铜冶炼厂污染区域土壤重金属分布特性及其植物有效性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对某铜冶炼厂周边废渣影响区土壤中重金属的分布特性,以及污灌区土壤中重金属的植物有效性做了研究。对废渣影响区土壤中重金属分布特性的研究结果显示,该调查区土壤中以铜和镉重金属污染为主。镉元素已经发生了较明显地向下迁移,污染浓度至0~40 cm,镉在土壤中分布特征与镉易于被水淋溶和在土壤中的形态以交换态为主有关。调查区土壤中的铜主要富集于表层土壤中(0-20 cm),这与土壤中的铜不易被水淋溶发生迁移和在土壤中形态主要以非交换态为主有关。由此可见,受重金属污染土壤中镉存在较大的环境风险。
     在对污灌区农田土壤中重金属的植物有效性的研究中,通过对单孝全提出的低分子量有机酸(LMWOAs)提取剂进行改进,形成新的提取剂(A-LMWOAs),来进行土壤重金属的植物有效性研究。实验结果表明,A-LMWOAs提取剂可以显著地提高土壤中铜和铅的提取量,但对化学性质活跃,较易被提取的锌和镉元素影响较小。并且A-LMWOAs提取剂对重金属的提取量与黑麦草盆栽试验确定的重金属生物有效性的相关性高于LMWOAs和氯化钙提取剂。证明A-LMWOAs能更好地模拟根际土壤环境,是一种评价土壤重金属植物有效性的优秀提取剂。
     本文对提取时间和提取液土比对重金属提取量的影响进行了深入研究。实验结果表明,A-LMWOAs重金属提取量随提取时间的增长呈指数函数式上升,随提取液土比的增大也呈指数函数式上升。A-LMWOAs提取剂提取土壤重金属,5小时是比较合适的震荡时间,30:1是比较合适的液土比。
     对A-LMWOAs提取剂的机理研究试验结果表明,对于铜和铅元素,先用LMWOAs提取,后用氯化钙提取剂顺序提取同一土壤样品,与先用氯化钙提取剂提取,后用LMWOAs提取相比,铜和铅的总提取量会更高;用LMWOAs提取过的土壤,再用氯化钙提取剂提取的铜和铅量,高于直接用氯化钙提取剂进行提取所提取的量;并且铜和铅的提取量会随着A-LMWOAs提取剂中LMWOAs成份浓度的增大而增大。证明A-LMWOAs中的LMWOAs成份会释放土壤中的铜和铅,使得氯化钙组分的离子交换作用能提取更多量的铜和铅。LMWOAs对土壤中锌和镉的释放作用不明显,因为锌和镉本身是化学性质活跃,易被提取的元素。
     多次提取实验研究表明,以液土比10:1的提取剂多次提取试验中前三次提取就可以完全提取易移动态的铜和镉,再次印证了选取的液土比30:1是合理的。并且重金属提取量随提取次数的增加呈指数衰减函数式下降,累积提取量随提取次数的增加呈指数衰减函数式上升。提取剂用量相同的情况下,多次提取相对于一步提取,可以提取土壤中更多量的铜,但对镉没有明显的作用。
The heavy metal distribution characteristics in the soil of the waste residue influence area, and phyto-availability of the heavy metals in the soil of the wastewater irrigation area around a smelter were studied. The investigation of the heavy metal distribution characteristics in the waste influence area indicates that, Cu and Cd are main contaminants in this area. Cd has apparently migrated to subsurface (20-40cm and 40-60 cm) soil, probably because high percentages of Cd (50%-75%) in the soil are present as exchangeable species and it is easily to be eluviated by water. Cu is easy to accumulate in the surface (0-20 cm) soil because 30%-80%of Cu in the soil are present as organic matter bound species, and 1%-20%of Cu in the soil are present as exchangeale species, so Cu is not easy to be eluviated by water. In conclusion, Cd in this area could pose a potential leaching risk to the environment.
