热反应肉味香精的香气形成途径及活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鳊鱼属于淡水鱼,因为具有土腥味和骨刺多的缺点,所以目前仅供鲜销,鲜有加工产品。鳊鱼鱼肉中蛋白质含量丰富,利用蛋白酶水解蛋白,作为Maillard(美拉德)反应基液,用于制备热反应香精,既可以提高鳊鱼的经济价值,又可以为我国淡水鱼加工提供新的技术手段;而对Maillard反应香精的风味分析和MRPs (Maillard反应产物,Maillard Reaction Products)的活性研究,可以为今后开发新的Maillard反应产品提供思路。
     本研究首先通过选择合适的复配蛋白酶对鳊鱼蛋白进行酶解,接着添加葡萄糖,利用均匀设计的试验方法优化Maillard反应条件,制备具有肉香味的香精。Maillard反应肉味香精用SPME-GC-MS(固相微萃取-气相色谱-质谱联用)分析挥发性风味化合物,确定对肉香味有特殊贡献的特征化合物,并讨论其在Maillard反应过程中的形成途径。通过DPPH抑制法、超氧阴离子自由基清除法和ABTS法鉴定MRPs的抗氧化活性,并对MRPs的降血压活性进行了初步的研究。
     实验结果表明:
     (1)通过Box-Behnken响应面优化酶解实验参数,得到最优化酶解条件:温度51.5℃,时间5.7h,pH7.7,酶添加量0.80%,在此条件下实测水解度为79.58%(±0.20)与预测值79.46%非常接近,说明建立的回归方程可以较好地反映各因素对水解度的影响。
     (2)利用均匀实验设计优化Maillard反应条件,通过回归方程的建立,确定最佳反应条件为:反应温度110℃,反应时间100min,反应pH8.5,葡萄糖添加量为2.5%。设计在此最佳条件下进行重复实验,得到的产品平均得分为3.47,与预测得分误差为0.86%,且在此条件下制备的Maillard反应产品具有浓郁的酱制肉香味。
     (3)采用SPME-GC-MS检测技术对Maillard反应肉味香精的风味成分进行分析鉴定,共检测到74种化合物,主要是含氮、氧的杂环化合物和醛类化合物。研究发现吡嗪类(2,5-二甲基吡嗪、2,6-二甲基吡嗪)、呋喃类(2-戊基呋喃和5-羟基麦芽酚)以及一些醛类(3-甲基丁醛、2-甲基丁醛、己醛、壬醛和苯甲醛)和含硫化合物(二甲基二硫、二甲基三硫和2-己基噻吩)对构成肉香味有主要贡献。这些化合物在其它具有肉香味的产品中也都存在,因此以鳊鱼作为原料,可以制得具有浓郁肉香味的热反应香精。
     (4)通过单一氨基酸与葡萄糖的Maillard模型反应研究挥发性风味化合物形成途径发现,氨基酸与葡萄糖参与反应形成的大多是饱和的醛、酮和醇类化合物,而在自制的Maillard反应肉味香精中检测到的不饱和醛、酮和醇类化合物可能来源于不饱和脂肪酸的降解。含氮、含硫杂环化合物的生成,主要是氨基酸降解生成的H2S和NH3的参与。呋喃、吡喃类化合物既可以通过脂肪酸的参与形成,也可以由氨基酸与葡萄糖反应生成,如2-戊基呋喃;此外,葡萄糖降解也可以生成对酱香有增效作用的产物,如5-羟基麦芽酚(2,3-二氢-3,5-二羟基-6-甲基-4H-吡喃-4-酮)。模型反应中没有检测到自制样品中的含硫化合物,这可能是由其它含硫氨基酸(胱氨酸或蛋氨酸)反应生成的。通过模型反应能够探讨自制肉味香精中主要香气成分的形成途径,这有助于产品风味的进一步改善。
     (5)选择三种不同的抗氧化实验体系,以茶多酚和TBHQ作为对照品,考察MRPs的抗氧化能力,发现MRPs在不同稀释程度下表现出不同的抗氧化活性,并呈一定的浓度依赖关系。通过茶多酚和TBHQ作为对照品,以IC50作为评价指标,得出:在DPPH自由基体系中,1mLMRPs与0.28mg的茶多酚或0.32mg的TBHQ清除DPPH自由基的效果相同;在超氧阴离子自由基体系中,1mLMRPs与2.66mg的茶多酚或3.52mg的TBHQ清除O2-·自由基的效果相同;在ABTS方法中,1mL MRPs与0.09mg的茶多酚和0.20mg的TBHQ效果相同。通过以上三种方法得出MRPs具有较好的抗氧化能力(其中1mLMRPs可以由0.11g鳊鱼鱼肉制得)。
     (6)在体外降血压活性实验中,MRPs对ACE的抑制作用也是明显的,且在一定范围内抑制率呈现浓度依赖关系,当MRPs添加量为10μl时,抑制率为57.53%,而继续加大添加量,抑制率变化不显著。
     通过抗氧化活性实验和体外降血压活性实验发现,MRPs均有较好的抑制效果,且在一定浓度范围内呈现浓度依赖趋势,随MRPs的浓度增加,抑制率加强。目前,对于MRPs的抑制机理还没有一致的结论。一部分研究认为低分子挥发性化合物可以提供氢原子,因此使得MRPs表现出一定的抗氧化能力;此外,还有研究认为类黑精的金属螯合作用对抗氧化和降血压都有一定的作用效果。
Parabramis pekinensis is fresh-water fish, which has off-flavor and a lot of tiny bones. Parabramis pekinensis is only sold fresh currently, rarely processed products existed. Parabramis pekinens is rich in protein, protease hydrolyzed protein is used to prepare fish protein hydrolysate. The fish protein hydrolysate then is used in Maillard reaction to produce meat flavoring, which can not only enhance the economic value, but also provide a new technological method for our fresh-water fish processing. Analysis of the flavor of Maillard reaction flavoring and MRPs'(Maillard Reaction Products) functional properties could provide new idea to the development of Maillard reaction products.
