汽车车身气动造型设计优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车身造型设计是汽车整车开发中极为重要的一环,而决定车身造型设计的关键在于工业设计所代表的美学造型和空气动力学所代表的气动造型。工业设计需要考虑车身外观美感、品牌继承性、用户体验心理等视觉方面的内容,而空气动力学则涉及车身的减阻降噪及高速气动稳定性等方面的内容,两者在思维方式和设计方法上截然不同,如何实现两者的结合以设计出既具有美观造型又具有优良气动性能的车身是一个富有挑战的学科交叉问题。
     除了正向开发中的气动造型设计外,对完成度较高的既有车型进行气动优化也是气动造型研究运用的重点,目前主流的细部迭代优化法需要对局部进行大量尝试性修改,盲目性较大且效率低;在工程领域常用的诸如遗传算法等优化方法只适合形状较为简单、可参数量化的规则形体,尚无法直接用于形状复杂且包含大量自由曲面的整车车身模型,所以需要一种针对复杂既有车型的气动造型优化方法。
     从汽车领域的空气动力学研究手段来看,除了高成本的风洞实验外,运用最广泛的当属CFD (Computer Fluid Dynamics)流体计算仿真技术。经过多年的发展CFD技术已较为成熟,目前的研究发展集中在诸如湍流方程、网格划分等环节,考虑到CFD仿真是一个综合性的处理过程,可以从模型前处理环节来提高优化设计的效率和精度。
     因此加强气动造型设计与工业设计的结合,改进气动造型优化方法,提高CFD仿真优化的精度和效率,都将提高车身造型的气动设计水平,而气动性能与动力性、燃油经济性、高速行驶稳定性等性能是密切相关的,高水平的气动造型设计将全面提升整个车辆的研发设计水准。
     本文以提高车身气动造型水平为出发点,从设计方法和设计手段上进行了研究和探索。对气动造型设计方法的研究分为两条方向:在正向设计中实现气动造型与美学造型的融合、在后期改型中提高气动造型优化的效率和质量;对设计手段的研究集中在CFD优化仿真上,因为气动设计方法如果没有先进的仿真优化手段作为支撑其效果将大打折扣,本文从车身曲面CAD模型与CFD之间的集成入手,对提高仿真优化的效率和精度进行了研究。
     本文所采用的关键技术:
     1.车身正向设计中气动造型与美学造型的融合交互
     在车身造型的前期设计中,如果引入优良气动性能的理想形体作为设计起点,那对于后期的气动造型设计将起到事半功倍的作用。但这样需要在气动理想形体上进行美学造型设计和实用化设计,不符合汽车工业造型设计的传统流程和思维习惯,因此需要建立一套结合气动造型基因和美学造型基因的融合交互机制。它所涉及的关键技术为:
     1)建立造型基因的图形学描述机制。研究气动造型基因、美学造型基因的构建方式及定义标准,建立基于车身数字设计平台下的造型基因描述方法和数学模型,该模型具有标准规范的图形学描述语言,能够满足可互换、可进化的设计要求。
     2)建立上述两类造型基因在设计进化中的融合交互机制。研究在车身造型的进化成型中,气动造型基因和美学造型基因的交互、调谐与融合,包括同一平面下的同向融合和三维空间下的异向融合。
     2.优化完成度较高的既有车型的整体气动布局
     很多情况下出于减少模具和重新设计的需要,汽车企业需要对既有车型进行有限度的改型以优化气动性能;在传统正向设计中直接由工业设计师所构建出的造型方案,也需要进行气动优化。传统的细部迭代优化需要进行大量的修改尝试和仿真验证,存在盲目性大、效率低的问题,而且改型方案之间也可能存在效果冲突。对此现状本文提出一种针对完成度较高车型的整体气动布局优化设计理论,它所涉及的关键技术为:
     1)对非气动细节的过滤技术。实际车型包含大量为功能实用而添加的非气动细节,它们对整车流场的影响有限,但其存在使得仿真优化的效率大为下降,不利于发现整体气动布局的设计缺陷。可以将这类细节过滤,对析取出的气动基本造型进行分析优化。
     2)变形盒技术。这是一种基于控制点拉伸形变的模型修改技术,适合包含自由曲面的车身覆盖件,能够灵活的修改曲面的变化趋势,也可以同时对多个局部进行修改,避免了细部迭代优化法的局限性,有利于整体气动布局的改善。
     3.改进CFD仿真优化的效率和质量
     CFD仿真是车身气动造型设计的重要研究手段,本文从几何模型与计算网格划分的角度出发,提出一种适合车身曲面造型的模型构建技术,它能够大幅提高造型优化的效率和自由度,并在CFD计算网格的划分中保证较好的模拟精度。它所涉及的关键技术为:
     1)细分网格技术。在车身设计中传统的nurbs曲面具有精度高、光顺性好的优点,但由于采用了面片连续性拼接而导致模型数据结构复杂,在进行计算网格划分和优化改型时存在收敛性差、效率低、自由度不高的缺点,通过采用新型的细分网格模型替代nurbs模型,能够在保证仿真精度的前提下提高优化设计的效率和质量。
     2)计算网格几何特征处理技术。在CFD计算网格的划分中,为了提高仿真精度需要保证计算网格能够高精度的模拟几何模型,通过对细分网格模型进行几何特征处理以改善划分网格的贴体性,使计算节点能够准确捕捉车身造型的几何信息。
The style design is an important process in vehicle design project, the key factor is aesthetics from industry design and aerodynamics from engineering.In industry design the stylists need to take into account the body shape aesthetic feeling,company brand,customer experience,etc,but the aerodynamics concern how to reduce the resistance force and the noise and the stability in high speed driving,the two side is different in thinking habit and design method, how to integrate them so the final vehicle is perfect in styling and aerodynamics is an challenging problem.
     Except for the forward design,optimizing the existent vehicle aerodynamics performance is another research point, current minor iterative optimizing method need to modify the local part trial and error,is an blindfold and low efficiency method;The main optimizing method in engineering field such as inherit arithmetic is appropriate for the inerratic object which is simple and can be parameterized,it is not suitable for the vehicle model which is complex and include a mass of free-form surface,so an aerodynamics optimizing method specialized for automobile is necessary.
