土壤氮素对克氏针茅群落生物量分配格局的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业革命以来,人类活动显著增加了大气沉降向土壤的氮输入。草地生态系统在全球氮循环中占有重要地位。氮循环的改变对草地生态系统产生的具体后果,目前不十分清楚。植物生物量分配是植物形态可塑性的物质基础,也是植物适应环境的一种重要机制。它不但会影响自身的光能的获取、养分和水分的吸收等功能,而且还会对整个生态系统碳的周转、物种竞争和共存等产生重要影响。
     为了研究克氏针茅草原植物群落生物量分配格局的规律,通过在天然草地连续两年施氮处理,就不同施氮梯度下群落地上地下生物量分配格局和5个主要物种的茎叶分配格局进行了分析,并对生物量分配机理的两种假说进行了验证。
     (1)氮肥的添加改变了克氏针茅群落地上地下生物量分配格局。在一定施氮范围内可以增加克氏针茅群落的总生物量,而施氮量在高出一定值后总生物量下降。在生长阶段群落地下生物量水平都很高,而在成熟期降低了地下构件的生物量,但施低氮处理地下生物量仍然很高;在两个时期地上生物量皆为低氮大于高氮大于对照。氮肥添加后,根冠比降低。地下分层生物量表现为从上到下逐级减少,但低氮处理对下层分配较多。
     (2)氮肥的添加改变了5种主要物种的茎叶分配格局。克氏针茅添加氮肥后增加了对茎生物量的分配。表现为随施氮梯度增加,对茎的分配也增加。增加幅度较小较平均。糙隐子草添加氮肥后增加了对茎生物量的分配。表现为随施氮梯度增加,对茎的分配也增加。低氮处理和对照差别不大,高氮处理对茎生物量分配增长较大。苔草添加氮肥后增加了对茎生物量的分配。但各处理间差异不显著。冷蒿添加氮肥后增加了对茎生物量的分配。表现为随施氮梯度增加,对茎的分配也增加。增加幅度较平均。冰草营养枝添加氮肥后减小了对茎生物量的分配。表现为随施氮梯度增加,对茎的分配减少。生长规律不很稳定。
     (3)克氏针茅群落生物量分配符合最优分配假说。
     (4)在现有的两个施氮水平下,连续两年施肥对土壤养分主要指标(土壤有机质、土壤全氮、土壤全磷)的影响不明显。
Since the industrial revolution, human activities significantly increased the atmospheric sedimentation of nitrogen input the soil. As a matter of fact, grassland ecosystem plays an important role in the global nitrogen cycle. However it is not very clear that the changes in the nitrogen cycle will show us which kinds of specific consequences to grassland ecosystem as we know. Biomass allocation is the material basis of morphological plasticity of plants, and is an important mechanism for adaptation to the environment. It not only affects their access to light, nutrient and water absorption and other functions, but also affects the whole ecosystem carbon turnover, species competition and coexistence.
     In order to study the regular pattern of biomass allocation of Stipa krylovii steppe plant community, community aboveground/belowground biomass allocation and 5 main species stem-leaf allocation were analyzed in different nitrogen gradations, through nitrogen fertilized on natural grassland for 2 consecutive years. At the same time, the two hypotheses about biomass allocation mechanism were verified。
     1. Nitrogen additions altered the aboveground/belowground biomass allocation of Stipa Krylovii community. It could increase the total biomass of Stipa Krylovii community within a certain range, but the total biomass decreased with the nitrogen addition above a certain value. The level of community belowground biomass was high in growth stage, but decreased in maturity, while it's still a much high level for biomass of low nitrogen treatments. Besides, in both of these two stages, the aboveground biomass of low nitrogen treatment was greater than high nitrogen treatment, which was greater than control. The root:shoot ratio was reduced after nitrogen addition. Allocation of stratified belowground biomass showed gradually decreased from top to bottom, but the low nitrogen treatment distribution more in bottom levels.