     Firstly, Parabramis pekinensis protein was hydrolyzed by selecting the appropriate protease enzyme. Then fish protein hydrolysate was added with glucose, using the Uniform Designs to optimize the Maillard reaction conditions and prepare flavoring which had meat flavor. Volatiles from meat flavoring were first investigated by solid phase microextraction (SPME) combined with gas chromatography and mass spectrometry (GC-MS). Then the characteristic compounds which contribute to meat flavor were determined, and the pathway of the formation of which was analyzed the combined with the model reaction. At last chose three methods, DPPH assay, superoxide anion scavenging and ABTS assay to study the antioxidant activity of MRPs, and did initially study of MRPs' antihypertensive activity.
     The results show that:
     (1) The optimum process parameters of the Parabramis pekinensis enzymatic hydrolysis were determined by Box-Behnken response surface methodology (RSM). The model equations were regard to the effects of temperature, time, pH and enzyme dosages on the DH. The temperature of 51.5℃, time of 5.7 h, pH 7.7 and enzyme dosage of 0.80% were found to be the optimum conditions to obtain a high degree of hydrolysis of 79.47%(with the model estimates a difference of±0.20) using Flavourzyme and Protamex.
     (2) The Maillard reaction parameters were optimized by the method of Uniform Designs. Polynomial regression type's mathematical model of reaction system was constructed. The temperature of 110℃, time of 100min, pH of 8.5 and glucose to substrate level of 2.5% were found to be the optimum conditions to obtain a higher score of 3.47 with an error of 0.86% to the prediction score. Under these conditions, prepared sample had a full meat flavor.
     (3) The volatile compounds which drived from Maillard reaction meat flavoring were identified by SPME-GC-MS. A total of 74 compounds were identified, among those, mostly are nitrogen-and oxygen-containing heterocyclic compounds and aldehyde compounds. The study found pyrazines (2,5-dimethylpyrazine,2,6-dimethylpyrazine), furans (2-pentylfuran and 5-hydroxy-maltol), a number of aldehydes (3-methybutanal,2-methybutanal, hexanal, nonanal and benzaldehyde) and sulfur-containing compounds (dimethyl disulfide, dimethyl trisulfide and 2-hexylthiophene) had a major contribution to meat flavor. Above compounds were identified in others meet products, so it is achievable that Parabramis pekinensis as a material to produce Maillard reaction meat flavoring.
     (4) The analysis of the formation of some important flavor compounds which drived from Maillard model reaction samples found that mostly saturated aldehydes, ketones and alcohols compounds were identified in the model reaction samples. But some unsaturated aldehydes, ketones and alcohols compounds were identified in self-sample, it supposed that they were derived from the degradation of unsaturated fatty acids. Amino acid degradation products, such as H2S and NH3 could participate in the Maillard reaction to form the nitrogen-and sulfur-containing heterocyclic compounds. Furans and pyrans,such as 2-pentylfuran, could generate not only by Fatty acids degradation but also by the reaction of amino acids and glucose. In addition,5-hydroxy-maltol (2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one) which could enhance the sauce flavor was formed by glucose degradation. Three sulfur-containing compounds might come from other sulfur-containing amino acids,such as cysteine or methionine, because of they were not detected in the model reaction samples.
     (5) Chose tea polyphenols and TBHQ as a reference substance in order to study on the MRPs'antioxidant capacity in three different anoxidant assays. It found that MRPs in different dilution level had different antioxidant activity and showed a certain degree of concentration-dependent relationship. Here are some results which obtained from three assays and chose IC50 as an evaluation index:In the DPPH assay, 1mL MRPs'effects equaled with 0.28mg tea polyphenols or 0.32mg TBHQ; In superoxide anion scavenging assay,1mL MRPs'effects equaled with 2.66mg tea polyphenols or 3.52mg TBHQ; In ABTS assay,1mL MRPs' effects equaled with 0.09mg of tea polyphenols or 0.20mg TBHQ. It believed that MRPs have good antioxidant activity. (1mL MRPs need 0.11g Parabramis pekinensis fish meal preparation).
