利用基因芯片筛选乳腺癌相关差异表达基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     目前乳腺癌已经在世界范围内成为严重威胁女性健康的重大恶性疾病之一。上世纪80年代以来,在全球范围内乳腺癌分发病率都呈现出非常明显的上升趋势,每年以2%-3%的速度递增,而这一现象在发展中国家尤为突出。有数据显示,2000-2005年,中国乳腺癌发病人数增长38.5%,死亡人数增长37.1%。目前乳腺癌发生发展过程尚不完全明了,从而在一定程度上对乳腺癌的早期诊断、相关治疗带来很大的困惑。任何肿瘤的发生发展都包含了十分复杂的生物学过程。对个体而言,所有机体细胞携带相同的遗传模板,那么各种细胞型,包括癌细胞在内,是如何获得不同的表型的呢?科学家最终发现,各种类型细胞对基因组的选择性表达决定了细胞的不同表型,同时提示我们基因表达的异常改变是正常细胞向恶性肿瘤细胞转变的基础。任何肿瘤都起源于正常组织,肿瘤细胞是由失去了聚集能力和构成正常组织能力的细胞构成的。RNA,是连接DNA与蛋白的桥梁。通过分析RNA水平的差异,能够为我们下一步在分子水平研究相关基因/蛋白在疾病发生发展过程中的作用提供理论依据,也是寻找疾病相关基因/蛋白的一种理想方法。因此通过基因表达谱芯片比较乳腺癌及正常乳腺组织的差异表达基因,并据此进行相关生物学过称与乳腺癌发生发展之间的关系,将对明确乳腺癌的生物学过程提供一定的研究基础。
     研究目的
     本次研究旨在探索乳腺癌组织与自身正常乳腺组织、乳腺良性疾病之间的差异表达基因,为今后进一步研究相关基因与乳腺癌的关系,相关基因或其表达产物在乳腺癌发生发展过程中的作用打下基础。
     研究方法
     本研究采用全人类基因组芯片,检测7对乳腺癌及其正常乳腺组织、7例乳腺良性疾病的差异表达基因,通过real-time PCR对芯片试验结果进行验证,并根据GeneOntology(GO)分类体系初步对得出的差异表达基因进行功能分类。
     结果
     1.差异表达基因:乳腺癌组织同癌旁正常乳腺组织相比,共得出344个差异表达基因。在这一组基因中,上表达的有273个,下表达的有71个(与细胞增殖有关的基因有27个,其中上表达的有21个,下表达的有6个;与细胞粘附有关的基因有15个,其中上表达的有5个,下表达的有10个;与细胞凋亡有关的基因有23个,其中上表达的有20个,下表达的有3个)。乳腺癌组织与乳腺良性疾病的差异表达基因有235个,上表达的有140个,下表达的有95个(与细胞增殖有关的基因有10个,其中上表达的有8个,下表达的有2个;与细胞粘附有关的基因有12个,其中上表达的有7个,下表达的有5个;与细胞凋亡有关的基因有11个,其中上表达的有10个,下表达的有1个)。
     2.乳腺癌和正常乳腺组织的聚类分析:采用cluster 3.0软件对所得实验数据进行聚类分析,可以发现三种乳腺组织不能完全分开。单纯分析7对乳腺癌和癌旁正常乳腺组织,聚类分析图显示二者也不能够完整的分开。
     结论
     乳腺癌组织与正常乳腺组织间在基因的表达层面存在明显差异。筛选得到的基因涉及细胞增殖、细胞粘附、细胞凋亡等肿瘤发生发展的重要生物学过程,可能与乳腺癌的发生发展密切相关,但仍需要针对兴趣基因进行更深入的分子水平的研究。对于浩如烟海的基因信息而言,为感兴趣的生物学过程设定这一个限制,在有限的范围内比较相关基因的功能、细胞定位及其表达水平的高低,将有利于发现其中功能上有相互联系的基因,为选择出兴趣基因进行基因或蛋白水平的研究提供一定的线索。
Background
     Breast cancer has became one of the major malignant diseases which threaten women'health seriously in the worldwild. Since 1980s, the incidence of breast cancer has showed an upward trend with annual increasing rate of 2%~3% in the world. This phenomenon is worse especially in the developing countries than the developed countries. Data has shown that the number of new cases of breast cancer in China has increased by 38.5% while the death number of breast cancer has increased by 37.1% from 2000 to 2005. Currently, the oncogenesis of breast cancer is not very clear, so there are still a lot of confusion in the early detection and treatment of breast cancer. Any oncogenesis is a very complicated biological process. For an individual, the cells of almost the whole body have the same genetic material DNA, why they (including the tumor cells) have different phenotypes? Data show that the selective expression of genome decides the phenotype of different cells. This indicates that the abnormal change of genetic expression is the foundation by which process the normal cell change into tumor cell. All tumors originate from normal tissues. Tumor cells are the cells which lose the ability of aggregation and constituting the normal tissues. RNA is the connection of DNA and protein. By analyzing the difference of RNA levels between different tissues, we can find some theoretic clue for the further study of gene/protein involved in the ontogenesis of some diseases. This is also a good way to find some related genes or protein in some diseases. So comparing breast cancer and normal breast tissue by microarray to find diffenently expressed genes and to do further study will do some help in clearing and definiting the oncogenesis of breast cancer. This study is aimed to explore the differently expressed genes between breast cancer and normal breast tissue, can provide the evidence of the related genes/proteins to breast cancer'development.
