.-Y.; Sohn, D. Synthesis and Characterization of Poly(alkyl a, L-glutamate-co-ethylene oxide)[J]. Macromol. Res. 2002, 10 (1): 49-52.
    [52] Jeon, S.; Choo, J.; Sohn, D.; Lee, S. N. Hydrogen bonding effects on the conformational changes of polyglutamates containing long flexible side chains[J]. Polymer. 2001, 42(25): 9915-9920.
    [53] Blout, E. R.; Asadourian, A. Polypeptides. V. The Infrared Spectra of Polypeptides Derived from -Benzyl-L-glutamate [J]. J. Am. Chem. Soc. 1956, 78(5): 955-961.
    [54] Miyazawa, T.; Blout, E. R. The Infrared Spectra of Polypeptides in Various Conformations: Amide I and II Bands[J]. J. Am. Chem. Soc. 1961, 83(3): 712-719.
    [55] Lecommandoux, S.; Achard, M.-F.; Langenwalter, J. F.; Klok, H.-A. Self-Assembly of Rod-Coil Diblock Oligomers Based On Helical Peptides[J]. Macromolecules. 2001, 34(26): 9100-9111.
    [56] Myer, Y. P. The pH-Induced Helix-Coil Transition of Poly-L-lysine and Poly-L-glutamic Acid and the 238-m Dichroic Band [J]. Macromolecules. 1969, 2(6): 624-628.
    [57] Lee, H.-F.; Sheu, H. S.; Jeng, U.-S.; Huang, C.-F.; Chang, F.-C. Preparation and Supramolecular Self-assembly of a Polypeptide-block-Polypseudorotaxane [J]. Macromolecules. 2005, 38(15): 6551-6558.
    [1] Lehn, J. M. Toward Complex Matter: Supramolecular Chemistry and Self-organization[J]. Proc. NatL Acad. Sci. U.S.A. 2002, 99(8): 4763-4768.
    [2] Lehn, J. M. Toward self-organization and complex matter[J]. Science. 2002, 295 (5564): 2400-2403.
    [3] Mamdouh, W.; Uji-I, H.; Ladislaw, J. S.; Dulcy, A. E.; Percec, V.; De Schryver, F. C.; De Feyter, S. Solvent Controlled Self-assembly at the Liquid-solid Interface Revealed by STM [J]. J. Am. Chem. Soc. 2006, 128(1): 317-325.
    [4] Mamdouh, W.; Uji-i., H.; Dulcey, A. E.; Percec, V.; De Feyter, S.; De Schryver, F. C. Expression of Molecular Chirality and Two-dimensional Supramolecular Self-assembly of Chiral, Racemic, and Achiral Monodendrons at the Liquid-solid Interface[J]. Langmuir. 2004, 20(18): 7678-7685.
    [5] De Feyter, S.; Gesquie're, A.; Abdel-Mottaleb, M. M.; Grim, P. C. M.; De Schryver, F. C.; Meiners, C.; Sieffert, M.; Valiyaveettil, S.; Mu"llen, K. Scanning Tunneling Microscopy: A Unique Tool in the Study of Chirality, Dynamics, and Reactivity in Physisorbed Organic Monolayers [J]. Acc. Chem. Res. 2000, 33(8): 520-531.
    [6] De Feyter, S.; De Schryver, F. C. Two-dimensional Supramolecular Self-assembly Probed by Scanning Tunneling Microscopy [J]. Chem. Soc. Rev. 2003, 32(3): 139-150.
    [7] Qiu, X.; Wang, C.; Zeng, Q.; Xu, B.; Yin, S.; Wang, H.; Xu, S.; Bai, C. Alkane-Assisted Adsorption and Assembly of Phthalocyanines and Porphyrins[J]. J. Am. Chem. Soc. 2000, 122(23): 5550-5556.
    [8] Kumaki, J.; Hashimoto, T. Conformational Change in an Isolated Single Synthetic Polymer Chain on a Mica Surface Observed by Atomic Force Microscopy[J]. J. Am. Chem. Soc. 2003, 125(16): 4907-4917.
    [9] Sergei, S. S.; Moller, M. Visualization of Macromolecules -A First Step to Manipulation and Controlled Response[J]. Chem. Rev. 2001, 101 (12): 4099-4123.
