钠复合肥及钠、硅互作提高梭梭抗旱性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梭梭(Haloxylon ammodendron)是广泛分布于我国西北荒漠区的重要植物资源,然而,由于人为因素和环境因素,梭梭属植物遭到了严重破坏,引发了一系列的生态环境问题。本实验室的研究表明,Na+在促进荒漠植物的生长及提高其抗旱性方面起着重要的作用(李三相,2006);随后,通过盆栽的方法研制了一种能显著促进霸王、梭梭、白刺和红砂生长并且提高其抗旱性的钠复合肥(周向睿,2007;王春梅,2008;岳利军,2009)。本论文在民勤荒漠区对施用钠复合肥盆栽培育3个月的梭梭沙地移栽3个月后的生长状况进行了初步研究;同时,对施用钠复合肥大田和盆栽培育当年的梭梭在沙地移栽1年后长期的生长效应及对生态环境造成的影响进行了研究。取得如下结果:
     1.与对照(不施任何肥料)和施用(NH4)2HP04(与钠复合肥含等量的N、P)的处理相比,施用钠复合肥盆栽培育3个月的梭梭沙地移栽3个月后其株高分别增加了26%和12%;分枝数增加了22%和14%;主茎直径分别增加了48%和23%、主根直径分别增加了37%和24%;冠幅分别增加了57%和28%;根冠比均增加了18%;鲜重分别增加了130%和74%、地上部的Na+含量分别增加了45%和38%,根中的Na+含量分别增加了15%和12%;地上部中的K+含量差异不显著,根中K+含量分别降低了28%和31%。
     2.与对照和施用(NH4)2HPO4相比,施用钠复合肥盆栽培育当年的梭梭株高分别增加了43%和16%;主根长分别增加了54%和23%;冠幅分别增加了53%和20%;干重分别增加了114%和24%。
     3.与对照和施用(NH4)2HPO相比,施用钠复合肥盆栽培育当年的梭梭沙地移栽1年后的成活率分别提高了17%和12%;与大田育苗施用钠复合肥培育的当年生梭梭相比,施用钠复合肥盆栽培育的当年生梭梭移栽1年后的成活率提高了11%。
     4.与对照和施用(NH4)2HP04相比,钠复合肥盆栽培育当年的梭梭第2年移栽生长期结束其株高分别增加了42%和16%;主根长分别增加了45%和27%;冠幅分别增加了51%和29%;干重分别增加了151%和52%。盆栽培育当年的梭梭在沙地移栽的1年中,对照、施用(NH4)2HP04和钠复合肥株高的实际增加量分别是6.64、7.07和8.73厘米/株;主根长的实际增加量分别为26.04、25。97和34。94厘米/株;冠幅的实际增加量分别是36.13、30和53.12厘米2/株;干重的实际增加量分别是0.85、1.22和2.98g/株。施用钠复合肥大田育苗对梭梭生长与抗旱性的效果与盆栽育苗基本一致。
     5.施用钠复合肥大田培育的梭梭移栽时根系的完整性遭到破坏,成活率较低。钠复合肥盆栽育苗开始至沙地移栽生长1年后,育苗钵中Na+施用量的54%已被梭梭利用,27%的Na+残留还可被梭梭继续利用以促进生长,19%的Na+淋失在育苗钵外的土壤中,淋失的总量只占育苗前土壤中Na+含量的8%。施用钠复合肥盆栽育苗对环境造成的危害很小,可以缩短缓苗期、提高移栽成活率、能有效地促进植株的生长、较好地解决了荒漠区抗旱种苗培育难、造林存活率低的问题。
     梭梭(Haloxylon ammodendron)是分布于我国荒漠地区的重要植物资源,近年来研究表明,适量的Na+对于多浆旱生植物的生长和抗旱性有益。大量的研究发现Si在促进植物生长以及提高其抗逆性方面也起着十分重要的作用。以往关于施用Na+促进荒漠植物生长及提高其抗逆性的研究已有报道,而对施用Si或Na和Si互作施用对促进荒漠植物生长及提高其抗逆性的研究未见报道。因此,本部分工作研究了施用NaCl、H2Si03及NaCl和H2Si03互作施用对梭梭的生长、生理变化以及抗逆性等方面的影响,取得如下结果:
     1、施用0.3g/kgNaCl、0.2g/kgH2Si03或0.3g/kgNaCl+0.1g/kgH2Si03互作施用处理均能显著促进梭梭的生长并提高其抗旱性;而且0.3g/kgNaCl+0.1g/kgH2Si03互作施用要比单独施用0.3g/kgNaCl或0.2g/kgH2Si03更有效地促进梭梭的生长并提高其抗旱性。
     2、单施用NaCl时,0.3g/kgNaCl处理培育的梭梭株高、冠幅、鲜重与对照相比分别增加了41。7%、91%和61.9%;其主茎直径、主根直径和主根长分别增加了40%、38.7%和22.6%。
     3、单施用H2Si03时,0.2g/kgH2Si03处理培育的梭梭株高、冠幅、鲜重与对照相比分别增加了36.3%、45.4%和26.8%;其主茎直径、主根直径和主根长分别增加了23.3%、22.6%和20.1%。
     4、NaCl和H2Si03互作施用时,0.3g/kgNaCl+0.1g/kgH2Si03互作处理对促进梭梭生长及提高其抗旱性的效果要比单独施用O.3g/kgNaCl或0.2g/kgH2Si03的效果更为显著;与施用0.3g/kgNaCl处理相比,0.3g/kgNaCl+0.1g/kgH2Si03互作处理梭梭株高、冠幅和鲜重分别增加了8。6%、10.1%和17.2%;其主根长增加了11.7%。与施用0.2g/kgH2Si03处理相比,0.3g/kgNaCl+0.1g/kgH2Si03互作处理梭梭株高、冠幅和鲜重分别增加了9.5%、46.8%和48.2%;其主茎直径、主根直径和主根长分别增加了16.2%、18.4%和16.5%。
Haloxylon ammodendron is an important plant resource which is widely distributed in the northwest desert regions of China, it plays an important role in protecting desert environment.Yet, Haloxylon ammodendron plant resources have been severely damaged and a series of ecological and environmental problems have been occured due to human factors and the continuing deterioration of the environment. In recent years, studies have showed that an appropriate amount of Na+ play a very important role in growth and drought resistance of the dry desert plants. However, using Na+ in fertilizer application to enhance the drought resistance of desert plants has not been reported. Subsequently, through the method of indoor pot experiment, a kind of Na Compound Fertilizer was successfully developed which can significantly enhance the growth of desert plants and improve their drought resistance, and has applied for national invention patent recently. Based on the work in the above, this paper taken Haloxylon ammodendron as experimental materials preliminary studied the growth of Haloxylon ammodendron that have been trained for 3 months with Na Compound Fertilizer and then transplanted into sand field for 3 months through pot method in the wild; at the same time, studied the Long-standing growth effects, physiological changes and the impact on ecological environmental of field and pot Haloxylon ammodendron which were cultivated through Na Compound Fertilizer for a year and then transplanted into sand field for six months. the following results have already achieved:
     1. Compared with control(without any fertilizer) and application of (NH4)2HPO4 (containing the same amount of N, P with the Na Compound Fertilizer), The plant height of Haloxylon ammodendron cultivated through Na Compound Fertilizer for three month and then transplanted into sand field for three month increased by 26% and 12% respectively, the number of branches increased by 22% and 14%, stem diameter increased by 48% and 23%, root diameter increased by 37% and 24%, grown width increased by 57% and 28%, shoot ratio increased by 18% and 18%, fresh weight increased by 130% and 74%, dry weight increased by 154% and 74%, Na+ contents in shoot increased by 45% and 38%, Na+content in root increased by 15% and 12%, K+ content in shoot has no significant difference, but K+ content in root decreased by 28% and 31%.