     (6) In vitro ACE inhibitory activity experiment, the results obtained from the inhibition of ACE were notable, and within a certain degree in a concentration-dependent relationship. When the MRPs were added 10μl, the inhibition ratio was highest of 57.53%. If continued increasing of concentration, the inhibition was hardly change.
     In the antioxidant activity and in vitro ACE inhibitory activity experiments, MRPs all showed a good inhibitory effects, and within a certain degree in a concentration-dependent relationship. The inhibition ratio was increased with the increasing of MRPs'concentration. The mechanisms for the antioxidant activity and ACE inhibitory activity were not yet known. It could be thought that some lower molecular volatile compounds could provide hydrogen might have effects in antioxidation. On the other hand, melanoidins had antioxidant capacity and antioxidant activity might come from metal chelating properties..
引文
[1]孙宝国等编著.食用调香术[M].北京:化学工业出版社,2003,8.
    [2]Henry B. Heath. Flavor Chemistry and Technology[M]. AVI publishing company,1986:76-100.
    [3]Vernin, G. and Parkanyi, C. Mechanisms of formation heterocyclic compounds in maillard and pyrolysis reactions. In Chemistry of Heterocyclic compounds in Flavors and Aromas, ed. G. Vernin. Halsted Press, New York,1982, pp:151-207.
    [4]Evers, W.J.3-Furysulfides and 3-furanthiols as flavor additives for foods. GB Patent 1, 1970:256,462.
    [5]Farmer, L.J., Mottram, D.S. and Whitfiled, F.B. Volatile compounds produced in Maillard reaction involving cysteine, ribose and phospholipid[J]. J. Agric. Food Chem.,1989, 49:347-368.
    [6]Donald S. Mottran. Flavour formation in meat and meat products:a review[J]. Food Chemistry,1998,62(4):415-424.
    [7]Baltes, W., Kunert-Kirchhoff, J. and Reese, G. Model reactions on generation of thermal aroma compounds. In Termal Generation of Aroma[M]. T.H. Parliament, R.J. McGorrin and C.T. Ho. ACS Symposium Series 409, American Chemical Society, Washington,1989,DC, pp:143-155.
    [8]Danehy, J.P. Maillard reactions Nonenzymatic browning in food systems with special reference to the development of flavor[J]. Adv. Food Res.,1986,30:77-138.
    [9]Hurrell, R.F. Maillard reaction in flavor. In Food Flavour[M]. Part A. Introduction, eds. I.D. Morton and A.J. MacLeod. Elsevier, Amsterdam,1982, pp:399-437.
    [10]Mabrouk, A.F. Flavor of browning reaction products. In Food Taste Chemistry[M]. J.C. Boudreau. ACS Symposium Series 115, American Chemical Society, Washington,1979,DC, pp:205-245.
    [11]Nursten, H.E. Recent developments in studies of the Maillard reaction[J]. Food Chem., 1981,6:263-277.
    [12]马家津,吕跃钢,张文等.北京烤鸭香味模拟[J].北京工商大学学报(自然科学版).2006.9,24(5):6-9.
    [13]张谦益,臧勇军,吴洪华等.牛肉酶解物制备肉味香精的研究[J].肉类研究,25-28;
    [14]宋焕禄.利用鸡肉酶解物/酵母抽提物-Maillard反应产生肉香味化合物的研究[J].食品科学,2001,22(10):53-85.
    [15]岑泳延,曾庆孝.葡萄糖和木糖对热反应鸡肉香精风味影响的研究[J].广州食品工业科技,2003,19(3):7-9.
    [16]Yusuf Yilmaz, Romeo Toledo. Antioxidant activity of water-soluble Maillard reaction products[J]. Food Chem.,2005,93:273-278.
    [17]Kanokwan M, Soottawat B, Munehiko T. Effect of reactant concentrations on the Maillard reaction in a fructose-glycine model system and the inhibition of black tiger shrimp polyphenoloxidase[J]. Food Chem.,2006,98:1-8.
    [18]Macku. G, Shibamoto T. Volatile antioxidants produced from hearted corn oil/glycine model system[J]. Food Chem.,1991,39:1990-1996.
    [19]Y Osada, T Shibamoto. Antioxidatives activity of volatile extracts from Maillard model system[J]. Food Chem.,2006,98(3):522-528.
    [20]Hesham A Eissa, Hoda H M Fadel, G E Ibrahim. Thiol containing compounds as controlling agents of enzymatic browning in some apple products[J]. Food Research Internation,2006, 39(8):855-863.