    [10] Schluter, A. D.; Rabe, J. p.Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation[J]. Angew. Chem. Int. Ed. 2000, 39(5): 864-883.
    [11] Sheiko, S. S. Imaging of Polymers Using Scanning Force Microscopy: From Superstructures to Individual Molecules [J]. Adv. Polym. Sci. 2000, 151: 61-174.
    [12] McGonigal, G. C.; Bernhardt, R. H.; Thomson, D. Imaging Alkane Layers at the Liquid Graphite Interface with the Scanning Tunneling Microscope[J]. J. Appl. Phys. Lett. 1990, 57(1): 28-30.
    [13] Herwig, K. W.; Matthies, B.; Taub, H. Solvent Effects on the Monolayer Structure of Long n-alkane Molecules Adsorbed on Graphite[J]. Phys. Rev. Lett. 1995, 75(17): 3154-3157.
    [14] Jeon, S.; Choo, J.; Sohn, D.; Lee, S. N. Hydrogen bonding effects on the conformational changes of polyglutamates containing long flexible side chains[J]. Polymer. 2001, 42(25): 9915-9920.
    [15] Holland, No B.; Qiu, Y.; Ruegsegger, M.; Marchant, R. E. Biomimetic Engineering of Non-adhesive Glycocalyx-like Surfaces Using Oligosaccharide Surfactant Polymers[J]. Nature. 1998, 392(6678): 799-801.
    [16] Rabe, J. P.; Buchholz, S. Commensurability and Mobility in Two-Dimensional Molecular Patterns on Graphite[J]. Science. 1991, 253(5018): 424-427.
    [17] Manne, S. C., J. P.; Gaub, H. E.; Stucky, G. D.; Hansma, P. K. Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double-Layer[J]. Langmuir. 1994, 10(12): 4409-4413.
    [18] Manne, S.; Gaub, H. E. Molecular Organization of Surfactants at Solid-Liquid Interfaces[J]. Science. 1995, 270(5241): 1480-1482.
    [19] Frey, H.; Lach, C.; Lorenz, K. Heteroatom-based Dendrimers [J]. Adv. Mater. 1998, 10(4): 279-293.
    [20] Ponomarenko, S. A.; Boiko, N. I.; Shibaev, V. P. Atomic Force Microscopy Study of Structural Organization of Carbosilane Liquid Crystalline Dendrimer [J]. Langmuir. 2000, 16(12): 5487-5493.
    [21] Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonov, S. N.; Vinogradov, S. A. Self-assembly of Amphiphilic Dendritic Dipeptides into Helical Pores [J]. Nature. 2004, 430(7001): 764-768.
    [22] Percec, V.; Cho, W.-D.; Mo"ller, M.; Prokhorova, S. A.; Ungar, G.; Yeardley, D. J. P.Design and Structural Analysis of the First Spherical Monodendron Self-organizable in a Cubic Lattice [J]. J. Am. Chem. Soc. 2000, 122(17): 4249-425O.
    [23] Gerle, M.; Fischer, K.; Roos, S.; Mu"ller, A. H. E.; Schmidt, M.; Sheiko, S. S.; Prokhorova, S.; Moller, M. Main Chain Conformation and Anomalous Elution Behavior of Cylindrical Brushes as Revealed by GPC/MALLS, Light Scattering, and SFM [J]. Macromolecules. 1999, 32(8): 2629-2637.
    [24] Percec, V.; Holerca, M. N.; Magonov, S. N.; Yeardley, D. J. P.; Ungar, G.; Duan, H.; Hudson, S. D. Poly(oxazolines)s with Tapered Minidendritic Side Groups. the Simplest Cylindrical Models to Investigate the Formation of Two-dimensional and Three-dimensional Order by Direct Visualizatio[J]. Biomacromolecules. 2001, 2(3): 706-728.
    [25] Kumaki, J.; Nishikawa, Y.; Hashimoto, T. Visualization of Single-chain Conformations of a Synthetic Polymer with Atomic Force Microscopy[J]. J. Am. Chem. Soc. 1996, 118(13): 3321-3322.
    [26] Lee, H.-I.; Jakubowski, W.; Matyjaszewski, K.; Yu, S.; Sheiko, S. S. Cylindrical Core-Shell Brushes Prepared by a Combination of ROP and ATRP[J]. Macromolecules. 2006, 39(15): 4983-4989.