     2. Compared with control and application of (NH4)2HPO4, through Na Compound Fertilizer in pot for one year cultivated Haloxylon ammodendron's plant height increased by 43% and 16%, main root length increased by 54% and 23%, crown width increased by 53% and 20%, dry weight increased by 114% and 24%.
     3. Compared with control and application of (NH4)2HPO4, through Na Compound Fertilizer in pot for one year cultivated Haloxylon ammodendron after transplanted into sand field for six months, it's survival rate increased by 17% and 12%; Compared with Na Compound Fertilizer's application in field for one year cultivated Haloxylon ammodendron's survival rate, Na Compound Fertilizer's application in pot for one year cultivated Haloxylon ammodendron's survival rate increased by 11%.
     4. Compared with control and application of (NH4)2HPO4, Na Compound Fertilizer in pot cultivated one year Haloxylon ammodendron in the end of sand field transplanting growth period, it's plant height increased by 42% and 16%, main root length increased by 45% and 27%, crown width increased by 51% and 29%, dry weight increased by 151% and 52%. Na Compound Fertilizer's application in pot cultivated one year Haloxylon ammodendron in the one year growth period of sand field, control,application of (NH4)2HPO4 and application of Na Compound Fertilizer's actual plant height increase were 6.64,7.07 and 8.73 cm/plant respectively, main root length of the actual increase in volume were 26.04,25.97 and 34.94 cm/plant, crown of the actual increase in volume were 36.13,30 and 53.12 cm2/plant respectively, the actual increase in dry weight, respectively, are 0.85,1.22 and 2.98g/plant. Growth and drought resistance of Haloxylon ammodendron cultivated in field through application of Na Compound Fertilizer has the same effect with the method of pot cultivation.
     5. The integrity of root system of Haloxylon ammodendron cultivated in field by using Na Compound Fertilizer were destructed and the survival rate were lower than pot when transplanted. Na Compound Fertilizer's application in pot cultivated Haloxylon ammodendron after sand transplanting for one year,54% of Na+ fertilizer has beenabsorbed by Haloxylon ammodendron in nursery pot,27% of the Na+ left in nursery pot that can also be used to continue to promote the growth of Haloxylon ammodendron,19% of the Na+ leached in the soil outside of the nursery pot,the total amount of leached Na+ only account for 8% of the Na+ content in soil before cultivating seedings.The cultivation of Haloxylon ammodendron in pot with application of Na Compound Fertilizer have minimal harm on the environment. This method can short the recovery period, increase the survival rate, and can effectively promote plant growth, resolve the problem of the difficulty of cultivating drought seedlings in desert and the problem of low survival rate of afforestation.
     Haloxylon ammodendron is very important resource specie in the desert regions of our country. Recently, it have been identified that Na+ plays an important role in the drought resistance of desert species. Sand culivation experiment confirmed that appropriate concentration of Na+not only can significantly promote the growth of desert plants overlord but also improve its anti-stress capability. A great number of studieds found that Si also plays an important role in the promotion of plant growth and increase resistance of plants. In the past there has been reports about the application of Na+ could promote the growth of desert plants and increase their resistance, but the application of Si or Na and Si interacte application on the promotion of desert plant growth and enhance their resistance have rarely been studied. Therefore, studied the effection of the application of NaCl, H2SiO3 and NaCl and H2SiO3 Interacte application on Haloxylon ammodendron's growth、physiological and ecological change and resistance. the following results has already achieved:
     1.The application of 0.3g/kg NaCl,0.2g/kg H2Si03 or 0.3g/kg NaCl and 0.1 g/kg H2SiO3 interaction application can not only promote the growth of Haloxylon ammodendron and increase it's drought resistance, but also 0.3g/kg NaCl and 0.1 g/kg H2SiO3 interaction application can even significantly promote Haloxylon ammodendron's growth and improve its drought resistance than the single application of 0.3g/kg NaCl or 0.2g/kg H2SiO3.
     2.When applied with NaCl,the application of 0.3g/kg NaCl compared with control makes Haloxylon ammodendron's plant height, crown diameter, fresh weight increased by 41.9%,91% and 61.9%; the shoot diameter,the root diameter,the root length increased 40%, 38.7% and 22.6% respectively.
     3.When applied with H2Si03,,the application of 0.2g/kg H2Si03 compared with control makes Haloxylon ammodendron's plant height, crown diameter, fresh weight increased by 36.3%,45.4% and 26.8%; the shoot diameter,the root diameter,the root length increased 23.3%,22.6% and 20.1% respectively.
     4. When NaCl and H2SiO3 interaction was applied, the effect of 0.3g/kg NaCl and 0.1 g/kg H2SiO3 appliation interaction for promoting Haloxylon ammodendron's growth and enhancing it's drought resistance are significantly higher than the single application of 0.3g/kgNaCl and 0.2g/kg H2Si03 treatment; Compared with the application of 0.3g/kg NaCl, 0.3g/kg NaCl and 0.1 g/kg H2SiO3 interaction treatment makes Haloxylon ammodendron's plant height, crown diameter, fresh weight increased by 8.6%,10% and 21%; the root length increased 11.7% respectively. Compared with the application of 0.2g/kg H2Si03,0.3g/kg NaCl and 0.1 g/kg H2SiO3 interaction treatment makes Haloxylon ammodendron's height, crown diameter, fresh weight increased by 9.5%,46.8%, and 48.2% respectively; the main stem diameter, root diameter and root length increased by 16.2%,18.4% and 16.5% respectively.
引文
[1]白宝璋,史芝文.植物生理学.北京:中国科学技术出版社,1994,43-48.
    [2]马海波,包海英.我国梭梭草地资源分布与利用情况.内蒙古草业,2001,(2):29-31.
    [3]蔡德龙,钱发军,邓挺.硅肥对苹果生长产量及品质影响的研究.地域研究与开发,1995,14(2):64-66.