     Objective
     Explore the differently expressed genes between breast cancer and normal breast tissue, explore the differently expressed genes between breast cancer and benign breast disease tissue, to provide some guideline for the study of oncogenesis of breast cancer development.
     Methods
     In this study,21 breast tissues (7 are breast cancer tissues,7 are their corresponding normal breast tissues,7 are benign breast disease tissues) were detected by microarray. Then we used real-time PCR to verify the results of microarray. We used GeneOntology (GO) system to classify the differently expressed genes.
     Results
     1. Differently expressed genes
     There are 344 differently expressed genes between breast cancer tissue and corresponding normal breast tissues, including 273up-regulated and 71 down-regulated genes. There are 27 genes related to cell proliferation, while 21 up-regulated and 6 down-regulated. Fifteen genes are related to cell adhesion, while 5 up-regulated and 10 down-regulated. Twnety three genes are related to cell apoptosis, while 20 up-regulated and 3 down-regulated.
     There are 235 differently expressed genes between breast cancer tissue and corresponding normal breast tissues, including 140 up-regulated and 95 down-regulated genes. There are 10 genes related to cell proliferation, while 8 up-regulated and 2 down-regulated. Twelve genes are related to cell adhesion, while 7 up-regulated and 5 down-regulated. Elevne genes are related to cell apoptosis, while 10 up-regulated and 1 down-regulated.
     2. Cluster analysis of the two kinds of samples
     Using cluster 3.0 to analyze the data of microarray experiment, the 3 kinds of samples can not be divided to 3 groups directly. To analyze the data of microarray experiment of breast cancer and correspongding normal breast tissue, the result is the same.
     Conclusion
     There are obviously difference in the level of mRNA between breast cancer and normal breast tissue. The differented expressed genes in this study refered to some important biological process in the development of cancer, such as cell proliferation, cell adhesion and cell apoptosis. These genes may have some relationship with breast cancer. We still need more study to verify the function of these genes in ontogenesis of breast cancer. By this study, we can limit the related genes for breast cancer from mass of gene information. We can study the related function between these genes, find some candidate genes to study their change in gene or protein in the development of breast cancer.
引文
[1]孙强,林燕,周易冬.中国乳腺癌普查相关问题探讨.中国医学论坛报,2009.12.24.
    [2]Breast cancer:Statistics on incidence, survival and screening http://www.imaginis. com/breasthealth/statistics. asp.2008.2.1
    [3]http://211.167.248.16/n272442/n272530/n272772/21433. html.2008.1.23
    [4]American Cancer Soeiety. BreastCaneerFaets&Figures,2009-2010.
    [5]徐光炜.乳腺癌[M].北京:人民卫生出版社,2002:1.
    [6]左文述.现代乳腺肿瘤学[M].山东:山东科学技术出版社,2006:1.