    [27] Kajitani, T.; Okoshi, K.; Sakurai, S.-I.; Kumaki, J.; Yashima, E. Helix-sense Controlled Polymerization of a Single Phenyl Isocyanide Enantiomer Leading to Diastereomeric Helical Polyisocyanides with Opposite Helix-Sense and Cholesteric Liquid Crystals with Opposite Twist-Sense[J]. J. Am. Chem. Soc. 2006, 128(3): 708-709.
    [28] Schlaad, H.; Antonietti, M. Block Copolymers with Amino Acid Sequences: Molecular Chimeras of Polypeptides and Synthetic Polymers [J]. Eur. Phys. J. E. 2003, 10(1): 17-23.
    [29] Schlaad, H. Solution Properties of Polypeptide-based Copolymers [J]. Adv. Polym. Sci. 2006, 202: 53-73.
    [30] Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Helical Superstructures from Charged Poly(styrene)-Poly(isocyanodipeptide) Block Copolymers [J]. Science. 1998, 280(5368): 1427-1430.
    [31] Kim, K. T.; Park, C.; Vandermeulen, G. W. M.; Rider, D. A.; Kim, C.; Winnik, M. A.; Manners, I. Gelation of Helical Polypeptide-random Coil Diblock Copolymers by a Nanoribbon Mechanism [J]. Angew. Chem., Int. Ed. 2005, 44(48): 7964-7968.
    [32] Kong, X.; Jenekhe, S. A. Block Copolymers Containing Conjugated Polymer and Polypeptide Sequences: Synthesis and Self-assembly of Electroactive and Photoactive Nanostructures [J]. Macromolecules. 2004, 3 7(22): 8180-8183.
    [33] Checot, F.; Lecommandoux, S.; Gnanou, Y.; Klok, H.-A. Water-Soluble Stimuli-Responsive Vesicles from Peptide-based Diblock Copolymers [J]. Angew. Chem., Int. Ed 2002, 41(8): 1340-1343.
    [34] Kukula, H.; Schlaad, H.; Antonietti, M.; Forster, S. The Formation of Polymer Vesicles or "Peptosomes" by Polybutadiene-block-poly(L-glutamate)s in Dilute Aqueous Solution [J]. J. Am. Chem. Soc. 2002, 124(8): 1658-1663.
    [35] Vandermeulen, G. W. M.; Tziatzios, C.; Duncan, R.; Klok, H.-A. PEG-based Hybrid Block Copolymers Containing Alpha-helical Coiled Coil Peptide Sequences: Control of Self-assembly and Preliminary Biological Evaluation [J]. Macromolecules. 2005, 38(3): 761-769.
    [36] Osada, K.; Kataoka, K. Drug and Gene Delivery Based on Supramolecular Assembly of PEG-Polypeptide Hybrid Block Copolymers [J]. Adv. Polym. Sci. 2006, 22: 113-153.
    [37] Yhunemann, A. F.; Beyermann, J.; Kukula, H. Poly(ethylene oxide)-b-Poly(L-lysine) Complexes with Retinoic Acid [J]. Macromolecules. 2000, 33(16): 5906-5911.
    [38] Li, J.; Kao, W. J. Synthesis of Polyethylene Glycol (PEG) Derivatives and PEGylated-peptide Blopolymer Conjugates [J]. Biomacromolecules. 2003, 4(4): 1055-1067.
    [39] Deming, T. J. Polypeptide and Polypeptide Hybrid Copolymer Synthesis via NCA Polymerization [J]. Adv. Polym. Sci. 2006, 22: 1-18.
    [40] Gohy, J.-F. Block Copolymer Micelles[J]. Adv. Polym. Sci. 2005, 190: 65-136.
    [41] Kimura, S.; Kim, D.-H.; Sugiyama, J.; Imanishi, Y. Vesicular Self-assembly of a Helical Peptide in Water [J]. Langmuir. 1999, 15(13): 4461-4463.
    [42] Lee, H.-F.; Sheu, H. S.; Jeng, U.-S.; Huang, C.-F.; Chang, F.-C. Preparation and Supramolecular Self-assembly of a Polypeptide-block-Polypseudorotaxane [J]. Macromolecules. 2005, 38(15): 6551-6558.