    [4]蔡德龙,钱发军,邓挺,等.草莓施硅肥效果研究.地域研究与开发,1999,18(12):69-70.
    [5]蔡建一,马清,周向睿,等.Na+在霸王适应渗透胁迫中的生理作用.草业学报,2010,已接受.
    [6]蔡妙珍,刘鹏,徐根娣,等.钙、硅对铝胁迫下荞麦光合生理的影响.水土保持学报,2008,22(2):206-208.
    [7]岑运凯,刘泉根.高安县水稻土有效硅含量和硅肥施用效果.土壤,1990,(1):33-35.
    [8]常春荣,龚觅真,廖基兴.硅肥对南方花生产量和品质效应研究.中国农学通报,2006,22(11):432-435.
    [9]常志隆.植物的硅素营养及硅肥的推广应用.滩坊学院学报,2004,4(2):25-26.
    [10]陈珈,朱美君.玉米根微粒体ABA结合蛋白的性质及逆境胁迫的影响.植物生理学报,1996,22(1):63-68.
    [11]陈鹏,潘晓玲.干旱和NaCl胁迫下梭梭幼苗中甜菜碱含量和甜菜碱醛脱氢酶活性的变化(简报).植物生理学通讯,2001,37(6):520-522.
    [12]陈平.硅和砷对水稻植株生长的影响.水稻文集.广州:中山大学出版社,1999,17-21.
    [13]陈平平.硅在水稻生活中的作用.生物学通报,1998,33(8):5-7.
    [14]陈庆诚,孙仰文.苏勒河中下植物群落优势种生态和形态解剖学特征的初步研究.兰州大学学报(自然科学版),1961,12(3):61-96.
    [15]陈阳,王贺,张福锁.硅盐互作下小璋毛植物体内元素分布及生理特性的研究.植物生态学报,2003,27(2):189-195.
    [16]陈云风.局部高温变化对水稻结实性影响分析.宜春学脂学报,2005,27(2):103-105.
    [17]崔德杰,张晓晟,仲杨.硅钾肥配施对小麦抗条锈病及产量的影响.土壤肥料,2001,(6):21-23.
    [18]崔德杰.硅钾肥对不同水分条件下冬小麦光合作用日变化的影响.土壤通报,1999,30(1):38-39.
    [19]单立山,张希明,花永辉,等.塔克拉玛干沙漠腹地梭梭幼苗根系分布特征对不同灌溉量的响应.植物生态学报,2007,31(5):769-776.
    [20]邓雄,李小明,张希明.4种荒漠植物气体交换特征的研究.植物生态学报,2002,26(5):605-612.
    [21]董学军,杨宝珍,郭柯,等.几种沙生植物水分生理生态的研究.植物生态学报,1994,18(1):86-94.
    [22]董学军.九种沙生灌木水分关系参数的实验测定及生态意义.植物学报,1998,40(7):657-664.
    [23]樊保宁,游建华,陈引芝.中量元素肥料在甘蔗上的肥效研究.现代农业科学,2008,(11):173-174.
    [24]范业成.硅在水稻营养中的作用及有效施用的研究.土壤肥料,1992,(3):25-27.
    [25]房江育,马雪泷.硅与植物的抗逆性研究进展.中国农学通报,2005,21(11):304-306.
    [26]房江育,王贺,张福锁.硅对盐胁迫烟草悬浮细胞的影响.作物学报,2003,29(4):610-614.
    [27]高柳青,杨树杰.硅对小麦吸收福锌的影响及其生理效应.中国科学通报,2004,20(5):246-249.
    [28]高浦新.10种荒漠植物叶片超氧物歧化酶活性与植物抗旱性关系的研究.江西农业大学学报,2002,24(4):537-540.
    [29]宫海军,陈坤明,王锁民,等.植物硅营养的研究进展.西北植物学报,2004,24(12):2385-2392.
    [30]宫海军,陈坤明,陈国仓.硅对小麦生长及其抗氧化系统的影响.土壤通报,2003,34(1):55-57.
    [31]龚吉蕊,张立新,赵爱芬,等.油蒿抗旱生理生化特性研究初报.中国沙漠,2002,22(4):387-392.
    [32]顾明华.硅对减轻水稻的铝胁迫效应及其机理研究.植物营养与肥料学报,2002,8(3):360-366.
    [33]管恩太,蔡德龙,邱士可.硅营养.磷肥与复肥,2000,15(5):64-66.
    [34]郭鹏程.长期施用含氯化肥对土壤性质和作物产量品质的影响.见:胡志农等编.硫、镁和微量元素在作物营养平衡中的作用(国际学术讨论会论文集).成都:成都科技大学出版社,1993,494-499.
    [35]郭泉水,谭德远,刘玉军,等.梭梭对干旱的适应及抗旱机理研究进展.林业科学研究,2004,17(6):796-803.
    [36]郭新红,姜孝成,陈良碧.梭梭幼苗抗旱分子生物学的研究.湖南师范大学硕士学位论文,2002.
    [37]郭玉蓉.硅化物对甜瓜抗真菌病害的生理机制研究.甘肃农业大学博士学位论文,2003.
    [38]郭振飞,卢少云,李宝盛,等.不同耐旱性水稻幼苗对氧化胁迫的反应.植物学报,1997,39(8):748-752.
    [39]郭正刚,田福平,王锁民,等.硅对紫花苜蓿生物学特性的影响.生态学报,2006,
    26(10):3302-3307.
    [40]国家环境保护局自然保护司保护区与物种管理处.珍稀濒危植物保护与研究.北京:中国环境科学出版社,1991,157-170.
    [41]H.马斯纳.高等植物的矿质营养.曹一平,陆景陵等译,北京:北京农业大学出版社,1991,426-429.
    [42]何电源.土壤和植物中的硅.土壤学进展,1980,(5-6):1-10.
    [43]贺善学.水稻施用硅肥效果试验.河南农业科学.1992,(5):25-26.
    [44]侯瑞萍.荒漠化对土壤及植被影响研究-以宁夏盐池县为例:[博士学位论文].北京:北京林业大学,2004.
    [45]侯彦林,郭伟,朱永官.非生物胁迫下硅素营养对植物的作用及其机理.土壤通报,2005,(6):426-429.
    [46]胡东峰.硅对金丝小枣盐胁迫的缓解效应.南京农业大学硕士学位论文,2007.
    [47]胡式之.中国西北地区的梭梭荒漠.植物生态学与地植物学从刊,1963,(1-2):83-109.
    [48]胡树慧.沙生植物与沙漠治理.特种经济动植物,2002,(4):32.
    [49]胡维芝,黄久林,刘云胜.利用硅肥治理镉污染的试验研究.天津农林科技,1999,(6):29-30.
    [50]黄振英,吴鸿,胡正海.30种新疆沙生植物的结构及其对沙漠环境的适应.植物生态学报,1997,21(6):521-530.