    [21]张凌燕,李倩,尹姿等.3种氨基酸和葡萄糖美拉德产物的物理化学特性及抗氧化活性的研究[J].中国食品学报,2008.6,8(3):12-22.
    [22]王惠英,孙涛,周冬香等.L-赖氨酸与葡萄糖美拉德反应及其产物的抗氧化性能研究[J].食品与发酵工业,2007,33(9):54-56.
    [23]唐文,吴颖,许丹萍.猪肉香精的抗氧化性研究[J].中国食品添加剂,108-111.
    [24]Ji-Sang Kim, Young-Soon Lee. Antioxidant activity of Maillard reaction products derived from aqueous glucose/glycine, diglycine, and triglycine model systems as a function of heating time[J]. Food Chem.,2009,116:227-232.
    [25]X.M. Chen, D. D. Kitts:Antioxidant activity and chemical properties of crude and fractionated Maillard reaction products derived from four sugar-amino acid Maillard reaction model systems[J]. Ann NYAcad Sci.2008,1126,220-224.
    [26]H Kato, SB Kim, F Hayase and NV Chuyen. Desmutagenicity of Melanoidins against Mutagenic Pyrolysates[J]. J. Food Biochem.,1985,49(3):3093-3095.
    [27]Wagner, K.-H., Reichhold, S., Koschutnig, K., Cheriot, S.,& Billaud, C. The potential antimutagenic and antioxidant effects of Maillard reaction products used as "natural antibrowning" agents[J]. Molecular Nutrition and Food Research,2007,51:494-504.
    [28]Yen, G.C., Tsai, L.C. and LII, J.D. Antimutagenic effect of Maillard browning products obtained from amino acids and sugars[J]. Food and Chemical Toxicology,1992, 30:127-132.
    [29]Jose A. Rufian-Henares, Francisco J. Morales. Functional properties of melanoidins:In vitro antioxidant, antimicrobial and antihypertensive activities[J]. Food Research Interational, 2007,40:995-1002.
    [30]Keisuke Kagami, M.S., Kenji Onda, Ph.D., et al. Suppression of blood lipid concentrations by volatile Maillard reaction products[J]. Nutrition,2008,24:1159-1166.
    [31]Hodge JE, Rist CE. The Amadori rearrangement under new conditions and its significance for non-enzymatic browning reactions[J]. J. Am. Chem. Soci.,1953,75:316-322.
    [32]Franzke C, Iwainsky H. Antioxidant capacity of melanoidin[J]. Dtsch Lebensm,1954, 50:251-254.
    [33]Hodge, J E. Chemistry of browning reactions in model systems[J]. J. Agric. Food Chem., 1953.1,928-943.
    [34]Nagodawithana,T M. Savory Flavors[M]. Esteekay Associates,Inc,Milwaukee,USA,1995.
    [35]Kerler J. and Winkel C. The basic chemistry and process conditions underpinning reaction flavor production. In:Food Flavour Technology[M], Ed. Taylor A.J. Sheffield Academic Press Ltd. UK 2002.
    [36]Sara I.F.S. Martins, Win M.F.Jongen,M.A.J.S van Boekel. A review of Maillard Reaction in Food and Implaction to Kinetic Modelling[J]. Food Science and Technology,2001,11:364-373.
    [37]夏延斌.食品风味化学[M].北京:化学工业出版社,2008.
    [38]郑文华,许旭.美拉德反应的研究进展[J].化学进展,2005.1,17(1):122-127.
    [39]M.A.J.S. van Boekel. Formation of flavour compounds in the Maillard reaction[J]. Biotechnology Advances,2006.1:230-233.
    [40]Jennifer M. Ames. Application of the Maillard reaction in the food industry[J]. Food Chem., 1998,62(4):431-439.
    [41]吴少雄.温度对美拉德反应的研究[J].食品科学,2005,26(7):63-66.
    [42]Takashi Okazakj, Shinya, Tatsuo et al. Effect of combination of heating and pressurization on browning reaction of glucose-glycine solution and white sauce[J]. Food Sci. Technol. Res.,2001,7(4):285-289.
    [43]Laure M., Jonm A., Christopher.. Effects of Temperature on Maillard Reaction Products[J]. J.Agric. Food Chem.,1985,33:31-33.
    [44]Shu Chi-Kuen and Lawrence Brian M. Temperature Effect on the Volatiles Formed from the Reaction of Glucose and Ammonium Hydroxide:A Model System Study In:Maillard Reaction in Chemistry,Food,and Health[M]. The Royal Society of Chemistry, Cambridge, UK,1993,140-146.
    [45]Bailey, R. G, Monti, S. M. and Ames, J. M..Comparison of the non-volatile reaction products of an aqueous xylose-lysine model system heated with and without pH control. In Chemical Reactions in Food[M] ZZZ, eds J. Velisek and J. Davidek. Czech Chemical Society, Prague, pp.94-97.
    [46]Meynier, A. and Mottram, D.S. The Efect of pH on the Formation of Volatile Compounds in Meat-related Model Systems[J]. Food Chemistry 1995,52,361-366.