    [43] Tang, D.; Lin, J.; Lin, S.; Zhang, S.; Chen, T.; Tian, X. Self-Assembly of Poly(γ-benzyl _L-glutamate)-graft-Poly(ethylene glycol) and Its Mixtures with Poly(γ-benzyl _L-glutamate) Homopolymer[J]. Macromol. Rapid Commun. 2004, 25: 1241-1246.
    [44] Zhuang, W.; Ecker, C.; Metselaar, G. A.; Rowan, A. E.; Nolte, R. J. M.; Samori, E; Rabe, J. SFM Characterization of Poly(isocyanodipeptide) Single Polymer Chains in Controlled Environments: Effect of Tip Adhesion and Chain Swelling [J]. Macromolecules. 2005, 38(2): 473-480.
    [45] Sakurai, S.-I.; Okoshi, K.; Kumaki, J.; Yashima, E. Two-dimensional Surface Chirality Control by Solvent-induced Helicity Inversion of a Helical Polyacetylene on Graphite [J]. J. Am. Chem. Soc. 2006, 128(17): 5650-5651.
    [46] Li, B. S.; Cheuk, K. K. L.; Yang, D.; Lam, J. W. Y.; Wan, L. J.; Bai, C.; Tang, B. Z. Self-assembling of an Amphiphilic Polyacetylene Carrying _L-leucine Pendants: A Homopolymer Case [J]. Macromolecules. 2003, 36(15): 5447-5450.
    [47] Li, B. S.; Cheuk, K. K. L.; Salhi, F.; Lam, J. W. Y.; Cha, J. A. K.; Xiao, X.; Bai, C.; Tang, B. Z. Tuning the Chain Helicity and Organizational Morphology of an _L-Valine-containing Polyacetylene by pH Change [J]. Nano Lett. 2001, 1(6): 323-328.
    [48] Li, B. S.; Cheuk, K. K. L.; Ling, L.; Chen, J.; Xiao, X.; Bai, C.; Tang, B. Z. Synthesis and Hierarchical Structures of Amphiphilic Polyphenyl Acetylenes Carrying _L-valine Pendants[J]. Macromolecules. 2003, 36(1): 77-85.
    [49] Cornelissen, J. J. L. M.; Donners, J. J. J. M.; Gelder, R. O.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Beta-Helical Polymers from Isocyanopeptides [J]. Science. 2001, 293(5530): 676-680.
    [50] Lu, F.-Z.; Xiong, X.-Y.; Li, Z.-C.; Du, F.-S.; Zhang, B.-Y.; Li, F.-M. A Convenient Method for the Synthesis of Amine-terminated Poly(ethylene oxide) and Poly(epsilon-caprolactone)[J]. Bioconjugate Chem. 2002, 13(5): 1159-1162.
    [51] Watanabe, J.; Fukuda, Y.; Gehani, R.; Uematsu, I. Thermotropic Polypeptides. 1. Investigation of Cholesteric Mesophase Properties of Poly(methyl-D-glutamate-co—hexyl-D-glutamate)s [J]. Macromolecules. 1984, 17(5): 1004-1009.
    [52] Watanabe, J.; Ono, H.; Uematsu, I.; Abe, A. Thermotropic Polypeptides. 2. Molecular Packing and Thermotropic Behavior of Poly(L-glutamates) with Long n-alkyl Side Chains [J]. Macromolecules. 1985, 18(11): 2141-2148.
    [53] Watanabe, J.; Ono, H. X-ray Evidence of an Helical Coiled Coil in Poly(dodecyl L-glutamate) [J]. Macromolecules. 1986, 19(4): 1079-1083.
    [54] Watanabe, J.; Goto, M.; Nagase, T. Thermotropic Polypeptides. 3. Investigation of Cholesteric Mesophase Properties of Poly(gamma.-benzyl L-glutamate-co-.gamma.-dodecyl L-glutamates) by Circular Dichroic Measurements [J]. Macromolecules. 1987, 20(2): 298-304.
    [55] Watanabe, J.; Nagase, T. Thermotropic Polypeptides. 5. Temperature Dependence of Cholesteric Pitches Exhibiting a Cholesteric Sense Inversion [J]. Macromolecules. 1987, 21(1): 171-175.