    [51]纪秀娥,张美善,于海秋.植物的硅素营养.农业与技术,1998,11-13.
    [52]贾洪涛,赵可夫.盐胁迫下Na+、K+、C1-对盐地碱蓬和玉米离子的吸收效应.山东师范大学学报:自然科学版,1998,13:439-440.
    [53]’贾志清,吉小敏,宁虎森,等.人工梭梭林的生态功能评价.水土保持通报,2008,28(4):66-69.
    [54]贾志清,卢琦,郭宝贵,等.沙生植物-梭梭研究进展.林业科学研究,2004,17(1):125-132.
    [55]姜学玲,丁殿东,李士凯,等.硅素养分的特性及其对农作物的作用.作物杂志,2008,(5):154-155.
    [56]蒋明义,荆家海,王邵唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响.植物生理学报,1991,17:80-84.
    [57]景梅,张素萍,魏保权,等.硅肥对高粱耐旱性的影响.现代农业科技,2007,(19):132-133.
    [58]孔娣,姜学玲,李康.硅肥对苹果树营养生长的影响.烟台果树,2001,(1):40.
    [59]李波,贾秀峰,白庆武,等.干旱胁迫对苜蓿脯氨酸积累的影响.植物研究,2003,23(2):189-191.
    [60]李春俭译,Marschner著.高等植物的矿质营养.北京:中国农业出版社,2001,282-286.
    [61]李景平,杨鑫光,傅华.阿拉善荒漠区3种旱生植物体内主要渗透调节物质的含量
    和分配特征.草业科学,2005,22(19):38-35.
    [62]李清芳,马成仓,李韩平.土壤有效硅对大豆生长发育和生理功能的影响.应用生态学报,2004,15(1):73-76.
    [63]李清芳,马成仓.土壤有效硅对黄瓜种子萌发和幼苗生长代谢的影响.园艺学报,2002,29(5):433-437.
    [64]李三相,周向睿,王锁民.Na+在植物中的有益作用.中国沙漠,2008,28(3):485-490.
    [65]李三相.Na+与多浆旱生植物霸王抗旱性研究:[硕士学位论文].’兰州:兰州大学,2006.
    [66]李甜,朱延姝,张晓萍.不同抗旱型大豆品种生理特征的探讨.东北师大学报(自然科学版),1999,(2):122-124.
    [67]李文彬,王贺,张福锁.高温胁迫条件下硅对水稻花药开裂及授粉量的影响.作物学报,2005,31(1):134-136.
    [68]李晓燕,宋占午,董志贤.植物的盐胁迫生理.西北师范大学学报(自然科学版),2004,40(3):106-111.
    [69]李永庚,于振文,张秀杰.小麦产量与品质对灌浆不同阶段高温胁迫的响应.植物生态学报,2005,29(3):461-466.
    [70]李正理,李荣敖.对甘肃九种旱生植物同化枝解剖结构的观察研究.植物学报,1981,23(3):181-183.
    [71]李忠良.雷山县水稻施硅同田对比试验.植物医生,2004,17(3):30-31.
    [72]梁永超,丁瑞兴,刘谦.硅对大麦耐盐性的影响及其机制.中国农业科学,1999,32(6):75-83.
    [73]梁永超,沈其荣,张爱国.钙、硅对酸雨胁迫下小麦生长和养分吸收的影响.应用生态学报,1999,10(5):589-592.
    [74]梁永超,张永春,马同生.植物的硅素营养.土壤学进展,1993,21(3):7-14.
    [75]刘爱荣,张远兵,单慧频,等.叶面喷施硅硼锰肥对四季桂生长的影响.广东微量元素科学,2002,9(1):46-49.
    [76]刘登贵.硅肥在玉米上的试验效果.地域研究与开发,1997,16(3):85-86.
    [77]刘海清,马保国,孙红.施用硅肥对黄瓜抗白粉病及其产量的影响.河南农业科学,2005,(5):66-67.
    [78]刘树堂,韩效国,东先旺.硅对冬小麦抗逆性影响的研究.莱阳农学院学报,1997,14(1):21-25.
    [79]刘文国,王林权,白延红.植物体有益元素硅的研究进展.西北植物学报,2003,23(12):2248-2253.
    [80]刘玉冰.红砂的解剖结构及生理生态特征对干旱环境的响应:[博士学位论文].甘肃:兰州大学,2006.
    [81]陆景陵.植物营养学(上册).北京:中国农业大学出版社,1994,64-66,58-60,66-69.
    [82]吕慧颖.植物Na+/H+逆向转运蛋白研究进展.植物学通报,2003,20(3):363-369.
    [83]罗迎波,黄胜琴,林继育.Na代替K对番茄、玉米幼苗生长及若干生理指标的影响.亚热带植物科学,2004,33(1):16-18.
    [84]马成仓,李清芳,束良佐.硅对玉米种子萌发和幼苗生长作用机制初探.作物学报,2002,28(5):665-669.
    [85]马清,楼洁琼,王锁民.Na+对渗透胁迫下霸王幼苗光合特性的影响.草业学报,2010,已接收.
    [86]毛桂莲,许兴,徐兆桢.植物耐盐生理生化研究进展.中国生态农业学报2004,12(1):43-46.
    [87]牛书丽,蒋高明.内蒙古浑善达克沙地97种植物的光合生理特征.植物生态学报,2003,27(3):318-324.
    [88]綦翠华,韩宁,王宝山.不同盐处理对盐地碱蓬幼苗肉质化的影响.植物学通报,2005,22(2):175-1 82.
    [89]曲元刚,赵可夫.NaCl和Na2CO3对盐地碱蓬胁迫效应的比较.植物生理与分子生物学报,2003,29(5):387-394.
    [90]饶立华,覃莲祥,朱玉贤,等.硅对杂交水稻形态结构和生理结构的影响.植物生理学通讯,1986,(3):20-24.
    [91]任海,彭少麟.恢复生态学导论,北京:科学出版社.2001,1-35.
    [92]任继周,张自和,沈禹颖,等.河西走廊山地-绿洲-荒漠复合系统及耦合.北京:科学出版社,2007.
    [93]任军.全国玉米高产栽培技术学术研讨会论文集.北京:科学出版社,1998,251-255.
    [94]邵建华.硅肥的应用研究进展.四川化工与腐蚀控制,2000,(6):44-47.
    [95]邵建华.中微量元素肥料的生产与应用研究进展.磷肥与复肥,2000,15(6):50-52.
    [96]史胜青,齐力旺,孙晓梅,等.梭梭抗旱性相关研究现状及对今后研究的建议.世界林业研究,2006,19(5):27-32.
    [97]施征,史胜青,姚洪军,等.植物线粒体中活性氧的产生及其抗氧化系统.北京林业大学学报,2009,31(1):150-154.