     2. Nitrogen additions altered the stem-leaf allocation of 5 main species. Stipa Krylovii increased the stem biomass after nitrogen addition. The stem biomass showed gradually increased with the nitrogen gradations increased. The increasing extent was small and average. Cleistogenes squarrossa increased the stem biomass after nitrogen addition. The stem biomass showed gradually increased with the nitrogen gradations increased. The difference between Low nitrogen treatment and control were small. The increasing extent of high nitrogen treatment was significant. Carex korshinskyi increased the stem biomass after nitrogen addition. But the difference was not significant among treatments. Artemisia frigida increased the stem biomass after nitrogen addition. The stem biomass showed gradually increased with the nitrogen gradations increased. The increasing extent was average. Vegetative shoot of Agropyron cristatum decreased the stem biomass after nitrogen addition. The stem biomass showed gradually decreased with the nitrogen gradations increased. The growth law was unstable.
     3. Biomass allocation of Stipa krylovii steppe plant community consistent with the optimal allocation hypothesis.
     4. In the two existing nitrogen levels, the effects of nitrogen addition on key indicators (Soil organic matter content, Soil total Nitrogen values, and Soil total Phosphorus values) of soil nutrient were not obvious after 2 consecutive years.
引文
1 Jenkinson D S. An introduction to the global nitrogen cycles [J]. Soil Use Man, 1990, 6:56-61
    2 Duce R, Liss P, Merrill J. The atmospheric input of trace species to the world ocean [J]. Glob Biogeochem Cycles, 1991, 5:193-259
    3 Holland E A, Dentener F J, Braswell B H. Contemporary and pre-industrial global reactive nitrogen budgets [J]. Biogeochemistry, 1999, 46: 7-43
    4 Pearson J, Stewart G R. The deposition of atmospheric ammonia and its effects on plants [J]. New Phytologist, 1993, 125: 283-305
    5 Enquist B J, Niklas K J. Global allocation rules for patterns of biomass partitioning in seed plants [J]. Science, 2002, 295: 1517-1520
    6 Osone Y, Tateno M. Applicability and limitations of optimal biomass allocation models: a test of two species from fertile and infertile habitats [J]. Ann Bot, 2005, 95:1211-1220
    7 Tilman D. Resource competition and community structure [M]. Princeton, Princeton University Press. 1982
    8 Suzuki J, Hara T. Partitioning of stored resources between shoots in a clone, and its effects on shoot size hierarchy [J]. Ann Bot, 2001, 87: 655-659
    9 Gadgil M, Bossert W H. The life historical consequences of natural selection [J]. American Naturalist, 1970, 104: 1-24
    10 Iwasa Y, Roughgarden J. Shoot/root balance of plants: optimal growth of a system with many vegetative organs [J]. Theoretical Population Biology, 1984, 25: 78-105
    11 Stearns S C. The Evolution of Life Histories [M]. Oxford, Oxford University Press. 1992
    12 Poorter H, Remkes C, Lambers H. Carbon and nitrogen economy of twenty-four wild species differing in relative growth rate [J]. Plant Physiology, 1990, 94, 621-627
    13 Grime J P. Plant Strategies and Vegetation Processes [M]. Wiley, Chichester. 1979.
    14 Tilman D. Plant Strategies and the Dynamics and Structure of Plant Communities [M]. Princeton, New Jersey, Princeton University Press. 1988
    15 Abrahamson W G, Gadgil M D. Growth form and reproductive effort in goldenrods (Solidago, Compositae) [J]. American Naturalist, 1973, 107, 651-661
    16 Bazzaz F A, Reekie E G. The meaning and measurement of reproductive effort in plants. Studies on Plant Demography (ed. J. White), Academic Press, London. 1985, 373-387
    17 Schmid B, Weiner J. Plastic relationships between reproductive and vegetative mass in Solidago altissima [J]. Evolution, 1993, 47, 61-74
    18 Bloom A J, Chapin F S, Mooney H A. Resource limitation in plants an economic analogy [J]. Annual Reviews of Ecology and Systematics, 1985, 16, 363-392.