    [56] Sanda, F.; Gao, G.; Masuda, T. Helical Polymer Carrying Helical Grafts from Peptide-based Acetylene Macromonomers: Synthesis [J]. Macromolecular Bioscience. 2004, 4(6): 570-574.
    [57] Imase, T.; Ohira, A.; Okoshi, K.; Sano, N.; Kawauchi, S.; Watanabe, J.; Kunitake, M. AFM Study of Two-Dimensional Epitaxial Arrays of Poly(γ-_L-glutamates) With Long n-alkyl Side Chains on Graphite[J]. Macromolecules. 2003, 36(6): 1865-1869.
    [58] Kim, (3.; Kim, J.-Y.; Sohn, D.; Lee, Y. Synthesis and Characterization of Poly(alkyl alpha, L-glutamate-co-ethylene oxide) [J]. Macromol. Research. 2002, 10(1): 49-52.
    [59] Vos, R. J. D.; Goethals, E. J. Convenient synthesis of a-tosyl-ω-tosyloxypoly(oxyethylene)[J]. Makromol. Chem., Rapid Commun. 1985, 6: 53-56.
    [60] Pillai, V. N. R.; Mutter, M.; Bayer, E.; Garfield, I. New, Easily Removable Poly(ethylene glycol) Supports for the Liquid-Phase Method of Peptide Synthesis [J]. J. Org. Chem. 1980, 45(26): 5364-5370.
    [61] Poche, D. S.; Moore, M. J.; Bowles, J. L. An Unconventional Method for Purifying The N-Carboxyanhydride Derivatives of Alkyl L-Glutamates[J]. Synth. Commun. 1999, 29(5): 843-854.
    [62] Blout, E. R.; Asadourian, A. Polypeptides. V. The Infrared Spectra of Polypeptides Derived from -Benzyl-L-glutamate [J]. J. Am. Chem. Soc. 1956, 78(5): 955-961.
    [63] Miyazawa, T.; Blout, E. R. The Infrared Spectra of Polypeptides in Various Conformations: Amide Ⅰ and Ⅱ Bands[J]. J. Am. Chem. Soc. 1961, 83(3): 712-719.
    [64] Myer, Y. P. The pH-Induced Helix-Coil Transition of Poly-L-lysine and Poly-L-glutamic Acid and the 238-m Dichroic Band [J]. Macromolecules. 1969, 2(6): 624-628.
    [65] Severin, N.; Bamer, J.; Kalachev, A. A.; Rabe, J. P. Manipulation and Overstretching of Genes on Solid Substrates [J]. Nano Lett. 2004, 4(4): 577-579.
    [66] Sakurai, S. I.; Okoshi, K.; Kumaki, J.; Yashima, E. Two-dimensional hierarchical self-assembly of one-handed helical polymers on graphite[J]. Angewandte Chemic-International Edition. 2006, 45(8): 1245-1248.
    [67] Percec, V.; Rudick, J. G.; Wagner, M.; Obata, M.; Mitchell, C. M.; Cho, W.-D.; Magonov, S. N. AFM Visualization of Individual and Periodic Assemblies of a Helical Dendronized Polyphenylacetylene on Graphite [J]. Macromolecules. 2006, 39(21): 7342-7351.
    [68] Terreau, O.; Soo, P. L.; Duxin, N.; Eisenberg, A.; Jiang, M. Self-assembly of block copolymer aggregates in solution-Introdution. In Macromolecular Self-Assembly[M]. Beijing: Science Press, 2006.
    [69] Li, S.; Hanley, S.; Khan, I.; Varshney, S. K.; Eisenberg, A.; Lennox, R. B. Surface Micelle Formation at the Air/Water Interface from Nonionic Diblock Copolymers [J]. Langmuir. 1993, 9(8): 2243-2246.
    [70] Cox, J. K.; Yu, K.; Constantine, B.; Eisenberg, A.; Lennox, R. B. Polystyrene-Poly(ethylene oxide) Diblock Copolymers Form Well-Defined Surface Aggregates at the Air/Water Interface [J]. Langmuir. 1999, 15(22): 7714-7718.
    [71] Zhang, J.; Cao, H.; Wan, X.; Zhou, Q. Molecular Reorganization of Rod-Coil Diblock Copolymers at the Air-Water Interface [J]. Langmuir. 2006, 22(15): 6587-6592.