    [98]宋松泉,王彦荣.植物对干旱胁迫的分子反应.应用生态学报,2002,13(8):1037-1044.
    [99]孙毅,高玉山,任君.硅肥的抗旱作用.国土与自然资源研究,2002,(1):49-49.
    [100]唐旭,郑毅,汤利.高等植物硅素营养研究进展.广西科学,2005,12(4):347-352
    [101]田福平,张自和,陈子萱.硅对紫花苜蓿产量的影响.甘肃农业大学学报,2005,(1):42-47.
    [102]田福平,张自和,陈子萱.硅对紫花苜蓿生长发育的影响.草原与草坪,2005,(1):34-37.
    [103]王春辉,张彦萍,石晋文,等.番茄施用硅肥的肥效初探.内蒙古农业科技,2005,(2):30-31.
    [104]王春梅.Na+在拒盐型小花碱茅、积盐型霸王逆境适应中的作用研究.兰州大学硕士学位论文,2008.
    [105]王根轩,廖建雄,吴冬秀.荒漠条件下甘草气孔振荡的水被动证据.植物学报,2001,43(1):41-45.
    [106]王生银,李泽西,白贺兰,等.硅肥提高草地早熟禾抗旱性的效应及机制.草业科学,2008,25(2):116-120.
    [107]王涛,吴薇.我国北方土地利用与沙漠化.自然资源学报,1999,4(4):355-358.
    [108]王彦荣,张宝林.不同退化红砂荒漠草地的水分分配格局.应用生态学报,2002,13(8):962-966.
    [109]王耀晶,郭修武,高熙,等.硅对草莓生长及产量品质的影响.北方园艺,2008,(4):48-50.
    [110]王永锐,陈平.水稻对硒吸收、分布及硒与硅共施效应.植物生理学报,1996,22(4):334-348.
    [111]王永锐,成艺,胡智群.硅营养抑制钠盐及铜盐毒害水稻幼苗的研究.中山大学学报,1997,36(3):72-75.
    [112]魏国强,朱祝军,李娟.硅和白粉菌诱导接种对黄瓜幼苗白粉病抗性影响的研究.应用生态学报,2004,15(11):2147-2151.
    [113]魏国强,朱祝军,钱琼秋.硅对黄瓜幼苗生长及活性氧清除系统的影响.中国蔬菜,2003,(5):10-12.
    [114]翁国盛,赵立群.荒漠植物生物学特性研究.防护林科技,2006,74(5):55-57.
    [115]邬桂花,贺华,彭凤英,等.硅锰肥在油菜生产上应用初报.作物研究,2006,(1):64-65.
    [116]吴丽芝,刘果厚,马秀珍.蒺藜科四种旱生植物叶结构的比较解剖及其系统学意义.内蒙古林学院学报(自然科学版),1998,20(4):20-23.
    [117]吴魏,张宽,王秀芳.硅对水稻养分吸收及产量的影响.吉林农业科学,1996,21(3):61-65.
    [118]武宝开,格林·托德.小麦幼苗中过氧化物歧化酶活性与幼苗脱水耐力相关性的研究.植物学报,1985,27(2):152-160.
    [119]肖春旺,周广胜.毛乌素沙地中间锦鸡儿幼苗生长、气体交换和叶绿素荧光对模拟降水量变化的响应.应用生态学报,2001,12(5):692-696.
    [120]徐德炎,韩燕梁.梭梭林在荒漠系统中的生态效益分析.新疆环境保护,1996,18(2):29-33.
    [121]徐文斌,徐步玲,刘宪华,等.硅肥在苹果上的应用效果研究初报.林业科技开发,2001,(15):68-69.
    [122]杨月红,孙庆艳,沈浩.植物的盐害和抗盐生理.生物学教学,2002,27(11):1-2.
    [123]弋良朋,马健,李彦.3种荒漠盐生植物根系及根毛形态特征的比较研究.植物研究,2007,27(2):205-211.
    [124]弋良朋,马健,李彦.盐胁迫对3种荒漠盐生植物苗期根系特征及活力的影响.中国科学,2006,36(增刊11):86-94.
    [125]余叔文,汤章成.植物生理与分子生物学.北京:科学出版社,1999,739-751.
    [126]岳利军.三种荒漠植物育苗技术的研究.兰州大学硕士学位论文,2009.
    [127]曾洪学,王俊.盐害生理与植物抗盐性.生物学通报,2005,40(9):1-3.
    [128]曾韶西,王以柔,刘鸿先.低温光照下与黄瓜子叶叶绿素降低有关的酶促反应.植物生理学报,1991,17(2):177-182.
    [129]张翠珍,邵长泉,孟凯.山东省水稻土有效硅含量及硅肥效果研究.山东农业科学,1999,(6):10-12.
    [130]张翠珍,邵长泉,孟凯.水稻施用硅肥效果及适宜用量研究.山东农业科学,1997,(3):44-45.
    [131]张翠珍,邵长泉,孟凯.小麦吸硅特点及效果的研究.山东农业科学,1998,(4):29-31.
    [132]张海燕,赵可夫.盐和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报,1998,40(1):56-61.
    [133]张军.硅钙肥对水稻产量、抗病性和抗倒伏性的影响.土壤肥料,2003,(3):42-43.
    [134]张楠楠,徐香玲.植物抗盐机理的研究.哈尔滨师范大学自然科学学报,2005,21(1):65-68.
    [135]张树珍,王自章.植物耐旱的分子基础及植物耐旱基因工程的研究进展.生命科学研究,2001,5(3):134-140.
    [136]张苏琼,阎万贵.中国西部草原生态环境问题及其控制措施.草业学报,2006,15(5):11-18.
    [137]张玉龙,王喜艳,刘鸣达.植物硅素营养与土壤硅素肥力研究现状和展望.土壤通报,2004,35(6):785-788.
    [138]张中星,程滨,李荣田.钢渣肥对玉米增产效果研究.土壤通报,1997,28(2):82-84.
    [139]赵翠仙,黄子琛.准葛尔沙漠中一些旱生植物旱生结构的初步研究.植物学报,1981,23(4):278-283.
    [140]赵小军,刘宇.梭梭的生态价值与经济价值.内蒙古林业,2003,(3):39-45.
    [141]周建华,王永锐.硅营养缓解水稻幼苗Cd、Cr毒害的生理研究.应用与环境生物学报,1999,5(5):11-15.
    [142]周向睿.增强多浆旱生植物霸王抗旱能力的钠复合肥研制.兰州大学硕士学位论文.2007.
    [143]周秀杰,马成仓.硅促进黄瓜幼苗抗旱机制研究天律师应大学研究生学位论文,2007.
    [144]周智彬,李培军.我国旱生植物的形态解剖学研究.干旱区研究,2002,19(1):36-40.
    [145]朱震达.中国土地沙质荒漠化.北京:科学出版社,1994,16-47.