     For aerodynamics research technique,except high cost wind tunnel test,CFD(Computer Fluid Dynamics) is another popular way.After thirty years development it is an almost advanced technique, currently such as turbulence model and mesh subdividsion is most concerned,because CFD is an all-around process,it is possible to improve the efficiency and precision from model aspect.
     So enhancing the integration between aerodynamics and industry design,improving model optimizing technique,increasing the efficiency and precision of CFD simulation,are necessary for automobile style design and aerodynamics design,and the vehicle aerodynamics performance is correlative with dynamic performance,fuel consumption and high speed stability.Good aerodynamics design is important for entire vehicle developing project.
     The target of this paper is to improve vehicle aerodynamics condition,made research and explore in design method and design technique.In design method aspects,two different direction was discussed:how to integrate aerodynamics and aesthetics in forward design,how to improve efficiency and quality in later stage optimization;In design technique aspects,the research focus on CFD simulation and optimization,because witout advanced CFD technique any design method cannot get good result,so the exchange between CAD model and CFD was researched.
     The key technology:
     1. The integration mechanism between aerodynamics and aesthetics in vehicle body forward design
     In the process of vehicle body forward design,if a ideal model is chosen as start point which is perfect in aerodynamics performance,it is a great help for next design process.But it need to sculp and modify on the smooth ideal shape,and this work flow is not accord with traditional habit, so it is necessary to constitute a integration mechanism between aerodynamics and aesthetics.The correlative key technique is:
     1) Build up the describing mechanism for style gene.Research the describing mode and definition standard for aerodynamics gene and style gene,establish corresponding describing measure and mathematics model based on bodywork design platform,this model can fulfil the request on exchange and evolution for model describing in CAD platform.
     2) Establish integration mechanism in design process.Research how to integrate and syncretize for aerodynamics gene and style gene,include2D integrating and3D integrating.
     2. Optimizing holistic aerodynamics layout for finished vehicle
     For reducing cost in redesign, the automobile company need to modify the vehicle limited to improve aerodynamics performance; the style project deigned by stylists also need to be optimized.Traditional minor iterative optimizing method need to modify the local part trial and error,is an blindfold and low efficiency method.So a new kind of optimizing method aimed to finished vehicle is necessary.The correlative key technique is:
     1) Filtration for non-aerodynamics parts.The actual vehicle include a great deal of non-aerodynamics parts which have limited influence to holistic flow field,but it greatly decrease the efficiency in CFD simulation and optimizing and it is difficult to find out the disfigurement in aerodynamics layout.So it is feasible to filtrate these parts and optimize the basic shape.