    [1] Cho, C.-S.; Jeong, Y.-I.; Kim, S.-H.; Nah, J.-W.; Kubota, M.; Komoto, T. Thermoplastic Hydrogel Based on Hexablock Copolymer Composed of Poly(γ-benzyl _L-glutamate) and Poly(ethylene oxide)[J]. Polymer. 2000, 41: 5185-5193.
    [2] Hutchinson, F. G.; Furr, B. J. A. Biodegradable Polymer Systems for the Sustained-Release of Polypeptides[J]. J. Control. Release. 1990, 13 (2-3): 279-294.
    [3] Casey, D. J.; Jarred, P. K.; Rosati, L. US Patent: 4, 716, 203, 1987.
    [4] Churchill, J. R.; Huchinson, F. G. US Patent: 4, 526, 938, 1985.
    [5] Sawhney, A. S.; Pathak, C. P.; Hubbel, J. A. Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)-co-poly(a-hydroxy acid) Diacrylate Macromers[J]. Macromolecules. 1993, 26(4): 581-587.
    [6] Li, Y.; Kissel, T. Synthesis, Characteristics and in Vitro Degradation of Star-block Copolymers Consisting of _L-lactide, Glycolide and Branched Multi-arm Poly(ethylene oxide)[J]. Polymer. 1998, 39(18): 4421-4427.
    [7] Doty, P.; Bradury, J. H.; Holtzer, A. M. Polypeptides. Ⅳ. The Molecular Weight, Configuration and Association of Poly(γ, -benzyl-L-glutamate in Various Solvents [J]. J. Am. Chem. Soc. 1956, 78(5): 947-954.
    [8] Frey, M. W.; Cuculo, J. A.; Ciferri, A.; Yheil, M. H. A Review of Lattice Theory for Lyotropic Liquid-Crystalline Polymers, Spinodal Decomposition, and Gel Formation[J]. J. Macromol. Sci.-Rev. Macromol.Chem.Phys. 1995, 35(2): 287-325.
    [9] Yu, S. J. M.; Conticello, G.; Zhang, C.; Kayser, M. J.; Fournier, T. L.; Mason, T. L.; Tirrell, D. A. Smectic Ordering in Solutions and Films of a Rod-like Polymer Owing to Monodispersity of Chain Length[J]. Nature. 1997, 389(6647): 167-170.
    [10] Tadmor, R.; Khalfin, R. L.; Cohen, Y. Reversible Gelation in Isotropic Solutions of the Helical Polypeptide Poly(γ-benzyl-_L-glutamate): Kinetics and Formation Mechanism of the Fibrillar Network[J]. Langmuir. 2002, 18(19): 7146-7150.
    [11] Hentschel, J.; Krause, E.; Borner, H. G. Switch-Peptides to Trigger the Peptide Guided Assembly of Poly(ethylene oxide)-Peptide Conjugates into Tape Structures[J]. J. Am. Chem. Soc. 2006, 128(24): 7722-7723.
    [12] Smeenk, J. M.; Otten, M. B. J.; Thies, J.; Tirrell, D. A.; Stunnenberg, H. G.; Hest, J. C. M. v. Controlled Assembly of Macromolecular β-Sheet Fibrils[J]. Angew. Chem. Int. Ed. 2005, 44:1968 -1971.
    [13] Schmidtke, S.; Russo, P.; Nakamatsu, J.; Buyuktanir, E.; Turfan, B.; Temyanko, E.; Negulescu, I. Thermoreversible Gelation of Isotropic and Liquid Crystalline Solutions of a "Sticky" Rodlike Polymer[J]. Macromolecules. 2000, 33 (12): 4427-4432.
    [14] Oikawa, H.; Korenaga, T.; Nakanishi, H. Dynamic Light Scattering Study on Sol-Gel Transition of Poly(γ-benzyl _L-glutamate)-toluene Solutions [J]. J Macromol. Sci., Phys. B. 1997, 36(1): 87-101.
    [15] Korenaga, T.; Oikawa, H.; Nakanishi, H. Spinodal Decomposition and Gel Structure of Quenched Poly(γ-benzyl _L-glutamate)-Toluene Solutions [J]. J. Macromol. Sci., Phys. 1997, 36(4): 487-501.