    [146]朱志明.硅对汞毒害下玉米种子萌发代谢的影响.淮北煤师院学报,2001,(4):41-43.
    [147]邹邦基.植物的营养.北京:农业出版社,1985,264-296.
    [148]邹春琴,高霄鹏,邓颖杰,等。硅对向日葵水分利用效率的影响.植物营养与肥料
    学报,2005,11(4):547-550.
    [149]Agarie S, Uchida H, Agata W, et al. Effects of silicon on transpiration and leaf conductance in rice plants. Plant Prod Sci,1998, (1):89-95.
    [150]Ahmad R, Zaheer S, Ismail S. Role of silicon in salt tolerence of wheat. Plant Sci., 1992,85:43-50.
    [151]Ando H, Kakuda K, Fujii H, et al. Growth and canopy structure of rice plants growth under field conditions as affected by Si applicationon. Soil Science and Plant Nutritton, 2002,48(3):429-432.
    [152]Yang Y F, Liang Y C, Lou Y S, et al. Influences of silicon on peroxidase, superoxide dismutase activity and lignin content in leaves of wheat and its relation to resistance to powdery mildew. Scientia Agricultura Sinica,2003,36(7):813-817.
    [153]Belanger R R. Solube solicon:it's role in crop and disease managemant of greenhouse crops. Plant Disease,1995,79:329-336.
    [154]Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells. Biochemical et Biophysical Acta,2001,465:140-151.
    [155]Boberfeld W O, Schlosser M, Laser H. Effect of Na amounts on forage quality and feed consumption on Lolium perenne depending on fertilizer and nutrient ratio. Agribiological Research,1999,52:261-270.
    [156]Bowler C, Slooten L, Vandenbranden S, et al. Manganese superoxide dismutase can ruduce cellular damage mediated by oxygen radicals in transgenic plant. EMBOJ, 1991,(10):1723-1732.
    [157]Box S, Schachtman D P. The effect of low concentration of sodium on potasium uptake and growth of wheat. Australian Journal of Plant Physiology,2000,27: 175-182.
    [158]Brownell P F, Crossland C J. The requirement for sodium as a microelement by species having C4 dicarboxylic photosynthetic pathway. Plant Physiol,1972,49: 794-797.
    [159]Brownell P F. Sodium as an essential micronutrient element for plants and its possible role in metabolism. Advance in Botanical Research,1979,7:117-224.
    [160]Carver T L, Zeyen W R, Ahlstrand G G. The relation between insoluble silicon and success or failure of attempted penetration by powdery mildew (Erysiphe graminis) germlings on barley. Physiological Plant Pathology,1987,31:133-148.
    [161]Cherif M, Asselin A, Belanger R R. Defense responses indueed by soluble silicon in cucumber roots infected by Pythium spp. Photopathology,1994,84(4):236-242.
    [162]Chiy P. Sodium fertilizers lift milk yields. Milk Producer,1991,38:14-19.
    [163]Choes B P, Fujioda S. The DWF4 gene of Arabidopsis encode a cytochrome P450 that medi-atesmutiple a-hydroxylation steps in brassinosteroid bio-sythesis. Plant Physiology.1998,119:897-907.
    [164]Christiant K, Hoeberichts F A. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiology,2008,148:960-968.
    [165]Dellongoot G, Pastorigm T. Antioxidant defenses under yperoxygen icandhyper osmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiology,1993,34:1023-1028.
    [166]Deren C W, Datnoff L E, Snyder G H. Silicon concentration disease response and yield components of rice genotypes grown on flooded organic histosols. Crop Science,1994, 34:733-737.
    [167]Dong Z Y, YaoY F, Zhao J R, et al. Anatomical observations on the phtosynthatic branch of Haloxylon ammodendrom(C.A.Mey) and It is the character of drought and salt resistance. Journal of Arid Land Resources and Environment,2000,14(5):78-83.
    [168]Draycott A P, Bugg S M. Response by sugarbeet to various amounts and times of application of sodium chloride fertilizer in relation to soil type. Journal of Agriculture Scicence,1982,98:579-592.
    [169]Durrant M J, Draycott A P, Milford G F. Effect of sodium fertilizer on water status and yield of sugar beet. Ann. Appl. Biol,1978,88:321-328.
    [170]Elawad S H, Street J J, Gaseho G J, et al. Response of sugareane to silicate source and ate:Growth and yield. Agron,1982,74(3):481-484.
    [171]Elawad S H, Allen J, Gascho G J. Influence of UV-B radiation and soluble silicates on the growth and nutrient concentration of sugarcane. Soil Crop Sci,1985,44:134-141.
    [172]Epstein E. Silicon. Annul. Rev. Plant Physiol. Plant Mol. Biol,1999,50:641-66.
    [173]EpsteinE. The anomaly of silicon in plant biology. Proc.Nalt.Acad Sci. USA,1994,91: 11-17.
    [174]Uchli A. Sodium versus potassium:Substitution and compartmentation. In: Ncyclopedia of plant physiology, Pirson A and Zimmermann MH eds, new series, 1983,vol.15B:651-681.
    [175]Glenn E P, Pfister R, Brown J J, et al. Na+ and K+ accumulation and salt tolerance of Atriplex canescens genotypes. American Journal of Botany,1996,83:997-1005.
    [176]Gong H J, Chen K M, Chen G C, et al. Effect of silicon on the growth of wheat and its ant oxidative enzymatic system. Chinese Journal of Soil Science,2003,34(1):55-57.
    [177]Haseqawa P M, Bressan P A, Zhu J K, et al. Plant cellular and molecular response to high salinity. Anne Rev Plant Physiol Mol Biol,2000,51:463-499.
    [178]Hossain M T, Mori R, Soga K et al. Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. Journal of Plant Research,2002,115(17):23-27.
    [179]Huang Z Y, Wu H, Hu D H. The structures of 30 species of psam-mophytes and their adaptation to the sandy desert environment in Xinjiang. Acta Phytoecology Sinica, 1997,21:521-530.
    [180]Huang X Y, Ji M D, Zhang L L. Mechanism study of yield increase and sugar-accumulation of Si in sugarcane. Sugarcane and sugar industry,1992,2:13-18.
    [181]Inanaga S, Higuehi Y, Chishaki N. Effeet of silicon applicationon reproductive growth of rice plant. Siol Science and Plant Nutrition,2002,48(3):341-345.
    [182]Inze D, Montaga M V. Oxidative stress in plants. Current Opinion in Biotechnology, 1995, (6):153-158.
    [183]Jarvis S C. The uptake and transport of silicon by perennial ryegrass and wheat. Plant and Soil,1987,97:429-437.
    [184]Jay E A. Factors controlling transpiration and photosynthesis in tamarix chinensis lour. Ecology,1982,63(1):46-50.
    [185]Jiang J, WangY Z. A study on water relation and drought resistance ordination of
    several xerophytes under potted condtions. Arid Zone Research,1992,4:31-38.