     In the study of the heavy metal phyto-availability in the sewage irrigation zone, the LMWOAs extractant proposed by Shan was adjusted and generated a new extractant called Adjusted-LMWOAs, and the A-LMWOAs was adopted in the study of the phyto-availability of the heavy metals in the soil. The result shows that, extractant A-LMWOAs can dramatically increase the extraction amount of Cu and Pb, but as for Zn and Cd, which were chemically active and easily to be extracted, no significant influense was observed. The A-LMWOAs extract amounts of the heavy metals were best correlated to the metal phyto-availability, so the adjust to the LMWOAs was succeed, and the A-LMWOAs is a good extractant in the evaluation of the phyto-availability of the heavy metals in the soil.
     The extract time and the ratio of the liquid/soil have big influences on the extraction amount of the heavy metals. The experiment results show that the extraction amount of heavy metals increased with the extract time and the ratio of solution to soil, and shows a exponential attenuation function.5 hours is the proper concussion time, and the proper ratio of solution to soil was 30:1, when adopting the extractant A-LMWOAs.
     The study of the mechanism of the A-LMWOAs indicates that, as for Cu and Pb, extract in sequence LMWOAs then 0.01mol/L CaCl2, would get bigger extraction amount than extract in sequence 0.01mol/L CaCl2 then LMWOAs; 0.01mol/L CaCl2 can extract more Cu and Pb from the soil which has been already extracted by LMWOAs, compare with the direct extraction with 0.01mol/L CaCl2; and also the extraction amount of Cu and Pb was observed increasing with the total concentrations of the LMWOAs. All above indicate that the LMWOAs as components in A-LMWOAs, can release the firmly bound Cu and Pb, and promote the ion exchange effect of the CaCl2. LMWOAs has no significant influence on the extraction of Zn and Cd in the soil, because they are chemically active and easily to be extracted.
     The result of the multi-extraction experiment shows that, the former three times extraction can completely extract the labile fraction of Cu and Cd, this is accord with the conclution that the ratio of the liquid to soil 30:1 is the best. The extract amount decreased with the extract frequency and shows a exponential attenuation function, the cumulative extract amount increased with the extract frequency and shows a decaying exponential function.
引文
1.林玉锁,李波,张孝飞.我国土壤环境安全面临的突出问题[J].环境保护,2004,10:39-42
    2.林凡华,陈海博,白军.土壤环境中重金属污染危害的研究[J].环境科学与管理,2007,32(7)74-77
    3.郭跃品,吴国爱,付杨荣.海南省胡椒种植基地土壤中重金属元素污染评价[J].地质科学情报,2007,26(4):91-962
    4.李亮亮,张大庚等.葫芦岛市连山区、龙港区土壤重金属垂直分布与迁移特征[J].安徽农业科学,2007,35(15):3916-3918
    5.顾继光,林秋奇,胡韧.土壤植物系统中重金属污染研究展望[R].土壤通报,2005,36(1):128-133
    6.吴茂江,涂长信.铜与人体健康[J].微量元素与健康研究,2005,22(5):64-66
    7.周俊生.职业性慢性铜中毒亚急性发病1例报告[J].职业与健康,2005,21(11):1675
    8.苏建明,雷红宇,罗正.铜中毒对小鼠血液生化指标的影响[J].维丰专栏,2009,4:47-49
    9.李冰.土壤中重金属的污染与危害[J].金属漫谈,2005,5:43-45
    10.刘峰.土壤中重金属对农作物及人体的危害[J].河北农业,2005,1:15
    11.向中兰.补锌过量对人体的危害[J].现代医药卫生,2001,9:727
    12.王丕玉,刘海潮.锌失衡与人体健康[J].中国食物与营养,2007,7:50-52
    13.王淑英,马啸华.土壤重金属污染的危害及修复[J].商丘师范学院学报,2005,21(5):122-126
    14. Chen B.,Shan X.Q.,Qian J. Bioavailability index for quantitative evaluation of plant availability of extractable soil trace elements[J]. Plant Soil,1996,186:275-283