    [16] Tipton, D. L.; Russo, P. S. Thermoreversible Gelation of a Rodlike Polymer[J]. Macromolecules. 1996, 29(23): 7402-7411.
    [17] Bu, Z. R., P. S.; Tipton, D. L.; Negulescu, I. I. Self-diffusion of Rodlike Polymers in Isotropic Solutions[J]. Macromolecules. 1994, 27(23): 6871-6882.
    [18] Daly, W. H.; Poche', D. S.; Negulescu, I. Poly(γ-alkyl-a, _L-glutamate)s Derived from Long-Chain Paraffinic Alcohols[J]. Prog. Polym. Sci. 1994, 19(1): 79-135.
    [19] Schmidt, A.; Lehmann, S.; Georgelin, M.; Katana, G.; Mathauer, K.; Kremer, F.; Schmidt-Rohr, K.; Boeffel, C.; Wegner, G.; Knoll, W. Molecular-Dynamics of Hairy Rod Molecules in the Solid-State-Poly(γ-methyl _L-glutamate)-co-(γ-n-octadecyl _L-glutamate) in Solution-Cast Films[J]. Macromolecules. 1995, 28(16): 5487-5497.
    [20] Tohyama, K.; Miller, W. G. Network Structure in Gels of Rod-like Polypeptides[J]. Nature. 1981, 289 (5800)): 813-812.
    [21] Cohen, Y. The Microfibrillar Network in Gels of Poly(γ-benzyl-_L-glutamate) in Benzyl Alcohol[J]. J. Polvm. Sci.: Polvm. Phvs. 1996, 34(1): 57-64.
    [22] Dadmun, M. D.; Muthukumar, M.; Schwahn, D.; Springer, T. Small-angle Neutron Scattering of Poly(γ-benzyl _L-glutamate) in Deuterated Benzyl Alcohol [J]. Macromolecules. 1996, 29(1): 207-211.
    [23] Izumi, Y.; Takezawa, H.; Kikuta, N.; Uemura, S.; Tsutsumi, A. Two-Stage Melting in Dilute Gels of Poly(γ-benzyl _L-glutamate)[J]. Macromolecules. 1998, 31(2): 430-435.
    [24] Chowdhury, A. H.; Russo, R S. Late Stages of Phase-Separation Gelation of Isotropic Solutions of Rod-like Polymers by Video Microscopy [J]. J. Chem. Phys. 1990, 92(9): 5744-5750.
    [25] Tipton, D. L. R., P. S. Thermoreversible Gelation of a Rodlike Polymer[J]. Macromolecules. 1996, 29(23): 7402-7411.
    [26] Shukla, P.Thermodynamics and Kinetics of Gelation in the Poly(γ-benzyl α, _L-glutamate) Benzyl Alcohol System[J]. Polymer. 1992, 32(2): 365-372.
    [27] Oikawa, H.; Nakanishi, H. Dynamics of Probe Particles During Sol-Gel Transition of PBLG-DMF Solution and the Resulting Gel Structure[J]. J. Chem. Phys. 2001, 115(8): 3785-3791.
    [28] Jackson, C. L.; Shaw, M. T. The Phase-behavior and Gelation of a Rod-like Polymer in Solution and Implications for Microcellular Foam Morphology[J]. Polymer. 1990, 31(6): 1070-1084.
    [29] Horton, J. C.; Donald, A. M. Phase-separation in the Poly(γ-benzyl-α, _L-glutamate) Benzyl Alcohol System and Its Role in Gelation[J]. Polymer. 1991, 32 (13): 2418-2427.
    [30] Tadmor, R.; Dagan, A.; Cohen, Y. Polymer-Solvent Co-crystallization During Thermoreversible Gelation in Solutions of the Helical Polypeptide PBLG[J]. Macromol. Symp. 1997, 114:13-22.
    [31] Cohen, Y.; Dagan, A. Phase-transformations in Concentrated-Solutions of Poly(γ-benzyl _L-glutamate)[J]. Macromolecules. 1995, 28(23): 7638-7644.
    [32] Watanabe, J.; Nagase, T. Thermotropic Polypeptides. 5. Temperature Dependence of Cholesteric Pitches Exhibiting a Cholesteric Sense Inversion [J]. Macromolecules. 1987, 21(1): 171-175.