    [7]杨玲,李连弟,陈育德,等.中国2000年及2005年恶性肿瘤发病死亡的估计与预测.中国卫生统计,2005,22(4):218-221.
    [8]杨玲,李连弟,陈育德,等.中国肿瘤杂志[J].2006年6月第28卷第6期,438-444.
    [9]Tomkova K, Tomka M, Zajac V. Contribution of p53, p63, and p73 to the developmental diseases and cancer. Neoplasma.2008;55(3):177-81.
    [10]Bertheau P, Espie M, Turpin E, Lehmann J, Plassa LF, Varna M, Janin A, de The H. TP53 status and response to chemotherapy in breast cancer. Pathobiology.2008;75(2):132-9. Epub 2008 Jun 10.
    [11]Lyzogubov V, Khozhaenko Y, Usenko V, Antonjuk S, Ovcharenko G, Tikhonkova I, Filonenko V. Immunohistochemical analysis of Ki-67, PCNA and S6K1/2 expression in human breast cancer. Experimental ontology.2005 Jun;27(2):141-4.
    [12]Malkas LH, Herbert BS, Abdel-Aziz W, Dobrolecki LE, Liu Y, Agarwal B, Hoelz D, Badve S, Schnaper L, Arnold RJ, Mechref Y, Novotny MV, Loehrer P, Goulet RJ, Hickey RJ. A cancer-associated PCNA expressed in breast cancer has implications as a potential biomarker. Proc Natl Acad Sci U S A.2006 Dec 19:103(51):19472-7. Epub 2006 Dec 11.
    [13]Gutierrez C, Schiff R. HER2:biology, detection, and clinical implications. Arch Pathol Lab Med.2011 Jan;135(1):55-62.
    [14]Guarneri V, Barbieri E, Dieci MV, Piacentini F, Conte P. Anti-HER2 neoadjuvant and adjuvant therapies in HER2 positive breast cancer. Cancer Treat Rev.2010 Nov;36 Suppl 3:S62-6.
    [15]Banerjee S, Smith IE. Management of small HER2-positive breast cancers. Lancet Oncol.2010 Dec;11 (12):1193-9.
    [16]吴在德,吴肇汉,等.外科学[M].北京:人民卫生出版社,2008:7.
    [17]R.A. Weinberg著,詹启敏,刘芝华主译.癌生物学[M].北京:科学出版社,2009年,25-46.
    [18]Kretschmer C., etal. Identification of early molecular markers for breast cancer. Mol Cancer.10(1):p.15.
    [19]Ota D., etal. Identification of recurrence-related microRNAs in the bone marrow of breast cancer patients. Int J Oncol.38(4):p.955-62.
    [20]Ohira, M. and A. Nakagawara, Global genomic and RNA profiles for novel risk stratification of neuroblastoma. Cancer Sci.101(11):p.2295-301.
    [21]Stamatakos M, Stefanaki C, Kontzoglou K, Masouridi S, Sakorafas G, Safioleas M. Recapitulation of ras oncogene mutations in breast cancer. Onkologie.2010;33(10):540-4. Epub 2010 Sep 20.
    [22]Moon A. Differential functions of Ras for malignant phenotypic conversion. Arch Pharm Res.2006 Feb;29(2):113-22.
    [23]Lee EY, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol.2010 Oct 1;2(10):a003236. Epub 2010 Aug 18.
    [24]Hynes NE, Stoelzle T. Key signalling nodes in mammary gland development and cancer:Myc. Breast Cancer Res.2009;11(5):210.
    [25]Blixt 0, Bueti D, Burford B, Allen D, Julien S, Hollingsworth M, Gammerman A, Fentiman I, Taylor-Papadimitriou J, Burchell JM. Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis. Breast Cancer Res.2011 Mar 8;13(2):R25.
    [26]Kretschmer C, Sterner-Kock A, Siedentopf F, Schoenegg W, Schlag PM, Kemmner W. Identification of early molecular markers for breast cancer. Mol Cancer. 2011 Feb 11; 10(1):15.