     2) Distortion technique.It is a modify technique based on control box,it suits the freeform surface in vehicle bodywork and can freely modify the shape,avoids the limitation in minor iterative optimizing method.
     3. Improve the efficiency and quality in CFD simulation and optimizing
     CFD simulation is a verv important measure in automobile stvle design,from the viewpoint of CAD model and calculating mesh,a new kind of model technology fit for bodywork surface is brought out,it can greatly improve the efficiency in model optimizing and maintenance good precision in CFD simulation.The correlative key technique is:
     1) Subdivision mesh technology.In vehice deign progress the traditional nurbs surface have the advantage of high precision and good smoothness,but the model hiberarchy is complicated because the surface is made up of patches,it has the disadvantage of low efficiency and freeness in mesh subdiving process,by introducing new subdivision mesh model instead of nurbs model,the efficiency and quality in CFD simulation can be improved and the precision can keep in acceptable level.
     2) The features for calculating mesh.In mesh generating process,in order to improve simulation precision it is feasible to make feature work on mesh object so the calculating mesh is more close to original model and the nodes can snap to geometry information on bodywork.
引文
[1]中国汽车工业协会.中国汽车协会统计数据.www.caam.org.cn,2010-11-12
    [2]谷正气.汽车空气动力学.北京:人民交通出版社,2005,1-4
    [3]傅立敏.汽车空气动力学.北京:机械工业出版社,2006,1 6-27
    [4]谷正气.汽车车身现代技术.北京:机械工业出版社,2009,27-32
    [5]谷正气.轿车车身.北京:人民交通出版社,2002,305-307
    [6]李京生,张文杰.名车梦幻·百年史诗德国册.北京:中国标准出版社,2004,168-170
    [7]A.Riedler. Wissenschaftliche Automobilebewertung. Verl. Oldenburg,1911
    [8]W.G.Aston. Body design and wind resistance. The Autocar,1911
    [9]P.Jaray. Der Stromlinienwagen-Eine neue Form der Automobile-Karosserie. Der Motorwagen,1922
    [10]黄向东.汽车空气动力学与车身造型.北京:人民交通出版社,2000,108-119
    [11]Ahram Khalighi,S. Zhang. Experimental and Computational Study of Unsteady Wake Flow Behind a Bluff Body With a Drag Reduction Device, SAE technical Paper:2001-01-1042
    [12]Jeff Howell. Aerodynamic Drag Reduction for a Simple Bluff Body Using Base Bleed, SAE technical Paper:2003-01-0995
    [13]Rajneesh Singh. Automated Aerodynamic Design Optimization Process for Automotive Vehicle, SAE technical Paper:2003-01-0993
    [14]Rajneesh Singh,Kevin Golsch. A Downforce Optimization Study for a Racing Car Shape, SAE technical Paper:2005-01-0545
    [15]Kazuhiro Sato,Hiroshi Shimoyama. Development of Numerical Simulation Method of Flow Around Automobile Using Meshfree Method, SAE technical Paper:2005-01-0544
    [16]Xijia Zhu, Mark E. Gleason. A CFD Application of Surface Morphing for Vehicle Exterior Development, SAE technical Paper:2007-01-0110
    [17]Santosh Kini, Richard Thoms. A Fast and Fully Automated Cartesian Meshing Solution for Dirty CAD Geometries, SAE technical Paper:2008-01-2998
