西藏冈底斯典型铜多金属矿床成矿流体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对冈底斯成矿带主碰撞期形成的雄村似斑岩—浅成低温热液复合型铜金矿床和后碰撞伸展期形成的甲马矽卡岩型铜多金属矿床、南木斑岩型铜钼矿床三个典型矿床开展了系统的流体包裹体岩相学、显微测温、Raman和SR-XRF原位分析研究。通过包裹体研究,结合各矿床矿物学和蚀变矿化特征、以及氢、氧、氦、硫、铅同位素示踪,得出以下认识:
     (1)三个矿床成矿流体演化过程中均出现了沸腾或相分离现象,这一现象与成矿体系持续压力释放有关;三矿床的矿体定位均受构造破碎带控制,这为成矿体系的压力释放创造了条件。
     (2)三矿床的成矿深度均较浅,甲马约1.5km,南木约1km,雄村最浅;这与三矿床均有岩浆水参与,但甲马最靠近岩浆水,而雄村岩浆水比例最小相一致。
     (3)三矿床中,流体包裹体中的Cu含量南木最高,而南木的成矿规模却最小,这与南木成矿体系降温速率最小有关。
     (4)三矿床成矿流体体系中均含有大量气体,与雄村和甲马不同,南木气体组成主要是CO_2,而且包裹体中存在赤铁矿、磁铁矿和针铁矿子矿物,表明南木成矿流体f_(o2)最高。
     (5)三矿床的形成均与酸性蚀变密切相关,如绢英岩化和绿泥石化;酸性蚀变消耗H~+,使流体呈近中性或偏碱性,对于维系成矿流体中高HS~-浓度,进而保障硫化物沉淀成矿非常关键。
     (6)根据冈底斯成矿带中的三个典型矿床的研究,对于其中的Cu成矿地质地球化学机制可以归纳为:深源流体为铜矿的形成提供了充足的物质来源;构造破碎带导致压力释放,进而导致相分离,使Cu进一步在高盐度流体中浓集,同时破碎带也铜矿体的定位准备了空间;相对快的降温速率是导致Cu淀积成矿的一个重要机制,低的f_(o2)以及近中性或偏碱性的流体环境,有利于Cu以硫化物形式大量淀积。成矿过程是上述诸多因素协同控制的过程,同时也是一个熵减的耗散过程,因此还需要持续稳定的热驱动和体系相对开放的成矿环境。
     (7)南木和甲马矿床在物质来源上均与相关幔壳混源岩体存在亲缘性,成矿流体与成矿斑岩岩浆可能共同起源于深部,二者平行演化,不排除演化过程中流体—岩浆间存在相互作用。雄村、甲马和南木三矿床,均有幔源和壳源物质参与成矿,南木矿床壳源比例最高,三者均属于以流体为介质的壳幔相互作用的产物。
     (8)雄村形成于青藏高原造山带主碰撞(65~41Ma)晚期的间歇性松弛(52~42Ma)向晚碰撞地壳挤压抬升(40~38Ma)转换阶段,而甲马和南木形成于青藏高原造山带后碰撞阶段(25~0Ma),与中新世(20~14Ma)冈底斯地区东西向伸展相关。造山带主碰撞期较强的挤压应力可能导致深源成矿流体快速高位上侵,而后碰撞伸展期,深源流体可以在地壳长时间滞留,应力差异导致了冈底斯地区两期流体成矿作用在成矿元素上的差异,伸展期有更多的壳源物质参与。
     (9)雄村矿床形成于40~35Ma间的高原强烈隆升期,隆升剥蚀导致了早期似斑岩型矿化的形成和晚期脉型矿化的套生。甲马和南木矿床形成于20~14Ma间的高原强烈隆升期的晚阶段,南木矿区普遍存在的绢英岩化叠加在钠、更长石化之上可能与隆升有关?需要进一步研究。
The systematic petrographical study,microthermometry,Raman probe,and SR-XRF analysis were performed for fluid inclusions from 3 typical deposits.These deposits are Xiongcun copper-gold deposit which is porphyrylike-epithermai low-temperature multiplex deposit formed in main collisional phase of Gangdese ore-forming belt,Jiama skarn copper-polymetallic deposit and Nanmu porphyry Cu-Mo deposit both formed in post-collisional phase.Then get some understandings:
     (1) The phenomenon of boil or phase separation occur with ore-forming fluids evolvement in 3 deposits.This phenomenon relate to ore-forming system's pressure continually release.Settling of 3 deposits' ore-boy is controlled by tectonic cracked belt.And this make the condition for ore-forming system's pressure release.