    [186]Kidd P S, Liugany M, Poschenneder C, et al. The role of root exudates aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mmays L.). EXP Bot,2001,52:1339-1352.
    [187]Kim S G, Kim K W, Park E W, et al. Silicon-induced cell wall fortification of rice leaves:A possible cellular mechanism of enhanced host resistance to blast. Phytopathology,2002,92(10):1095-1103.
    [188]Kunoh H. Ultrastucture and mobilization of ions near infectionsites. Ann. Rev. Phytopath,1990,28:93-111.
    [189]Lehr J I. Sodium as a crop nutrient. Journal of Scicence Food Agriculture,1953,4: 460-471.
    [190]Leigh R A, Wyn R G. A hypothesis relating critical potassium concentrations for growth to the distribution and function of this ion in the plant cell. New Phytology, 1984,97:1-13.
    [191]Levitt J. Responses of plant to environmental stresses. Academic Press, New York, 1980,2:365-390.
    [192]Li F L,Ye G W, Zhang J Y. Research on Si-containing fertilizer in tobacco in Yunnan. Yunnan Agricultural Science and Technology,1997,2:15-17.
    [193]Li W B, Shi X H, Wang H, et al. Effects of silicon on rice leaves resistance to Ultraviolet-B. Acta Botanica Sinica,2004,46(6):691-697.
    [194]Liang Y C, Shen Q R, Shen Z G, et al. Effects of silicon on salinity tolerance of two barley cultivars. Plant Nutr,1996, (19):173-183.
    [195]Liang Y C, Qian Z R, Chen X H. Effects of Si on growth, yield and quality of tomato. Jiangsu A-gricultural Science,1993,4:48-50.
    [196]Liang Y C. Effect of silicon on enzyme activity and sodium, potassiumand calcium concentration in barley under salt stress. Plant and Soil,1999,209:217-224.
    [197]Lux A, Luxova M, Hattori T, et al. Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Annals of Botany,2002,90:149-152.
    [198]Ma C C, Gao Y B, Guo H Y, et al. Interspecific transition among caragana microphylla, C. davazamcii and C. korsh inskii along geographic gradient Ⅱ. Characteristics of photosynthesis and water metabolism. Acta Botanica Sinica,2003,45(10):1228-1237.
    [199]Ma J F, Takahashi E. Effect of silicate on phosphate availability for rice in a P-deficient soil. Plant and Soil,1991,133:151-155.
    [200]Macraeea F, Changes in catalase activity and hydrogen peroxide concent ration in plants in response to low temperature. Physiological Plant,1985,65:51-56.
    [201]Magat S S, Goh K M. Effect of chloride fertilizers on ionic composition and cation-anoin balance and ratio of fodder beet (Beta vulgaris L.) grown under field conditions. Newzealand Journal of Agriculture Reseach,1990,33:29-40.
    [202]Marschner H. Mineral nutrition of higher plants. Academic Press, London.1995.
    [203]Kinet J M, Bajji M, Lutts S. NaCl alleviates polyethylene glycol-induced water stress in the halophyte species (Atriplex halimus L.). Journal of Experiental Botany,2005,56 (41):2421-2431.
    [204]Martinez J P, Ledent J F, Bajji M, et al. Effects of water stress on growth, Na+ and K+ accumulation and water use efficiency in relation to osmotic adjustment in two
    populations of Atriplex halimus L. Plant Growth Regulation,2003,41:63-733.
    [205]Martinez J P, Lutts S, Schanck A, et al. Is osmotic adjustment required for water-stress resistance in the Mediterranean shrub Atriplex halimus L? Journal of Plant Physiology, 2004,161:1041-1051.
    [206]Matoh T, Kairusmee P, Takahashi E. Salt-induced damage to rice plant sand alleviation effect of silicate. Soil Sci. Plant Nu-tr.1986,32:295-304.
    [207]Maxwell F G, Jenkins J N, Parrott W L. Resistance of plants to insects. Adv. Agron, 1972, (24):187-265.
    [208]Mayland H F, Wright J L, Sojka R E. Silicon accumulation and water uptake by wheat. Plant and Soil,1991,137:191-199.
    [209]Montasir A H, Sharoubeem H H, Sidrak G H. Partial substitution of sodium for potassium in water cultures. Plantra Soil,1996,25:181-194.
    [210]Morikawa C K, Saigusa M. Mineral composition and accumulation of silicon in tissues of blueberry (Vaccinum corymbosus cv. Bluecrop) cuttings. Plant and Soil,2004,258: 1-8.
    [211]Mundy J. Gene express in response to abscisic acid and osmotic stress. The Plant Cell, 1990,2(2):503-510.
    [212]Murata S, Sekiya J. Effects of sodium on photosynthesis in Panicum coloratum. Plant Cell Physiology,1992,33:1239-1242.
    [213]Naraya N K, Savant E. Silicon nutrition and sugarcane production:A review. Joural of Plant nutrition,1999,22(12):1853-1903.
    [214]Ohnishi J, Flugge U, Heldt H W, Kanai R. Involvement of Na+ in active uptake of pyruvate in mesophyll chloroplasts of some C4 plant. Plant Physiology,1990,94: 950-959.
    [215]Ohta D, Matoh T, Takahashi E. Early responses of sodium-deficient Amaranthus tricolor L. plants to sodium application. Plant Physiology,1987,84:112-117.
    [216]Okuda A,Takahashi E. Studies on the physiological role of silicon in crop plants: Effect of silicon supply on the injuries due to excess amounts of Fe2+, Mn2+, Cu2+, As3+, Al3+, Co2+ of barley and rice plant. J Sci Soil and manure,1962,33:1-8.
    [217]Piatkowski D, Schneider K, Salamini F. Characterization of five abscisic acid responsive cDNA clones isolated from the desiccation tolerant plant Craterostigma plantagineum and their relationship to other water stress genes. Plant Physiol,1990, 94(4):1682-1690.
    [218]Pyankov V I, Gunin P D. C4 plants in the vegetation of Mongolia:their natural occurrence and geographical distribution in relation to climate. Oecologia,2000,123: 15-31.
    [219]Rafi M M, Epstein E. Silicon absorption by whea. Plant and Soil,1999,211:223-230.
    [220]Rahmn M T. Varietal differences in the growth of rice paints in response to aluminum and silicon. Soil Sci. and Plant Nu-tr,1998,44(3):423-433.
    [221]Raid R N, Anderson D L, Ulloa M F. Influence of cultivar and amendment of soil with alcium silicate slag on foliar disease development and yield of sugarcane. Crop Protection,1992,11(1):880-884.
    [222]Savant N K, Korndorfer G H, Datnoff L E, et al. Silicon nutrition and sugarcane production:A review. Journal of Plant Nutrition,1999,22:1853-1903.