    [18]Sandeep Dinkar Sovani. Hamid Ghazialam,Rapid Meshing for Vehicle Aerodynamics Simulation,SAE technical Paper:2009-01-0335
    [19]Sandeep Dinkar Sovani,Sunil K. Jain. Simulation of the Flow-Field Around a Generic Tractor-Trailer Truck, SAE technical Paper:2004-01-1147
    [20]Nurul Muiz Murad,Jamal Naser. Simulation of Vehicle A-Pillar Aerodynamics Using Various Turbulence Models, SAE technical Paper:2004-01-0231
    [21]Sunil Unaune, Sandeep D.Aerodynamics of a Generic Ground Transportation System:Detached Eddy Simulation, SAE technical Paper:2005-01-0548
    [22]Kozo Kitoh, Shouta Chatani. Large Eddy Simulation on the Underbody Flow of the Vehicle with Semi-Complex Underbody Configuration, SAE technical Paper: 2007-01-0103
    [23]Makoto Tsubokura, Takuji Nakashima. Development of an Unsteady Aerodynamic Simulator Using Large-Eddy Simulation Based on High-Performance Computing Technique, SAE technical Paper:2009-01-0007
    [24]Kozo Kitoh, Nobuyuki Oshima. A CFD Approach Via Large Eddy Simulation to the Flow Field with Complex Geometrical Configurations-A Study Case of Vehicle Underbody Flows, SAE technical Paper:2009-01-0332
    [25]Takuji Nakashima, Makoto Tsubokura. Flow Structures above the Trunk Deck of Sedan-type Vehicles and their Influence on High-speed Vehicle Stability 2nd Report:Numerical Investigation on Simplified Vehicle Models using Large-Eddy Simulation, SAE technical Paper:2009-01-0006
    [26]Scott Holloway, James Leylek. Aerodynamics of a Pickup Truck:Combined CFD and Experimental Study,SAE technical Paper:2009-01-1167
    [27]Angel Huminic, Anghel Chiru. On CFD Investigations of Vehicle Aerodynamics with Rotating Wheels' Simulation, SAE technical Paper:2006-01-0804
    [28]Wei Ding, Jack Williams. CFD Application in Automotive Front-End Design, SAE technical Paper:2006-01-0337
    [29]Bradley D. Duncan, Sivapalan Senthooran. Multi-Disciplinary Aerodynamics Analysis for Vehicles:Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck, SAE technical Paper: 2007-01-0100
    [30]Timothy Juan. Investigation and Assessment of Factors affecting the Underhood Cooling Air Flow Using CFD (Computational Fluid Dynamics), SAE technical Paper:2008-01-2658
    [31]Kevin R. Cooper. Pickup Truck Aerodynamics-Keep Your Tailgate Up, SAE technical Paper:2004-01-1146
    [32]Simone Sebben. Numerical Simulations of a Car Underbody:Effect of Front-Wheel Deflectors, SAE technical Paper:2004-01-1307
    [33]Alexis Scotto d'Apollonia,Benoit Granier. Design of Experiments Methods Applied to Cfd Simulations in Vehicle Aerodynamics, SAE technical Paper: 2004-01-0443
    [34]Kevin R. Cooper,Jason Leuschen. Model and Full-Scale Wind Tunnel Tests of Second-Generation Aerodynamic Fuel Saving Devices for Tractor-Trailers, SAE Second-Generation Aerodynamic Fuel Saving Devices for Tractor-Trailers, SAE technical Paper:2005-01-3512