    19 Coupland R T. Grassland ecosystems of the world: analysis of grasslands and their uses (part 2: natural temperate grasslands) [M]. Cambridge, Cambridge Universiy Press. 1979
    20 Ackerly D D, Jasienske M. Size dependent variation of gender in high density stands of the monoecious annual, A mbrosia artemisiifolia (Asteraceae) [J]. Oecologia, 1990, 82: 474-477
    21 Harper J L. Population biology of plants[M]. London, UK, Academic Press. 1977
    22 Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns [J]. Advances in Ecological Research, 2000, 30: 1-67
    23李凌浩,陈佐忠.草地生态系统碳循环及其对全球变化的响应I.碳循环的分室模型、碳输入与贮量[J].植物学通报,1998, 15(2):14-22
    24 Brouwer R. Nutritive influences on the distribution of dry matter in the plant [J]. Journal of Agricultural Science, 1962, 10: 399-408
    25 Bradshaw A D. Evolutionary significance of phenotypic plasticity in plants [J]. Advances in Genetics, 1965, 13: 115-155
    26 Chapin F S. The mineral nutrition of wild plants [J]. Annual Review of Ecology and Systematics, 1980, 11: 233-260
    27 Gedroc J J, McConnaughay K D M, Coleman J S. Plasticity in root/shoot partitioning: optimal, ontogenetic, or both Functional Ecology, 1996, 10: 44-50
    28 Wilson J B. A review of evidence on the control of root:shoot ratio in relation to models. Annals of Botany [J], 1988, 61: 33-449
    29 Crist J W, Stout, G J. Relation between top and root size in herbaceous plants[J], Plant Physiology, 1929, 4: 63-85
    30 Davidson R L. Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover[J], Annals of Botany, 1969, 33: 561-569
    31 Hunt R, Burnett J A. The effects of light intensity and external potassium level on root/shoot ratio and rates of potassium uptake in perennial ryegrass (Lolium perenne L.) [J], Annals of Botany, 1973, 37: 519-37
    32 Villar R, Ueneklaas E J, Jordano P. Relative growth rate and biomass allocation in 20 Aegilops (Poaceae) species [J]. New Phytol,1998, 140: 425-437
    33 Snyman H A. Rangeland degradation in a semi-arid South Africa- I: influence on seasonal root distribution, root/shoot ratios and water-use efficiency [J]. Journal of Arid Environments, 2005, 60: 457-481
    34 Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2 nutrients and water: a quantitative review [J]. Australian Journal of Plant Physiology, 2000, 27, 595-607
    35 Cronin G, Lodge D M. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes [J]. Oecologia, 2003, 137: 32-41
    36 Grechi I, Vivin P, Hilbert G, Milin S, Robert T, Gaudillère J P. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine[J]. Environmental and Experimental Botany, 2007, 59: 139-149
    37 Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, USA, 2004, 101: 11001-11006
    38 Ericsson T. Growth and shoot: root ratio of seedlings in relation to nutrient availability [J]. Plant Soil, 1995: 168-169; 205-214
    39 Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests [J]. Oecologia, 2000, 125: 389-399
    40 Marler R J, Stromberg J C, Patten D T. Growth response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima seedlings under different nitrogen and phosphorus concentrations[J]. Journal of Arid Environments, 2001, 49: 133-146
    41 Ricardo Mata-Gonzalez. Ronald E. Sosebee and Changgui Wan. Shoot and root biomass of desert grasses as affected by biosolids application [J]. Journal of Arid Environments. 2002, 50: 477-488
    42 Rogers H H, Runion G B, Krupa S V. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere[J]. Environment Pollution, 1994, 83: 155-189
    43 Müller I, Schmid B, Weiner J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants, Perspectives in Plant Ecology[J], Evolution and Systematics, 2000, 3: 115-127
    44 Niklas K J, Enquist B J. Canonical rules for plant organ biomass partitioning and annual allocation[J], American Journal of Botany, 2002, 89: 812-819
    45 Levinton, J. Genetics, paleontology and macroevolution [M]. Cambridge, Cambridge University Press. 1988
    46 Weiner J.Competition and allometry in three species of annual plants[J].Ecology,1992,73:648-656
    47姜恕,戚秋慧,孔德珍.羊草草原群落和大针茅草原群落生物量的初步比较研究[A].草原生态系统研究(第1集)[C].北京:科技出版社,1985:12-22
    48陈世璜,李银鹏,孟君.内蒙古几种针茅特性和生态地理分布的研究[J].内蒙古农牧学院学报,1997, 18 (1): 40-46
    49刘水志.内蒙古克氏针茅草原生产力的研究[J].内蒙古草业,1990(2): 41-45,49
    50刘剑实,伊军,宋晓华.贝加尔针茅草原地上生物量形成规律的初步研究[J].四川草原,1992 (4): 17-21,28
    51多立安,赵树兰.中国东北羊草草原生长季内产量生态模拟及信息参数应用[J].生态学报,2002, 22 (1): 33-47
    52白永飞,许志信.降水量的季节分配对羊草草原群落地上部生物量影响的数学模型[J].草业学报,1997.6(2): 1-6.