    [27]Mukhopadhyay P, Chakraborty S, Ponnusamy MP, Lakshmanan I, Jain M, Batra SK. Mucins in the pathogenesis of breast cancer:Implications in diagnosis, prognosis and therapy. Biochim Biophys Acta.2011 Apr; 1815(2):224-40. Epub 2011 Jan 26.
    [28]唐金海,赵建华.生物芯片技术的发展及其在乳腺癌研究中的应用.实用临床医药杂志[J],2006年第10卷(第2期):20-25.
    [29]季加孚.肿瘤组织标本库常用实验技术手册[M].北京:科学出版社,2006:1.
    [30]Van't Veer LJ, Dai H, van de Vi jver MJ, et al.2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature,415:5530-536.
    [31]van de Vi jver MJ, He YD, van't Veer LJ, et al.2002. A gene expression signature as a predictor of survival in breast cancer. N Engl J Med,347:1999-2009.
    [32]Cizkova M, Cizeron-Clairac G, Vacher S, Susini A, Andrieu C, et al. (2010) Gene Expression Profiling Reveals New Aspects of PIK3CA Mutation in ERalpha-Positive Breast Cancer:Major Implication of the Wnt Signaling Pathway. PLoS ONE 5(12):el5647. doi:10.1371/journal.pone.0015647.
    [33]Andrews J, Kennette W, Pilon J, Hodgson A, Tuck AB, et al. (2010) Multi-Platform Whole-Genome Microarray Analyses Refine the Epigenetic Signature of Breast Cancer Metastasis with Gene Expression and Copy Number. PLoS ONE 5(1):e8665. doi:10.1371/journal. pone.0008665.
    [34]冯玉梅,李晓青,孙保存等.采用高通量基因芯片筛选乳腺癌分子诊断基因群的研究[J],中华病理学杂志,2006年,第35卷(第6期):361-362.
    [35]Broadhead M. L., etal. Microarray:an instrument for cancer surgeons of the future? ANZ J Surg.80(7-8):p.531-6.
    [36]徐月娟,邱少敏.乳腺癌组织中c-erbB-2、ER和PR的表达及与预后的关系.山东大学学报(医学版)[J],2010年第48卷(第9期):100-103.
    [37]Federico A Monzon, Fabiola Medeiros, Maureen Lyons-Weiler, etal. Identification of tissue of origin in carcinoma of unknown primary with a microarray-based geneexpression test. Diagnostic Pathology 2010,5:3, http://www.diagnosticpathology. org/content/5/1/3.
    [38]Puskas L. G., etal. Production of bulk amounts of universal RNA for DNA microarrays. Biotechniques,2002.33(4):p.898-900,902,904.
    [39]Natalia Novoradovskaya, Michael L Whitfield, et al. Universal Reference RNA as a standard for microarray experiments. BMC Genomics,2004.5:20.
    [40]Dobosz, S., et al., Space- and time-resolved density measurements of a high-intensitylaser-produced plasma for x-ray laser studies. Phys Rev E Stat Nonlin Soft Matter Phys,2002.65(4 Pt 2B):p.047403.
    [41]Tusher, V.G., R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A,2001.98(9):p.5116-21.
    [42]http://www. geneontology. org/.
    [43]本杰明.卢因编著,赵寿元译.基因Ⅷ精要[M].北京:科学出版社,2007:1.
    [44]Gad Abraham, Adam Kowalczyk, Sherene Loi, etal. Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context. BMC Bioinformatics 2010,11:277.
    [45]Tim J Dexter, David Sims, Costas Mitsopoulos, etal. Genomic distance entrained clustering and regression modelling highlights interacting genomic regions contributing to proliferation in breast cancer. BMC Systems Biology 2010,4:127.
    [46]陈忠斌.生物芯片技术[M].北京:化学工业出版社,2005:1.
    [47]叶丽虹,吴莲英,郭威等.乳腺癌MCF-7细胞系转移亚克隆的筛选及其生物学特性研究[J].中华医学杂志,2006年,第86卷(第1期):61-65.
    [48]李连弟,饶克勤,张思维,等.中国12市县1993年-1997年肿瘤发病和死亡登记资料统计分析.中国肿瘤,2002,11(9):497-507.