    [47]Nicoli, M S, Anese, M. and Lerici, C R. Influence of pH on the Kinetics of non-enzymatic browning in Heat Treated Glucose-Glycine Model Systems[J]. Italian Jounral of Food Science 1993,5:139-146.
    [48]E.J. Kwak and S.I. Lim. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control[J]. Amino Acids,2004,85-90.
    [49]Geo RGEP. RIZZI. Role of Phosphate and Carboxylate Ion in Maillard Browning[J]. J. Agric. Food Chem.,2004,52:953-957.
    [50]Christoph Cerny, RENEE GUNTZ DUBINI. Role of the solvent Glycerol in the Maillard reaction of D-Fructose and L-Alanine[J]. J. Agric. Food Chem.,2006,54:574-577.
    [51]Karl Eichner and Marcus Karel. The influence of water content and water activity on the sugar-amino browning reaction in model systems under various conditions[J]. J. Agric. Food Chem.,1972,20:18-23.
    [52]Peter Ulrich, Anthony Cerami. Protein Glycation, Diabetes and Aging[J]. The Endocrine Society,2001,1-22.
    [53]竹屋 元裕,高橋 潔.メィ(?) 一ド反応後期生成物(AGE)と老化[J].日本網内系学会会誌,1996,36:23-29.
    [54]庄名扬,王仲文,孙孟达等美拉德反应与酱香型白酒[J].酿酒,1999.4,133:42-47.
    [55]Shahidi F..肉制品与水产品的风味[M].北京:中国轻工业出版社,2001(第二版).
    [56]黄梅丽,王俊卿.食品色香味化学[M].北京:中国轻工业出版社,2008(第二版).
    [57]Shahidi, R., Rubin, L.J. and D'souza, L.A. A review of the composition, techniques, analyses and sensory evaluation[J]. CRC Crit. Rev. Food Sci. Nutr.,1986,24(2):141-243.
    [58]Bailey M.E. and Einig, R.G. Reaction flavors of meat. In Thermal Generation of aromas[M]. T.H. Parliament, R.J. McGorrin and C.T. Ho. ACS Symposium Series 409, American Chemical Society, Washington,1989,DC, pp:421-432.
    [59]RIZZI,G.P. A Mechanistic study of alkylpyrazine formation in model systems[J]. J.Agric.Food Chem.,1972,20(5):1081.
    [60]Hodge,J.E., MILLS,F.D.,FISHER,B.E. Compounds of browned flavor derived from sugar-amine reactions[J]. Cereal Sci.Today,1972,17(2):34.
    [61]Tressl, R., Helak, B. and Martin, N. Formation of flavor compounds from L-proline. In topics in flavor research[M]. R.G. Berger, S. Nitz and P. Schreier, eds. H. Eichhorn, Marzling-Hangenham.1985.
    [62]RIZZI, G.P. Formation of n-alkyl-2-acyl-pyrroles and aliphatic aldimines in model nonenzymatic browning reaction[J]. J. Agric. Food Chem.,1974,22:279.
    [63]Heath, H.B. and Reineccius, G. Flavor and its study. In Flavour Chemistry anf Technology[M]. H.B. Heath and G. Reineccius, AVI Publishing Co., Westport, CT,1986, pp:71-111.
    [64]Shibamoto, T. Volatile flavor chemicals formed by the Maillard reaction. In Thermal Generation of Aromas[M]. T.H. Parliament, R.J. McGorrin and C.T. Ho. ACS Symposium Series 409, American Chemical Society, Washington,1989,DC, pp:134-142.
    [65]Ho. C.T. and Carlin, J.T. Formation and aroma characteristics of heterocyclic compounds in foods. In Flavour Chemistry:Trends and Developments[M]. R. Teranishi, R.G. Buttery and F. Shahidi. ACS Symposium Series 388, American Chemical Society, Washington,1989,DC, pp:92-104.
    [66]Kawai, T., Ishida, Y., Kakiuchi, H., et al. Volatile compounds of boiled and roasted short-necked clam Tapes philippinarium[J]. Nippon Suisan Gakkaishi,1990,56:795-802.
    [67]Vernin, G. The chemistry of heterocyclic flavoring and aroma compounds[M]. Koryo, 1984,144:47-62.
    [68]Pittett, A.O., Rittersbacher, P. and Muralidhara, R. Flavour properties of compounds related to maltol and isomaltol[M]. J. Agric. Food Chem.,1970,18:929.
    [69]Masafumi OTA, Masanori Kohamura,Hirokazu Kawaguchi. Chracterization of a new Maillard type reaction product generated by heating L-Deoxymaltulosyl-glycine in the presence of cysteine[J]. J.Agric.Food Chem.,2006,54:5127-5131.
    [70]Ohloff, G. and Flament, I. The role of heteroatonmic substances in the aroma compounds of foodstuffs[M]. Fortschr. Chem. Org. Naturst,1979,36:231.