    53陈世璜.内蒙古草原区植被地下生物量分布的规律及其特点[J].内蒙古农牧学院学报,1992, 13(1): 1-7
    54白永飞,许志信,李德新.羊草草原群落生物量动态研究[J].中国草地,1994,3:1-5,9
    55白永飞.降水量季节分配对克氏针茅草原群落初级生产力的影响[J].植物生态学报,1999, 23 (2): 155-160
    56韩国栋.降水量和气温对小针茅草原植物群落初级生产力的影响[J].内蒙古大学学报(自然科学版),2002, 33(1): 83-88
    57陈佐忠,黄德华,张鸿芳.内蒙古锡林河流域羊草草原和大针茅草原地下生物量与降水关系模型探讨[J].草原生态系统研究,1988,(2):20-26
    58李绍良.草原土壤水分状况与植物生物量关系的初步研究[A].草原生态系统研究(第1集)[M].北京:科学出版社,1985. 202-210
    59王娓,彭书时,方精云.中国北方天然草地的生物量分配及其对气候的响应[J].干旱区研究,2008,25(1):91-97
    60许振柱,周广胜,李晖.羊草干物质积累及叶片气体交换对土壤水分的响应[J].干旱区研究,2003, 20(4):241-246
    61高素华,郭建平.CO2浓度和土壤湿度对羊草光合特性影响机理的初探[J].草业科学, 2004,21 (5): 23-27
    62王正文,祝廷成.水淹干扰对羊草草地地上生物量影响的初步研究[J].应用生态学报,2003,14(12):2162-2166
    63贺海波,李彦.干旱、盐胁迫条件下两种盐生植物生物量分配对策的研究[J].干旱区研究, 2008,25(2): 242-247
    64苏丹,孙国峰,张金政,姜闯道,于强波,顾德锋,董燃.水分胁迫对费菜和长药八宝生长及生物量分配的影响[J].园艺学报,2007,34(5):1317-1320
    65赵彬彬,牛克昌,杜国祯.放牧对青藏高原东缘高寒草甸群落27种植物地上生物量分配的影响[J].生态学报, 2009,29(3): 1596-1606
    66李金花,李镇清.不同放牧强度下冷蒿、星毛委陵菜的形态可塑性及生物量分配格局[J].植物生态学报, 2002,26(4): 435-440
    67王静,杨持,王铁娟.放牧退化群落中冷蒿种群生物量资源分配的变化[J].应用生态学报,2005, 16(12):2316-2320
    68王满莲,冯玉龙.紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应[J].植物生态学报, 2005,29(5): 697-705
    69王俊峰,冯玉龙.光强对两种入侵植物生物量分配、叶片形态和相对生长速率的影响[J].植物生态学报,2004,28(6):781-786
    70何玉惠,赵哈林,赵学勇.沙埋对小叶锦鸡儿幼苗生长和生物量分配的影响[J].干旱区地理, 2008,31(5): 701-706
    71陈玲,阿里穆斯,杨持.草原植物种群营养元素生殖分配规律研究(Ⅰ) [J].内蒙古大学学报(自然科学版),1997, 28(4): 568-571
    72段飞舟,陈玲,阿里穆斯.草原植物种群营养元素生殖分配规律研究(Ⅱ) [J].内蒙古大学学报(自然科学版), 2000, 31(2): 193-197
    73阿里穆斯,刘颖茹,杨持.内蒙古典型草原常见种营养元素生殖分配动态规律研究[J].内蒙古大学学报(自然科学版), 2001, 32(6): 649-652
    74王仁忠.羊草种群能量生殖分配的研究[J].应用生态学报, 2000,11(4): 591-594
    75王仁忠,祖元刚,聂绍荃.羊草种群生物量生殖分配的初步研究[J].应用生态学报. 1999,10(5): 553-555
    76陈玲,乌江雨,杨持.不同群落类型对羊草(Leymus chinensis)种群生殖分配的影响[J],内蒙古大学学报(自然科学版), 1996, 27(5): 714-716
    77周婵,杨允菲.松嫩平原两个生态型羊草叶构件异速生长规律[J].草业学报.2006,15(5): 76-81
    78杨允菲,张宝田,李建东.松嫩平原蒙古蒿种群无性系分株的生长与生物量分配规律[J].草业学报.2003, 12(1):11-17
    79刘公社,王志远.1999.北方农牧交错带可持续发展研究论文集[M].北京:中国科学技术出版社.