    [49]Breast cancer:Statistics on incidence, survival and screening http://www. imaginis. com/breasthealth/statistics. asp.2008.2.1.
    [50]心文.北京市女性乳腺癌增长率超过欧美国家[J].中国生育健康杂志,2005, 16(3):185.
    [51]刘恩菊,项永兵,金凡,等.上海市区恶性肿瘤发病趋势分析(1972-1999年)[J].肿瘤,2004,24(1):11-15.
    [52]http://news.tom.com/2007-10-15/0020/01174576. html.2007.12.28.
    [53]http://www. pharmnet. com.cn/health/2007/04/02/192079. html.2007.4.2
    [54]D.鲍特尔,J.萨姆布鲁克,等著,吕华,陆祖宏,孙啸译.DNA微阵列实验室指南[M].北京:科学出版社,2008:1.
    [55]龚西騟,丁华野.乳腺病理学[M].第1版,北京:人民卫生出版社,2009年,294-302.
    [56]汤钊猷.现代肿瘤学[M].上海:复旦大学出版社,2008:2.
    [57]曾益新.肿瘤学[M].北京:人民卫生出版社,2003:2.
    [58]J. W. Shay and W. E. Wright, Nat.Rev. Mol.Cell Bio.1:72-76,2000.
    [59]Robert A. Weinberg. The Biology of Cancer [M]. Garland Science,2006, ISBN: 9780815340768; 0-8153-4076-1.
    [60]胡野,凌志强,单小云.细胞凋亡的分子医学[M].北京:军事医学科学出版社,2002:1.
    [61]Patricia A. J. Muller, Karen H. Vousden, Jim C. Norman. p53 and its mutants in tumor cell migration and invasion. January 24,2011//JCB vol.192 no. 2,209-218.
    [62]Andreas Bergmann, Hermann Steller. Apoptosis, Stem Cells, and Tissue Regeneration. Sci. Signal.,26 October 2010 Vol.3, Issue 145, p. re8.
    [63]Chao Dai, Wei Gu. p53 post-translational modification:deregulated in tumorigenesis. Trends of Molecular Medicine, Volume 16, Issue 11, November 2010, Pages 528-536.
    [64]David P. Clark;Nanette J. Pazdernik,遗传缺陷与基因治疗,癌症分子生物学,非传染性疾病,衰老与细胞凋亡(英文影印版)[M].北京:科学出版社,2009:1.
    [65]Savagner P. The epithelial -mesenchymal transition (EMT) phenomenon. Ann Oncol (2010) 21 (suppl 7): vii89-vii92. doi:10.1093/annonc/mdq292
    [66]May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA. Epithelial-mesenchymal transition and cancer stem cells:a dangerously dynamic duo in breast cancer progression. Breast Cancer Res.2011 Feb 8;13(1):202.
    [67]Tetsu Hayashida,1 Hiromitsu Jinno,1 Yuko Kitagawa,1 andMasaki Kitajima2 Cooperation of Cancer StemCell Properties and Epithelial-Mesenchymal Transition in the Establishment of Breast CancerMetastasis. Journal of Oncology Volume 2011, Article ID 591427.
    [68]Hao J, Serohi jos AWR, Newton G, Tassone G, Wang Z, et al. (2008) Identification and Rational Redesign of Peptide Ligands to CRIP1, A Novel Biomarker for Cancers. PLoS Comput Biol 4(8):e1000138. doi:10.1371/journal. pcbi.1000138
    [69]Ma XJ, Salunga R, Tuggle JT, Gaudet J, McQuary P, et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A,2003. 100(10):p.5974-9.
    [70]Liu S, Stromberg A, Tai H, Moscow JA, et al. Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells. Mol Cancer Res,2004.2(8):p.477-87.
    [71]Hao, J. Serohi jos, A. W. Newton, G. et al., Identification and rational redesign of peptide ligands to CRIP1, a novel biomarker for cancers. PLoS Comput Biol,2008.4(8):p. e1000138.