    [35]W. David Pointer, Tanju Sofu. Development of Guidelines for the Use of Commercial CFD in Tractor-Trailer Aerodynamic Design, SAE technical Paper: 2005-01-3513
    [36]Ilhan Bayraktar, Drew Landman. An Assessment of Drag Reduction Devices for Heavy Trucks Using Design of Experiments and Computational Fluid Dynamics, SAE technical Paper:2005-01-3526
    [37]Paul J. Castellucci,Kambiz Salari. Computational Simulation of Tractor-Trailer Gap Flow with Drag-Reducing Aerodynamic Devices, SAE technical Paper: 2005-01-3625
    [38]Rose McCallen,Kambiz Salari. DOE's Effort to Reduce Truck Aerodynamic Drag Through Joint Experiments and Computations, SAE technical Paper:2005-01-3511
    [39]Bruce Storms, Dale Satran. Detailed Experimental Results of Drag-Reduction Concepts on a Generic Tractor-Trailer, SAE technical Paper:2005-01-3525
    [40]John A C Kentfield, A. Rangayyan. Tractor-Semi-Trailer Base Drag Reduction, SAE technical Paper:2006-01-1975
    [41]Bruce Storms, James Ross. Aerodynamic Drag Reduction of the Underbody of a Class-8 Tractor-Trailer, SAE technical Paper:2006-01-3532
    [42]Ronald E. Schoon, Fongloon Pan. Practical Devices for Heavy Truck Aerodynamic Drag Reduction, SAE technical Paper:2007-01-1781
    [43]Helmut H. Korst, Robert A. White. Road Evaluation of the Aerodynamic Characteristics of Heavy Trucks, SAE technical Paper:2007-01-4297
    [44]Ronald E. Schoon. On-road Evaluation of Devices to Reduce Heavy Truck Aerodynamic Drag, SAE technical Paper:2007-01-4294
    [45]Ramesh Pankajakshan, Kidambi Sreenivas. CFD Simulations of Class 8 Trucks, SAE technical Paper:2007-01-4293
    [46]Kevin Horrigan, Brad Duncan. Aerodynamic Simulations of a Class 8 Heavy Truck:Comparison to Wind Tunnel Results and Investigation of Blockage Influences, SAE technical Paper:2007-01-4295
    [47]Marius-Dorin Surcel. Track-test Evaluation of Aerodynamic Drag Reducing Measures for Class 8 Tractor-Trailers, SAE technical Paper:2008-01-2600
    [48]Uriel Goldberg, Vedat Akdag. CFD Analysis of the American Challenger Rocket Car, SAE technical Paper:2006-01-0809
    [49]Neil W. Roberts, John Winkler. Multi-Disciplinary Design of the Champ Car Atlantic Race Car, SAE technical Paper:2006-01-3663
    [50]Hiroshi Sakurai. The Application of Design of Experiments to CFD Studies of Racecar Wing Configurations, SAE technical Paper:2006-01-3645
    [51]Jorge Barata, Joao Correia. Numerical Optimization of the Location of F1 CDG Wings, SAE technical Paper:2008-01-3002
    [52]Sachin Desai, Betty Chi Man Lo. Experimental and CFD Comparative Case Studies of Aerodynamics of Race Car Wings, Underbodies with Wheels, and Motorcycle Flows, SAE technical Paper:2008-01-2997
    [53]谷正气,黄天泽.轿车车身表面压强分布的数值模拟.湖南大学学报(自然科学版),1994,21(04):75-80
    [54]傅立敏.用空气动力学附加装置降低国产货车气动阻力措施的探讨.汽车工程,1994,16(3):144-148
    [55]涂尚荣,张扬军,谢今明.汽车外部流场仿真的复杂网格系统生成.汽车工程,2002,24(05):124-126
    [56]杨胜,张扬军,涂尚荣.汽车外部复杂流场计算的湍流模型比较.汽车工程,2003,25(04):322-325
    [57]陈景秋,胡韩飞,张永祥.Star-cd对汽车外流场的三维数值模拟.重庆大学学报(自然科学版),2005,28(04):99-101