    15. Wang W.-S., et al. Relationship between the extractable metals from soils and metals taken up by maize roots and shoots[J]. Chemosphere,2003.53(5):523-530
    16.李非里,刘从强,宋照亮.土壤中重金属形态的化学分析综述[J].中国环境检测,2005,21(4)21-26
    17.杨洪英,朱长亮,王大文,蒋欢杰.辽宁某冶炼厂污染土壤的铜污染研究[J].东北大学学报:自然科学版,2007,28(1):80-82
    18. Ehers L.J., Luthy R.G. Contaminant bioavailability in soil and sediment[J]. Environmental Science & Technology,2003,37:295-302
    19. Ehlken S., Kirchner G. Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data. A review[J]. Journal of Environmental Radioactivity, 2002,58:97-112
    20. Feng M.-H. et al. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley[J]. Environmental Pollution,2005,137(2):231-240
    21. Novozamsky I., Lexmond Th.M., Houba V.J.G.. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants[J].Int. J Environ. Anal. Chem,1993,51:47-58
    22. Houba V.J.G., Lexmond Th.M., Novozamsky I., Vander Lee J.J. State of the art and future developments in soil analysis for bioavailability assessment[J]. Sci. Total Environ.,1996,178:21-28
    23. McGrath D. Application of single and sequential extraction procedures to polluted and unpolluted soils[J]. Sci. Total Environ.,1996,178:37-44
    24. Kennedy V.H., Sanchez A.L.,Oughton D.H., Rowland A.P. Use of single and sequential chemical extractants toassess radionuclide and heavy metal availability from soils for root uptake[J]. Analyst,1997,122:89-100
    25. Maiz I., Esnaola M.V., Millan E. Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure[J]. Sci. Total Environ.,1997,206:107-115
    26. Krishnamurti G.S.R.,Naidu R. Solid-solution speciation and phytoavailability of copper and zinc in soils[J]. Environ. Sci. Technol,2002,36:2645-2651
    27. Speirt W, Schaik A. P., Vanpercival H. J.,et al. Heavy metals in soil, plants and groundwater following high-rate sewage sludge application to land [J].Water, Air, and SoilPollution,2003, 150(1-4):319-358
    28.刘玉荣,党志,尚爱安,等.几种萃取剂对土壤中重金属生物有效部分的萃取效果[J].土壤与环境,2002,11(3):245-247
    29.谢建治,尹君,王殿武.土壤中有效态重金属Cd, Hg提取方法研究[J].农业环境保护,1998,17(3):116-I19
    30.陈飞霞,魏世强.土壤中有效态重金属的化学试剂提取法研究进展[J].干旱环境监测,2006,20(3):154-159
    31.熊礼明,鲁如坤.土壤有效Cd浸提剂对Cd的浸提机制[J].环境化学,1992,11(3):41-47
    32.马建军.褐土中有效态镍提取剂及提取条件的选择[J].河北农业技术师范学院学报,1999,13(2):10-14
    33.夏时雨,刘清.土壤中不同形态铅的提取及其取样深度[J].环境污染与防治,1994,16(4):27-29
    34. Wang Wei-Sheng, Shan Xiao-Quan,Wen Bei,et al. Relationship between the extractable metals from soils and metals taken up by maize roots and shoots[J].Chem osphere,2003,53(5):523-530
    35.尚爱安,党志,梁重山.土壤沉积物中微量重金属的化学提取方法研究进展[J].农业环境保护,2001,20(4):266-269
    36. Arun K. Shanker, Cervantes Carlos, Herm Inia Loza-Tavera, et al. Chromium toxicity in plants[J].Environment International,2005,31(5):739-753
    37. Inaba Shoko, Takenaka Chisato. Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts[J]. Environm entInternational,2005,31(4):603-608
    38. Haq A.U., Bates T.E., Soon Y.K. Comparison of extractants for plant-available zinc, cadmium, nickel, and copper in contaminated soils[J]. Soil Science Society of America Journal,1980, 44:772-777
    39. Norvell W.A. Comparison of chelating agents as extractants for metals in diverse soil materials[J]. Soil Science Society of America Journal,1984,48:1285-1292
    40. Brun L.A., Mailler J., Hinsinger P., Pe'pin M.. Evaluation of copper availability to plants in copper-contaminated vineyard soils [J]. Environmental Pollution,2001,111:293-302