    [223]Savant N K, Snyder G H, Datnoff L E. Silicon management and sustainable rice production. Adv. Agron,1997,58:151-199.
    [224]Sergi M B, Lenonor A. Drought induced changes in the redox state of alpha-tocopherol, ascorbate and the diterpene carnosic acid in chloroplasts of labiatae species differing in carnosic acid contents. Plant Physiology,2003,131:1816-1825.
    [225]Slama I, Ghnaya T, Messedi D, et al. Effect of sodium chloride on the response of the halophyte species Sesuvium portulacastrum grow in mannitol-induced water stress. Journal of Plant Research,2007,120:291-299
    [226]Song J, Feng G, Tian C Y, Zhang F S. Osmotic adjustment traits of suaeda physophora, Haloxylon ammoderon and Haloxylon persicum in filed or controlled conditions. Plant Science,2006,113-118.
    [227]Spickeff C M, Smirnoff N, Ratcliffe R G. An in vivo nuclear magneta resonance investigation of ion transpory in maize and Spartina anglica roots during exposed to high salt concentration. Plant Physiology,1993,102:629-638.
    [228]Storey R, Pitman M G, Stelzer R, Carter C. X-ray micro-analysis of cells and cell compartments of Atriplex spongiosa. Journal of Experimental Botany,1983,34: 778-794.
    [229]Stutte G W, Berry W L, Wheeler R M. Soduim-a functional plant nutrient. Critical Reviews in Plant Sciences,2003,22(5):391-416.
    [230]Subbarao G V, Wheeler R M, Stutte G W, et al. How far can sodium substitute for potassium in red beet? Journal of Plant Nutrition,1999a,22:745-1761.
    [231]Subbarao G V, Mackowiak C, Wheeler R M. Recycling of Na in advanced life support: Strategies bases on crop production systems. Life Support and Biosphere Scicence, 1999b,6:152-160.
    [232]Subbarao G V, Wheeler R M, Stutte G W. Feasibility of substituting sodium for potassium enhances in crop plants for advanced life support systems. Life Support and Biosphere Scicence,2000a,7:225-232.
    [233]Subbarao G V, Wheeler R M, Stutte G W, et al. Low potassium enhances sodium uptake in red-beet under moderate saline conditions. Journal of Plant Nuteition,2000b, 23:1449-1470.
    [234]Subbarao G V, Ito O, Berry W L, et al. Soduim-a functional plant nutrient. Critical Reviews in Plant Sciences,2003,22(4):1449-1470
    [235]Surekha K A, Paul V, Zhu J K. Mechanisms of tolerance in plants. Plant Nutrition for Food Security, Human Health and Environmental Protection. Beijing:Tsinghua University Press,2005:44-45.
    [236]Takahashi E, Ma J F, Miyake Y. The effect of silicon on the growth of cucumber plant. Proc.9th Inter Plant Nutrition Colloquium.Warwick University,U. K.1982,664-669.
    [237]Tobe K, Zhang L P, Qiu G Y, et al. Characteristics of seed germination in five non-halophytic Chinese desert shrub species. Journal of Arid Environments,2001,47: 191-201.
    [238]Toble K, Li X M, Omasa K. Effect of sodium chloride on seed germination and growth of two Chinese desert shrubs, Haloxylon ammodendron and H. persicum (Chenopodiaceae). Australian Journal of Botany,2000,48:455-460.
    [239]Troug E, Berger K C, Attoe O J. Response of nine economic plants to fertilization with sodium. Soil Science Society of America Journal,1953,76:41-50.
    [240]Walter H, Box E O. The desert of central Asia. Elsevier,1982,193-236.
    [241]Wang B S, Liittge U, Ratajczak R. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. Journal of Experimental Botany,2001,365:2355-2365.
    [242]Wang L J, Li M, Li T J, et al. Progress of Si-based nanocrystalline luminescent materials. Chinese Science Bulletin,2001,46(8):625-632.
    [243]Wang L W, Showalter A M. Cloning and salt-induced, ABA independent expression of choline mono-oxygenage in Atriplex prostrate. Physiologia Plantarum,2004,120: 405-412.
    [244]Wang S M, Zheng W J, Ren J Z, et al. Selectivity of various types of salt-resistant plants for K+over Na+. Journal of Arid Enviroments,2002,52:457-472.
    [245]Wang S M, Wan C G, Wang Y R. The characteristics of Na+, K+ and free proline distribution in several drought resistant plants of the Alxa Desert. Journal of Arid Environments,2004,56:525-539.
    [246]Wang Y R, Chen Y, Hu Z Q. A study on poisoning rice(Oryzasativa L.) seedling with Na and Cu salts through inhibition of Si nutrition. Acta Scientiarum Naturalium universitatis Sunyateni,1997,36(3):72-75(in Chinese).
    [247]Wang Y R, Chen P. The absorption and distribution of Se and the co-effects of Se-Si in rice. Journal of plant physiology,1996,22(4):344-348.
    [248]Wong Y C, Heits A, De V J. Foliar symp-toms of silicon deficiency in the sugarcane plant. In:Cong.Intern. Soc. Sugarcane Techno.14, New Orleans,1971, Pro-ceed-ings. Baton Rouge, LA.1972, (14):766-776.
    [249]Wooley J T. Sodium and silicon as nutrients for the tomato plant. Plant Physiology, 1957,1:317-321.
    [250]Xu J S, Duan P C, Wang Y L. The effect of Ge and Si on the growth and development of rice. Journal of Xia men University,1999,38(1):121-128.
    [251]Xu S H J, An L Z, Feng H Y, et al. The seasonal effects of water stress on Ammopiptanthus mongolicus in a desert environment. Journal of Arid Environments, 2002,51:437-447.
    [252]Xu X Y, Zhang R D, Xue X Z, et al. Determination of evapotran spiration under the Salt tolerance in the halophyte Suaeda maritima L. Dum:evaluation of effect of salinity upon growth. Journal of Experimental Botany,1980,31:1171-1183.
    [253]Yoshida S, Navasero S A, Ramires E A. Effects of sil-ica and nitrogen supply on some aracters of the rice plant.Plant Soil,1969,31:48-56
    [254]Zhang K B, Zhao K F. Effects of salt and water stresses on osmotic adjustment of Suaeda salsa seedings. Acta Botanica Sinica,1998,40:56-61.
    [255]Zhang Q F, Li Y Y, Pang C H, et al. NaCl enchances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Science,2005,168:423-43.
    [256]Zhao C M, Wang G X. Effects of drought stress on photoprotect ion in Ammopiptanthus mongolicus leaves. Acta Botanica Sinica,2002,44(11):1309-1313.
    [257]Zhu X Y, Chen G C, Zhang C L. Photosynthetic electron transport, photophosphorylation and antioxidants in two ecotypes of reed(Phragmites communis Trin.) from different habitats. Photosynthetica,2001,39(2):183-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700