    [33] Watanabe, J.; Fukuda, Y.; Gehani, R.; Uematsu, I. Thermotropic Polypeptides. 1. Investigation of Cholesteric Mesophase Properties of Poly(methyl-D-glutamate-co--hexyl-D-glutamate)s [J]. Macromolecules. 1984, 17(5): 1004-1009.
    [34] Watanabe, J.; Ono, H.; Uematsu, I.; Abe, A. Thermotropic Polypeptides. 2. Molecular Packing and Thermotropic Behavior of Poly(L-glutamates) with Long n-alkyl Side Chains [J]. Macromolecules. 1985, 18(11): 2141-2148.
    [35] Watanabe, J.; Goto, M.; Nagase, T. Thermotropic Polypeptides. 3. Investigation of Cholesteric Mesophase Properties of Poly(gamma.-benzyl L-glutamate-co-.gamma.-dodecyl L-glutamates) by Circular Dichroic Measurements [J]. Macromolecules. 1987, 20(2): 298-304.
    [36] Yamane, Y.; Kanekiyo, M.; Koizumi, S.; Zhao, C.; Kuroki, S.; Ando, I. Preparation and Characterization of Highly Oriented Poly(γ-benzyl _L-glutamate) Networks and Gels with Long Channels woth Micrometer-Scale Diameters[J]. J. Appli. Polym. Sci. 2004, 92(2): 1053-1060.
    [37] Gallot, B. Comb-like and Block Liquid Crystalline Polymers for Biological Applications[J]. Prog. Polym. Sci. 1996, 21(6): 1035-1088.
    [38] Kim, K. T.; Park, C.; Vandermeulen, G. W. M.; Rider, D. A.; Kim, C.; Winnik, M. A.; Manners, I. Gelation of Helical Polypeptide-Random Coil Di block Copolymers by a Nanoribbon Mechanism[J]. Angew. Chem. Int. Ed. 2005, 44(48): 7964-7968.
    [39] Kim, K. T.; Park, C.; Kim, C.; Winnik, M. A.; Manners, I. Self-Assembly of Dendron-Helical Polypeptide Copolymers: Organogels and Lyotropic Liquid Crystals[J]. Chem. Commun. 2006, 13: 1372-1374.
    [40] Nowak, A. R; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.; Deming, T. J. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles[J]. Nature. 2002, 417(6887): 424-428.
    [41] Daly, W. H.; Poche, D. The Preparation of N-Carboxyanhydrides of Amino Acids Using Bis(trichloromethyl)carbonate[J]. Tetrahedron Ltters. 1989, 28(46): 5859-5862.
    [42] Kim, (3. T.; Kim, J.-Y.; Sohn, D. Synthesis and Characterization of Poly(alkyl, L-glutamate-co-ethylene oxide)[J]. Macromolecular Research. 2002, 10(1): 49-52.
    [43] Osada, K.; Kataoka, K. Drug and Gene Delivery Based on Supramolecular Assembly of PEG-Polypeptide Hybrid Block Copolymers[J]. Adv. Polym. Sci. 2006, 202: 113-153.
    [44] Kimura, S.; Kim, D.-H.; Sugiyama, J.; Imanishi, Y. Vesicular Self-Assembly of a Helical Peptide in Water[J]. Langmuir. 1999, 15(13): 4461-4463.
    [45] Jeon, S.; Choo, J.; Sohn, D.; Lee, S. N. Hydrogen bonding effects on the conformational changes of polvglutamates containing long flexible side chains [J]. Polymer. 2001, 42(25): 9915-9920.
    [46] Comelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Helical Superstructures from Charged Poly(styrene)-Poly(isocyanodipeptide) Block Copolymers [J]. Science. 1998, 280(5368): 1427-1430.
    [47] Lee, H.-E; Sheu, H. S.; Jeng, U.-S.; Huang, C.-F.; Chang, F.-C. Preparation and Supramolecular Self-assembly of a Polypeptide-block-Polypseudorotaxane [J]. Macromolecules. 2005, 38(15): 6551-6558.
    [48] Hentschel, J.; Bomer, H. G. Peptide-directed microstructure formation of polymers in organic media[J]. Journal Of The American Chemical Society. 2006, 128(43): 14142-14149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700