    41. Hammer D., Keller C. Changes in the rhizosphere of metal accumulating plants evidenced by chemical extractants[J]. Journal of Environmental Quality,2002,31:1561-1569
    42. Chaignon V., Sanchez-Neira I., Herrmann P., Jaillard B., Hinsinger P. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vinegrowing area[J]. Environmental Pollution,2003,123:229-238
    43.张念礼,高效江,吴灵灵,等.长江口潮滩沉积物中活性重金属的提取方法比较研究[J].复旦学报,2003,42(3):481-485
    44.程晓东.几种化学浸提剂对底泥重金属生物有效部分浸提效果的比较[J].农业环境保护,2002,21(3):215-217
    45.黄宝荣,刘云国,张慧智.化学提取技术在重金属污染土壤修复中应用的研究[J].环境工程,2003,21(4):48-50
    46. I. Maiz, M.V. Esnaola, E. Millan. Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure[J].The science of the total Environment,2006(206):107-115
    47. Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of paniculate trace metals[J]. Anal. Chem.,1979,51:844-851
    48.窦磊,周永章,高全州.土壤环境中重金属生物效性评价方法及其环境学意义[J].土壤通报,2007,38(3):576-583
    49. A damo P, Denaixb L, Terribile F, et al.Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (Southern Italy) [J].Geoderma,2003,117(3-4):347-366
    50. Quevauviller P. Operationally defined extraction procedures for soil and sediment analysis, Part 3: new CRMs for trace element extractable contents[J].Trends in Analytical Chemistry,2002,21 (11): 774-786
    51. Davidson C.M., Thomas R.P., McVey S.E., et al.Evaluation of a sequential extraction p rocedure for the speciation of heavy metals in sediments[J].Analytica Chimica Acta,1994,291:277-286
    52.曹会聪,王金达,张学林.BCR法在污染农田黑土重金属形态分布研究中的应用[J].水土保持学报,2006,20(6):1 63-167
    53. Shan X.Q., Chen B. Evaluation of sequential extraction for speciation of trace metals in model soil containing natural minerals and humic acid[J]. Anal. Chem.,1993,65:802-807
    54. Tu Q., Shan X.Q., Qian J., Ni Z.M. Trace metal redistribution during extraction of model soils by acetic acid/sodium acetate[J]. Anal. Chem.,1994,66:3552-3568
    55. Howard J.L., VandenBrink WJ. Sequential extraction analysis of heavy metals in sediments of variable composition using nitrilotriacetic acid to counteract resorption[J].Environ. Pollut,1999,106: 285-292
    56. Sauve'S., Norvell W.A., McBride M., Hendershot W. Speciation and complexation of cadmium in extracted soil solutions[J]. Environmental Science& Technology,2000,34:291-296
    57. Fox T.R., Comerford N.B. Low-molecular-weight organic acids in selected forest soils of the southeastern USA[J]. Soil Science Society of America Journal,1990,54:1139-1144
    58. Naidu R., Harter R.D. Effect of different organic ligands on cadmium sorption by and extractability from soils[J]. Soil Science Society of America Journal,1998,62:644-650
    59. Cies'lin'ski G., vanRees K.C.J., Szmigielska A.M.,Krishnamurti G.S.T., Huang P.M. Low-molecular-weight organic acids in rhizosphere soils of durum barley and their effect on cadmium bioaccumulation[J]. Plant and Soil,1998,203:109-117
    60. Shan X.Q., Lian J., Wen B. Effect of organic acids onadsorption and desorption of rare earth elements[J]. Chemosphere,2002,47:701-710
    61. Shan X.Q., Wang Z.W., Wang W.S., Zhang S.Z., Wen B. Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants[J]. Analytical Bioanalytical Chemistry,2003a,375:400-407
    62. Hopkins B.G., Whitney D.A., Lamond R.E., Jolley V.D. Phytosiderophore release by sorghum wheat and corn under zinc deficiency [J]. J.Plant Nurit,1998,21:2623-2637