    [71]Pittett, A.O. and Hruza, D.E. Comparative study of flavor properties of thiazole derivatives[M]. J. Agric. Food Chem.,1974,22:264.
    [72]HO, C.T. and Jin, Q.Z. Aroma properties of some alkyl thiazoles[J]. Perf. Flavorist,1985,
    9(6):15;
    [73]Sakaguchi, M. and Shibamoto, T. Formation of sulfide-containing compounds from the reaction of D-glucose and hydrogen sulfide[J]. J. Agric. Food Chem.,1978,26:1260;
    [74]Shibamoto, T. Heterocyclic compounds in browning and browning/nitrite model systems: Occurrence, formation mechanisms, flavor characteristics and mutagenic activity[M]. In Instrumental Analysis of Foods:Recent Progress, G. Charalambous and G. Inglett, eds. Academic Press, New York.1983, pp:229.
    [75]Shankaranarayana, M.L., Raghaven, B., Abraham, K.O. et al. Sulfur compounds in foods. In Food Flavors:Part A. Introduction[M]. I.D. Morton and A.J. MacLeod, eds. Elsevier, Amsterdam.1982, pp:169.
    [76]Vernin, G. and Vernin, G. Hetercyclic compounds in foods:Occurrence and organoleptic properties. In the Chemistry of Hetercyclic Flavouring and Aroma Compounds[M]. G. Vernin, ed. Ellis Horwood, Chichester,1982, pp:72.
    [77]HO, C.T. and Tuorto, R.M. Mass Spectra and sensory properties of some 4,5-dialkyl-oxazoles[J]. J. Agric. Food Chem.,1981,29:1306.
    [78]Jin, Q.Z., Hartman, G.J. and Ho, C.T. Aroma properties of some oxazoles[J]. Perfumer Plavorist,1984,9(4):25.
    [79]HO, C.T. and Hartman, G.J. Formation of oxazolines and oxazoles in Strecker degradation of DL-alanine and L-cycteine with 2,3-butanedione[J]. J. Agric. Food Chem.,1982,30:793.
    [80]王惠英,孙涛,周冬香等.美拉德反应产物抗氧化性能研究进展[J].食品科技,2007,8:12-15.
    [81]Bersuder, P., Hole, M.,& Smith, G. Antioxidants from a heated histidine-glucose model system. Investigation of the copper (Ⅱ) binding ability[J]. Journal of the American Oil Chemists Society,2001.78:1079-1082.
    [82]Wijewickreme, A. N., Krejpcio, Z.,& Kitts, D. D. Hydroxyl scavenging activity of glucose, fructose, and ribose-lysine model Maillard products[J]. Journal of Food Science,1999,64: 457-461.
    [83]Yoshimura, Y., Iijima, T., Watanabe, T.,& Nakazawa, H. Antioxidative effect of Maillard reaction products using glucose-glycine model system[J]. J. Agri. Food Chem.,1997, 45:4106-4109.
    [84]Francisco J. Morales, Salvio Jimenez-Perez. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence[J]. Food Chem.,2001,72:119-125.
    [85]JoseA. Rufian-Henares, Francisco J. Morales. Functional properties of melanoidins:In vitro antioxidant, antimicrobial and antihypertensive activities[J].Food research international, 2007,40:995-1002.
    [86]Yen GC, Tsai LC, Lii JD. Antimutagenic effect of Maillard browning products obtained from amino acids and sugars[J]. Food Chem. Toxicol,1992.2,30(2):127-132.
    [87]黄艳春,刘张虎,熊善柏.酶解鲢肉制取ACE抑制肽工艺条件的优化[J].食品科学,2007,28(2):181-184.
    [88]Delarue J, Magnan C. Free fatty acids and insulin resistance[J]. Curr. Opin. Clin. Nutr. Metab. Care.,2007,10:142-148.
    [89]Imm JY, Lee CM. Production of seafood flavor from red hake by enzymatic hydrolysis[J]. J.Agric.Food Chem.,1999,47:2360-2366.
    [90]N.Bhaskar,T.Benila,C.Radha,et al. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla(Catla catla) for preparing protein hydrolysate using a commercial protease[J]. Bioresource Technology,2008,99:335-343.
    [91]戴志远,张燕平,王宏海等.酶法水解梅鱼蛋白的实验研究[J].中国食品学报,2005.12,5(4):91-95.
    [92]Hevial P., H.S.Olcott. Flavour of enzyme-solubilized fish Protein concentrate fractions [J].J.Agric.Food Chem,1977,25(4):772-775.
    [93]S.Nilsang,S.Lertsiri,M.Suphantharika et al. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases[J]. J.Food engineering,2005,70:571-578.
    [94]T.Hoyle, H.Merritt. Quality of Fish Protein hydrolysates from Herring (Cluoea harengus)[J]. Journal of Food Science,1994,59:76-79,129.