    80胡小龙,郭建英,蓝登明,余伟莅,王利兵.浑善达克沙地东南部退化草场围封及其效果[J].内蒙古农业大学学报,2007,28(1):63-65
    81王利兵,李钢铁,胡小龙,余伟莅,姜丽娜,刑利军,严喜斌.两种不同人工林树木个体生长规律的研究[J].内蒙古农业大学学报,2007,28(1):46-50
    82中国农业百科全书总编辑委员会畜牧业卷编辑委员会,中国农业百科全书编辑部编.中国农业百科全书·畜牧业卷上.北京:农业出版社.1996
    83 Hendricks J J, Nadelhoffer K J, Aber J D. Assessing the role of fine roots in carbon and nutrient cycling [J]. Trends Ecol Evol, 1993, 8: 174-178
    84 Nadelhoffer K J. Potential effects of nitrogen deposition on fine-root production in forest ecosystems [J]. New Phytol, 2000, 147:131-139
    85 Hermans C, Hammond J P, White P J. How do plants respond to nutrient shortage by biomass allocation? [J] Trends in plant science, 2006, 11(12): 610-617
    86 Hendrick R L, Pretitzer K S. The dynamics of fine root, length, biomass, and nitrogen content in two northern hardwood forests [J]. Ecoscience, 1993, 4: 99-105
    87 Eissenstat D M, Yanai R D. The ecology of root lifespan [J]. Advances in Ecological Research, 1997, 27: 1-60
    88 Comas L H, Bouma T J, Eissenstat D M. Linking root traits to potential growth rate in six temperate tree species [J]. Oecologia, 2002, 132, 34-43
    89 James F, Cahill J R. Interaction between root and shoot competition vary among species [J]. Oikos, 2002, 99: 101-112
    90 Tani T, Kudoh H, Kachi N. Responses of root length/leaf area ratio and specific root length of an understory herb, Pteridoplryllum racemosum, to increases in irradiance[J]. Plant and Soil, 2003, 255: 227-237
    91 Sami A, Anna M M. Optimality and phenotypic plasticity of shoot-to-root ratio under variable light and nutrient availabilities [J]. Evolutionary Ecology, 2002, 16: 67-76
    92 Bernacchi C J, Coleman J S, Bazzaz, F A, McConnaughay K D M. Biomass allocation in old-field annual species grown in elevated CO2 environments: no evidence for optimal partitioning[J], Global Change Biology, 2000, 6: 855-863

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700