    63. Janczarek M., Urbanik-Sypniewska T., Skorupaka A. Effect of authentic flavonoids and the exudates of clover root on growth rate and inducing ability of nod genes of Rhizobium leguminosarum[J]. bv. Trifolii. Microbiol. Res,1997,152:93-98
    64. Tao S., Chen Y.J., Xu F.L., Cao J.Changes of copper speciation in maize rhizosphere soil[J]. Environ. Pollut,2003,122:447-454
    65. Jones D.L., Kochian L.V. Aluminium-organic acid interactions in acid soils.Effect of root-derived organic acids on the kinetics of Al dissolution[J]. Plant Soil,1996,182:221-228
    66. Petra M., David C., Ching H.Y. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type[J]. Plant Soil,2004,261:199-208
    67. Wang W.S., Shan X.Q., Wen B., Zhang S.Z. A method for predicting bioavailability of rare earth elements in soils to maize[J]. Environmental Toxicology and Chemistry,2004a,23:767-773
    68. Li Y.H., Huang B.X., Shan X.Q. Determination of low molecular weight organic acids in soil, plants, and water by capillary zone electrophoresis[J]. Anal. Bioanal. Chem,2003,375:775-780
    69. Feng M.-H., et al. Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat[J].Chemosphere,2005.59(7): 939-949
    70. Denaix L., Semlali R.M., Douay F. Dissolved and colloidal transport of Cd, Pb, and Zn in a silt loam soil affected by atmospheric industrial deposition[J]. Environmental Pollution,2001,113:29-38
    71. Citeau L., Lamy I., van Oort F., Elsass F. Colloidal facilitated transfer of metals in soils under different land use[J]. Colloids and Surfaces,2003,217:11-19
    72. Gutzman D.W., Langford C.H. Kinetic study of the speciation of copper(Ⅱ) bound to a hydrous ferric oxide[J]. Environmental Science& Technology,1993,27:1388-1393
    73. Bermond A., Yousfi I., Ghestem J.-P. Kinetic approach to the chemical speciation of trace metals in soils[J]. Analyst,1998,123:785-789
    74. Lo I.M.C.,Yang X.Y. EDTA extraction of heavy metals from different soil fractions and synthetic soils[J]. Water, Air, and Soil Pollution,1999,109:219-236
    75. Bermond A., Varrault G, Sappin-Didier V., Mench M. A kinetic approach to predict soil trace metal bioavailability:preliminary results[J]. Plant and Soil,2005,275:21-29
    76. Fangueiro D., Bermond A., Santos E., Carapuca H., Duarte A. Heavy metal mobility assessment in sediments based on a kinetic approach of the EDTA extraction:search for optimal experimental conditions[J]. Analytica Chimica Acta,2002,459:245-256
    77. Gismera M.J., Lacal J., da Silva P., Garci'a R., Sevilla M.T., Procopio J.R. Study of metal fractionation in river sediments. A comparison between kinetic and sequential extraction procedures[J]. Environmental Pollution,2004,127:175-182
    78. Degryse F., Smolders E., Merckx R. Labile Cd complexes increase Cd availability to plants[J]. Environmental Science& Technology,2006,40:830-836
    79. van Hees P.A.W. Organic acid concentrations in soil solution:effects of young coniferous trees and ectomycorrhizal fungi[J]. Soil Biology and Biochemistry,2005,37(4):771-776
    1.鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社,2000
    2.中华人民共和国国家标准土壤环境质量标准GB15618-1995
    3.食用农产品产地环境质量标准HJ332-2006
    4.付善明,周永章,张澄博等.粤北大宝山矿尾矿铅污染迁移及生态系统环境响应[J].现代地质,2007,21(3):570-577
    5.许晓春,王军等.安徽铜陵林冲尾矿库重金属元素分布与迁移及其环境影响[J].岩石矿物学志,2003,22(4):433-436
    6.鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社,2000:106-109
    7. Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal. Chem,1979,51:844-851
    8.刘俐,高新华等.土壤中镉的赋存行为及迁移转化规律研究进展[J].能源环境保护,2006,20(2):6-9