    [72]郝希山,冯玉梅,张亮,李晓青,牛昀,肖春花,孙保存.采用单引物扩增法标记的基因芯片技术筛选乳腺原发癌与淋巴结转移癌的差异表达基因[J].中华医学杂志2005年第85卷第6期,385-390.
    [73]H ao X, Sun B, H u L, et a.1 Distinctive gene and prote in expression between primary breast and their lymphnode metastases revealed by combined cDNA microarray and tissue microarray. Cancer,2004,100:1110-1122.
    [74]Bissell MJ, Radisky DC, Rizki A, WeaverVM, Petersen OW. The organizing principle:microenvironmental influences in the normal and malignant breast. Differentiation 2002;70:537(?)46.
    [75]P Bist, S C Leow, Q H Phua, S Shu, Q Zhuang, W T Loh, T H Nguyen, J B Zhou, S C Hooi and L H K Lim. Annexin-1 interacts with NEMO and RIP1 to constitutively activate IKK complex and NF-кB:implication in breast cancer metastasis. Oncogene, (7 March 2011)I doi:10.1038/onc.2011.28.
    [76]Wang LP, Bi J, Yao C, Xu XD, Li XX, Wang SM, Li ZL, Zhang DY, Wang M, Chang GQ. Annexin Al expression and its prognostic significance in human breast cancer. Neoplasma.2010;57(3):253-9.
    [77]Scholz CJ, Kurzeder C, Koretz K, Windisch J, Kreienberg R, Sauer G, Deissler H. Tspan-1 is a tetraspanin preferentially expressed by mucinous and endometrioid subtypes of human ovarian carcinomas. Cancer Lett.2009 Mar 18;275(2):198-203. Epub 2008 Nov 18.
    [78]Desouki MM, Liao S, Huang H, Conroy J, Nowak NJ, Shepherd L, Gaile DP, Geradts J. Identification of metastasis-associated breast cancer genes using a high-resolution whole genome profiling approach. J Cancer Res Clin Oncol. 2010 Aug 3.
    [79]Leyden J, Murray D, Moss A, Arumuguma M, Doyle E, McEntee G, 0'Keane C, Doran P, MacMathuna P. Netl and Myeov:computationally identified mediators of gastric cancer. Br J Cancer 2006; 94:1204-12.
    [80]Chen L, Wang Z, Zhan X, Li DC, Zhu YY, Zhu J. Association of NET-1 gene expression with human hepatocellular carcinoma. Int J Surg Pathol 2007;15: 346-53.
    [81]Scholz CJ, Kurzeder C, Koretz K, Windisch J, Kreienberg R, Sauer G, Deissler H. Tspan-1 is a tetraspanin preferentially expressed by mucinous and endometrioid subtypes of human ovarian carcinomas. Cancer Lett 2009; 275:198-203.
    [82]Chen L, Li X, Wang GL, Wang Y, Zhu YY, Zhu J. Clinicopathological significance of overexpression of TSPAN1, Ki67 and CD34 in gastric carcinoma. Tumori 2008; 94:531-8.
    [83]Wollscheid V, Kuhne-Heid R, Stein I, Jansen L, Kollner S, Schneider A, Durst M. Identification of a new proliferation-associated protein NET-1/C4.8 characteristic for a subset of high-grade cervical intraepithelial neoplasia and cervical carcinomas. Int J Cancer 2002; 99:771-5.
    [84]Chen L, Zhu YY, Zhang XJ, Wang GL, Li XY, He S, Zhang JB, Zhu JW. TSPANl protein expression:a significant prognostic indicator for patients with colorectal adenocarcinoma. World J Gastroenterol 2009; 15:2270-6.
    [85]Wollscheid V, Kuhne-Heid R, Stein I, Jansen L, Kollner S, Schneider A, Durst M. Identification of a new proliferation-associated protein NET-1/C4.8 characteristic for a subset of high-grade cervical intraepithelial neoplasia and cervical carcinomas. Int J Cancer 2002; 99:771-5.
    [86]Leng Y, Cao C, Ren J, Huang L, etal. Nuclear import of the MUCl-C oncoprotein is mediated by nucleoporin Nup62. Journal of biological chemistry.2007 Jul 6;282 (27):19321-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700