    [95]N.Bhaskar,N.S.Mahendrakar.. Protein hydrolysate from visceral waste proteins of Catla(Catla catla):Optimization of hydrolysis conditions for a commercial protease[J]. Bioresource Technology,2008,99(10):4105-4111.
    [96]Benjakul, S., Morrisey, M.T.. Protein hydrolysate from Pacific whiting solid waste[J]. J. Agric. Food Chem.,1997,61:131-138.
    [97]周建弟,丁关海.美拉德反应及其产物对绍兴酒的影响[J].中国酿造,2006,10:65-67.
    [98]顾小红,孟绍凤,汤坚等.Maillard模式反应牛肉香精挥发性风味成分分析[J].中国调味品.2006.6,6:37-41.
    [99]Takayuki Shibamoto, Helen Yeo. Flavor in the cysteine-glucose model system prepared in microwave and conventional ovens[M]. In thermally generated flavors; Parliament, T., et al, American Chemical Society, Washington,1993,DC, pp:454-462.
    [100]Donald S. Mottram. Flavour formation in meat and products:a review[J]. Food Chemistry, 1998,62(4):415-424.
    [101]赵选民.试验设计方法[M].北京:科学出版社,2006,8.
    [102]赵晨曦,梁逸曾,胡黔南等.气相色谱保留指数定性方法研究进展[J].分析化学,2005.5,33(5):715-721.
    [103]Tao Luo, Wenlai Fan, Yan Xu. Characterization of volatile and semi-volatile compounds in Chinese rice wines by Headspace Soild Phase Microextraction followed by gas chromatography-mass spectrometry[J]. Journal of the institute of brewing,2008, 114(2):172-179.
    [104]竺尚武.火腿加工原理与技术[M].北京:中国轻工业出版社,2009.1.
    [105]Martin Preininger, Ludmila Gimelfarb, Hui-Chen Li, et al. Identification of Dihydromaltol (2,3-Dihydro-5-hydroxy-6-methyl-4H-pyran-4-one) in Ryazhenka Kefir and Comparative Sensory Impact Assessment of Related Cycloenolones[J]. J. Agric. Food Chem.,2009.10, A-G.
    [106]Jianchun Xie, Baoguo Sun, Fuping Zheng et al. Volatile flavor constituents in roasted pork of Mini-pig[J]. Food Chemistry,2008,109:506-514.
    [107]Soo-Yeun Moon, Margaret A. Cliff, Eunice C.Y. Li-Chan. Odour-active components of simulated beef Xavour analysed by solid phase microextraction and gas chromatography-mass spectrometry and-olfactometry[J]. Food research international, 2006,39:294-308.
    [108]田怀香,王璋,许时婴.GC-O法鉴别金华火腿中的风味活性物质[J].食品与发酵工业,2004,30(12):117-123.
    [109]Gasser,U. and Grosch,W.. Primary odourants of chicken broth[J]. Z. Lebensm. Unters, Forch.,1990,190,3-8.
    [110]Gasser,U. and Grosch,W.. Identification of volatile flavor compounds with high aroma values from cooked beef[J]. Z. Lebensm. Unters, Forch.,1988,186,489-494.
    [111]Flores M, Spanier A M, Toldra F. Flavor analysis of dry-cured ham [M]. In:Shahidi F, ed. Flavor of Meat Products and Seafoods. USA:Aspen Publishers, Inc,1998.320-341.
    [112]Buscailhon S, Berdague J L, Bousset J, et al. Relation between compositional traits and sensory qualities of French dry-cured ham [J] Meat Sci.,1994,37(2):229-243.
    [113]王怡娟,娄永江,陈梨柯.养殖美国红鱼鱼肉中挥发性成分的研究[J].水产科学,2009,6:303-307.
    [114]Flores M, Spanier A M, Toldra F. Flavor analysis of dry-cured ham [M]. In:Shahidi F, ed. Flavor of Meat Products and Seafoods. USA:Aspen Publishers, Inc,1998.320-341.
    [115]Maga. J.A. Furans in food[J]. CRC Crit. Rev. Food Sci. Nutr.,1978,17:355-400.
    [116]Ho, C.T., Zhang, Y, Shi, H. et al. Flavour chemistry of Chinese foods[J]. Food Rev. Int., 1989,5:253-287.
    [117]Greenberg, M.J. Characterization of poultry byproduct meal flavor volatiles[J]. J. Agric. Food Chem.,1981,29:831-834.
    [118]H. Weenen and J.G.M. van der Ven. The formation of Strecker Aldehydes[M]. In Aroma Activr Compounds in Foods. Takeoka, G, et al. American Chemistry Society, Washington,DC,2001, pp:183-195.
    [119]Guadagni,D.G,Buttery,R.G.,and Tumbaugh,J.Godour thresholds and similarity ratings of some potato chip components[J]. J.Sci.Food Agric.,1972,23:1435-1444.