    9.郭跃品,吴国爱,付杨荣等.海南省胡椒种植基地土壤中重金属元素污染评价[J].地质科技情报,2007,26(4):92-94
    10.段永惠.污水灌区汞、镉在土壤中的纵向迁移及影响因素研究[J].环境保护,2004,12:35-37
    11.孙立波,张兰英,张玉玲等.通辽地区污灌区土壤中重金属迁移规律[J].世界地质,2007,26(1):71-74
    12.沈根祥,谢争,钱晓雍等.上海市蔬菜农田土壤重金属污染物累积调查分析[J].农业环境科学学报,2006,25(增刊):37-40
    13.南忠仁,李吉均.干旱区耕作土壤中重金属镉铅镍剖面分布及行为研究[J].干旱区研究,2000,17(4):39-45
    14.李亮亮,张大庚等.葫芦岛市连山区·龙港区土壤重金属垂直分布与迁移特征[J].安徽农业科学,2007,35(15):3916-3918
    15. WU Qi-tian, J. L. Morel, A. Guckert. Effects of soil pH, Texture, Moisture, Organic Matter and Cadmiun Content on Cadmium Diffusion Coefficient [J]. Pedosphere,1994,4(2):97-103
    16.王晓蓉编著.环境化学[M].南京:南京大学出版社,1993
    17. Gupate, Gupta S K, Aten C et al. Concentration of ionic copper in soil solution[J]. Intern Environ Anal Chem,1988,34:45-50
    18.尹君,刘文菊,谢建治.土壤中有效态镉、汞浸提剂和浸提条件研究[J].河北农业大学学报,2000,23(2):25-28
    19.马建军.土壤中有效态镉提取条件探讨[J].河北农业技术师范学院学报,1998,12(3):10-14
    20.陈飞霞,魏世强.土壤中有效态重金属的化学试剂提取法研究进展[J].干旱环境监测,2006,20(3):153-158
    21. Fangueiro D., Bermond A., Santos E., Carapuca H., Duarte A. Heavy metal mobility assessment in sediments based on a kinetic approach of the EDTA extraction:search for optimal experimental conditions[J]. Analytica Chimica Acta,2002,459:245-256
    22. Bermond A., Varrault G., Sappin-Didier V., Mench M. A kinetic approach to predict soil trace metal bioavailability:preliminary results[J]. Plant and Soil,2005,275:21-29
    23. Je'ro'me Labanowski, Fabrice Monna, Alain Bermond, et al. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil:EDTA vs. citrate[J].Environmental pollution,2008,152:693-701
    24. Reitemeier RF. Effect of moisture content on the dissolved and exchangeable ions of soils of arid regions[J]. SoilScience,1946,61:195-214
    25. Sonneveld C, van Den Ende J. Soil analysis by means of a 1:2 volume extract [J]. Plant and Soil,1971,35:505-516
    26.黄清辉,王东红,马梅等.沉积物和土壤中磷的生物有效性评估新方法[J].环境科学,2005,26(2):206-209
    27.肖和艾,吴金水,苏以荣等.提取剂和土水比对旱耕地土壤无机和有机磷的提取效应[J].土壤通报,2006,37(5):936-940
    28. Tu Q., Shan X. Q., Qian J., Ni Z. M. Trace metal redistribution during extraction of model soils by acetic acid/sodium acetate[J]. Anal. Chem.,1994,66:3552-3568
    29. Cies'lin'ski G., vanRees K. C. J.,Szmigielska A. M.,Krishnamurti G. S. T., Huang P. M. Low-molecular-weight organic acids in rhizosphere soils of durum barley and their effect on cadmium bioaccumulation[J]. Plant and Soil,1998,203:109-117
    30. Shan X. Q., Lian J., Wen B. Effect of organic acids on adsorption and desorption of rare earth elements[J].Chemosphere,2002,47:701-710
    31. Shan X. Q., Wang Z. W.,Wang W. S., Zhang S. Z., Wen B. Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants[J]. Analytical Bioanalytical Chemistry,2003a,375:400-407
    32. Jones D. L., Kochian L. V. Aluminium-organic acid interactions in acid soils. Effect of root-derived organic acids on the kinetics of Al dissolution[J]. Plant Soil,1996,182: 221-228
    33. Wang W. S., Shan X. Q., Wen B., Zhang S. Z. A method for predicting bioavailability of rare earth elements in soils to maize[J]. Environmental Toxicology and Chemistry,2004a, 23:767-773
    34. Feng M.-H., et al. Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat[J]. Chemosphere,2005.59(7):939-949
    35. Degryse F., Smolders E..Merckx R. Labile Cd complexes increase Cd availability to plants[J]. Environmental Science& Technology,2006,40:830-836

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700