    [58]吴军.汽车外流场湍流模型与菱形新概念车气动特性的研究:[湖南大学博士学位论文].长沙:湖南大学,2005,1-10
    [59]傅立敏,胡兴军,张世村.不同几何参数车轮的汽车流场数值模拟研究.汽车工程,2006,28(05):451-459
    [60]宋小文,胡树根,张伟.圆顶车厢载货车外流场数值模拟及附加装置优化设计.汽车工程,2007,29(09):796-811
    [61]陈小东,詹樟松.长安轿车空气动力学性能的CFD研究.汽车工程,2007,29(10):873-875
    [62]郭军朝.理想车身气动造型研究与F1赛车气动特性初探:[湖南大学硕士学位论文].长沙:湖南大学,2007,1-10
    [63]马永坤,杜广生.附加装置对厢式货车气动性能影响的试验研究与数值模拟:[山东大学硕士学位论文].济南:山东大学,2007,3-12
    [64]张海滨.含发动机舱内流、地面效应的汽车流场模拟:[南京航空航天大学硕士学位论文].南京:南京航空航天大学,2008,2-14
    [65]谷正气,李学武,何忆斌.汽车减阻新方法.汽车工程,2008,30(05):441-448
    [66]程道然.景逸汽车空气动力学性能的CFD研究.装备制造技术,2008(09):47-49
    [67]张英朝,李杰,胡兴军等.摩托车及驾驶员气动特性的数值模拟研究.汽车工程,2009,31(07):606-645
    [68]刘湘云,冯俊虎,郑智贞等.不同前车窗角度对汽车动力性能影响的数值模拟.北京工业大学学报,2009,35(07):987-990
    [69]A.J.赛伯-里尔斯基著.杨尊正,邹仲贤译.汽车空气动力学.北京:人民交通出版社,1984,2-15
    [70]严扬,刘志国,高华云.汽车造型设计概论.北京:清华大学出版社,2005,70-80
    [71]杜海滨.汽车造型.沈阳:辽宁美术出版社,2008,30-39
    [72]周力辉.立体设计表达:汽车油泥模型设计制作.北京:清华大学出版社2006,1-9
    [73]王波.汽车造型设计二维表达.北京:清华大学出版社,2009,1-5
    [74]伯特·多德森.蔡强译.素描的诀窍.上海:上海人民美术出版社,2005,2-12
    [75]凯德设计.CATIA V5中文版从入门到精通.北京:中国青年出版社,2008,33-34
    [76]邓秀娟,郭爱斌,胡仁喜.Unigraphics NX4.0中文版完全自学专家指导教程.北京:机械工业出版社,2006,56-63
    [77]荆崇波,李雪原,尹旭峰.精通UG NX 4.0机械设计:典型实例、专业精讲.北京:电子工业出版社,2006,63-83
    [78]申玫.船体NURBS曲线修改方法研究:[大连理工大学硕士学位论文].大连:大连理工大学,2008,3-5
    [79]孙伟.犀牛Rhino3.0&3dsmax6魔典.北京:中国物资出版社,2004,41-45
    [80]盛建平,邓凯.从Rhino到产品设计.北京:中国轻工业出版社,2009,1-10
    [81]詹翔,王海英.从零开始——3dsmax 9中文版基础培训教程.北京,人民邮电出版社,2009,82-84
    [82]张欣宇.基于逆向工程的汽车外形设计方法的应用研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学,2008,1-9
    [83]江涛.3dsmax在汽车车身开发中的应用与研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学,2005,32-35
    [84]熊俊涛,乔志德,韩忠华.基于响应面法的跨声速机翼气动优化设计.航空学报,2006,27(3):309-402
    [85]罗仕鉴,朱上上.用户和设计师的产品造型感知意象.机械工程学报,2005,41(10):28-34
    [86]沈大林,罗红霞.3dsmax9场景设计案例教程.北京:电子工业出版社,2009,281-284
    [87]曹茂鹏,瞿颖健.3dsmax/Vray光与材质表现技法.北京:人民邮电出版社,2009,3-17
    [88]Darrey Brooker.刘新军,李小萍译.3dsmax经典教程高级篇——解析CG灯光技术.北京:人民邮电出版社,2009,93-102
    [89]黄伟.汽车空气动力学的计算机辅助分析:[重庆大学硕士学位论文].重庆:重庆大学,2005,25-28
    [90]武藤真理著.程正译.汽车空气动力学.长春:吉林科学技术出版社,1989,131-144
    [91]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004,116-126
    [92]刘德平,刘武发.计算机辅助设计与制造.北京:化学工业出版社,2007,130-138
    [93]单岩,谢斌飞等.Imageware逆向造型技术基础.北京:清华大学出版社,2006,1-12
    [94]张胜文,庞明勇,王贵成等.网格细分技术在汽车外形设计中的应用.工程图学学报,2007(3):67-72
    [95]姜乐华,谷正气,张丕付等.基于车身外形CAD数据的表面气动网格生成.计算物理,1999,16(6):675-681
    [96]龙军,孙新岭.智能化尺寸驱动法在参数绘图中的探索应用.工程图学学报,2003(4):40-43
    [97]刘艳,王江峰,伍贻兆.基于遗传算法的翼型多目标气动优化设计.飞机设计,2008,28(4):1-5
    [98]李迅,孙刚,刘苏.基于分段进化的遗传算法在机翼气动外形设计上的应用.力学季刊,2007,28(2):264-273
    [99]刘洁,杨爱明,翁培奋.基于遗传算法的微型飞行器气动力优化设计.空气动力学学报,2005,23(2):173-177
    [100]汪光文,周正贵,胡骏.基于优化算法的压气机叶片气动设计.航空动力学报,2008,23(7):1218-1224
    [101]詹浩,许晓平,朱军.气动外形多点优化设计研究.航空计算技术,2007,37(1):19-21
    [102]陈波,高学林,袁新.基于nurbs的叶片全三维气动优化设计.工程热物理学报,2006,27(5):763-765
    [103]袁晓红,江涛,苏楚奇等.3dsmax多边形模型向UG工程模型的转换.武汉理工大学学报,2006,28(5):95-97
    [104]潘小卫,谷正气,何忆斌等.F1赛车气动特性的CFD仿真和试验研究.汽车工程,2009,31(3):274-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700