    [120]Philip E. Shaw, James H. Tatum, and Robert E. Berry. 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, a degradation product of a hexose[J]. Carbohydrate Research,1971,16:207-211.
    [121]J. E. Hodge, F. D. Mills, and B. E. Fisher. Compounds of browning flavor derived from sugar-amine reactions[J]. Cereal science today,1972.2,17(2):34-39.
    [122]P. E. SHAW. J. H. TATUm, AND R. E. BERRY. Acid-catalyzaed degradation of D-fructose[J]. Carbohydrate Research,1967,5:266.
    [123]Huang, T.C., Bruechert, L.J., Hartman, T.G, et al. Effect of lipids and carbohydrates on thermal generation of volatiles from commercial zein[J]. J Agric Food Chem,1987, 35:985-990.
    [124]Drumm T D, Spanier A M. Changes in the content of lipid autoxidation and sulfur-containing compounds in cooked beef during storage [J]. J Agric Food Chem, 1991,39(2):336-343.
    [125]van den Ouweland, GAM., Demole, E.P. and Enggist. Process meat flavor development and the Maillard reaction[M]. In Thermal Generation of Aromas, eds. T.H. Parliament, R.J. McGorrin and C.T. Ho. American Chemistry Society, Washington,DC,1989,pp:433-441.
    [126]Zhang, Y. and Ho, C.T. Volatile compounds formed from thermal interation of 2,4-decadienal with cystein and glutathione[J]. J. Agric. Food Chem.,1989,37:1016-1020.
    [127]Sophie Cheriot, Catherine Billaud, Stephan Pochtrager, et al. A comparison study between antioxidant and mutagenic properties of cysteine glucose-derived Maillard reaction products and neoformed products from heated cysteine and hydroxymethylfurfural[J]. Food Chemistry,2009.5,114:132-138.
    [128]鲁伟,黄筱茜,柯李晶等.美拉德反应产物的抗氧化活性研究[J].食品与机械,2008,4:16-46.
    [129]任静.苹果多酚类物质的提取分离及活性研究[J].西安:西北大学,2005,56-57.
    [130]Ji-Sang Kim, Young-soon Lee. Antioxidant activity of Maillard reaction products derived from aqueous glucose/glycine, diglycine, and triglycine model systems as a function of heating time[J]. Food Chemistry,2009,227-232.
    [131]Jianping Wu, Rotimi E. Aluko, Alister D. Muir. Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions[J]. J. of Chromatography A,2002,950:125-130.
    [132]Cao Qet al. Antioxidant capacity of tea and common vegetables[J]. Agric Food Chem., 1996,44:3426.
    [133]翁新楚,吴侯.抗氧化剂的抗氧化活性的测定方法及其评价[J].中国油脂,2000,25(6):119-122.
    [134]张英.竹叶提取物类SOD活性的邻苯三酚法测定[J].食品科学,1997,18(5):47-49.
    [135]Miller N J, Rice-Evans C, Davies M J, et al. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates[J]. Clin Sci,1993,84:407-412
    [136]王少六.高血压病的危害及防治[J].实用心脑肺血管病杂志,2000,(8):181-184.
    [137]A. Okamoto, Hanagata, E. Matsumoto et al. Angiotensin I converting enzyme inhibitory activities of various fermented foods[J]. Biosco.Biotech.Biochem.,1995,59(6):1147-1149;
    [138]Byun, H. G.,& Kim, S. K.. Purification and characterization of angiotensin I-converting enzyme (ACE) inhibitory peptides from Alaska Pollack (Thergra chalcogramma) skin[J]. Process Biochemistry,2001,36,1155-1162.
    [139]Del Castillo, M. D., Ferrigno, A., Acampa, I., Borrelli, R. C., Olano, A., Martlnez-Rodrlguez, A., et al. In vitro release of angiotensin converting enzyme inhibitors peroxyl-radical scavengers and antibacterial compounds by enzymatic hydrolysis of glycated gluten[J]. Journal of Ceramic Science,2006.9,1016.
    [140]Jang, A.,& Lee, M.. Purification and identification of angiotensin converting enzyme inhibitory activity from beef hydrolysates. Meat Science,2005,69,653-661.
    [141]Kitts, D. D.,& Weiler, K.. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Current Pharmaceutical Design,2003,9, 1309-1323.
    [142]Cammerer, B., Jalyschko, W.,& Kroh, L. W.. Intact carbohydrate structures as part of the melanoidin skeleton. J. Agri. Food Chem.,2002,50,2083-2087.
    [143]#12
    [144]Morales, F. J., Fernandez-Fraguas, C., Jimenez-Perez, S.. Iron binding ability of melanoidins from food and model systems[J]. Food Chemistry,2005,90:821-827.
    [145]Wyvratt, M. J.,& Patchet, A.. Recent developments in the design of angiotensin-converting enzyme inhibitors[J]. Medicinal Research Reviews,1985, 5:485-531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700