     (2) Ore-forming deepness of the 3 deposits is shallow,and about 1.5km in Jiama,about 1km in Nanmu,and Xiongcun is most shallowest.This accord with magma fluid's participation of the 3 deposits,Jiama has magma fluid in most proportion,and Xiongcun has magma fluid in least proportion.
     (3) Nanmu's content of Cu in fluid inclusions is highest,but the ore-forming scale is least. This relate to the lowest cool speed of ore-forming system in Nanmu.
     (4) There is a great deal of gas in ore-forming fluid system in the 3 deposits.Nanmu differ from Xiongcun and Jiama.The component of the gas in Nanmu is CO_2,and there are hematite, magnetite and goethite daughtermineral in inclusions.These indicate ore-forming fluid's f_(o2) is highest.
     (5) Forming of the 3 deposits relate to acidic alteration,as sericitization and chloritization. Acidic alteration consume H~+,and make the fluid close to litmusless or alkalescence.This is very important to keep high content of HS~- in ore-forming fluid,and ensure sulfid's deposition and ore-forming.
     (6) By the research to 3 typical deposits in Gangdese ore-forming belt,ore-forming geochemical process of Cu can be concluded:deep-seated origin fluid supply enough matter for copper deposit's forming;tectonic cracked belt make for pressure release,phase separation and Cu enrich in high salinity fluid,and cracked belt prepare the room for the setting of copper deposit; relative fast cool speed is a important reason to make Cu's deposition and ore-forming,and fluid with lower f_(o2),close to litmusless or alkalescence is propitious to Cu's largely deposition as sulfide.Ore-forming process is a process with many factor's action above,and is a dissipative process with entropy decrease.So there need continual steady heat driving and relative open ore-forming condition.
     (7) The matter's origin of Nanmu and Jiama deposit are associated with related crust-mantle mix origin stocks.Ore-forming fluid and ore-forming porphyry magma possibly have same deep-seated origin,both parallel evolvements.And there is possibly action each other between fluid and magma in the evolvement.There are both mantle-origin and crust-origin matter to take part in ore-forming process in Xiongcun,Jiama and Nanmu deposit.And the proportion of crust-origin in of Nanmu is highest.And the 3 deposits both are produce of crust-mantle action which medium is fluid.
     (8) Xiongcun form in the transformation phases of intermittence flab(52~42Ma) in Himalayan-Tibetan orogenic belt terminal phases of main-collision(65~41Ma) to late-collision crust extrusion-up(40~38Ma).Jiama and Nanmu form in Himalayan-Tibetan orogenic belt post-collision phases(25~0Ma),relating to east-west extension of Gangdese in Miocene epoch (20~14Ma).Orogenic belt main-collision phase's higher extrusive stress may result deep-seated ore-forming fluid fast up-intrude.In post-collision extended phases,deep-seated ore-forming fluid can keep in crust with longer time.Difference of stress result the difference at ore-forming element in ore-forming effect of two periods fluid,and extended phases have more crust-origin matter.
     (9) Xiongcun deposit form in Tibetan intensive uplifting phases,40~35Ma.Uplifting and erosion result the form of porphyry-like mineralization and vein mineralization.Jiama and Nanmu deposit form in terminal phases of Tibetan intensive uplifting phases,20~14Ma.There are widely sericitization alter albite and bytown in Nanmu deposit,and do this related to uplifting? The research needs to be performed farther.
引文
[1]滕吉文,杨立强,姚敬全,等.2007.金属矿产资源的深部找矿、勘探与成矿的深层动力过程[J].地球物理学进展,22(2):317-334.
    [2]潘桂棠,丁俊,王立全,等.2004.加强青藏高原矿产资源勘查与研究 保障国家资源供应[J].资源调查与评价,21:1-4.
    [3]侯增谦,曲晓明,王淑贤,等.2003a.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学(D辑),33(7):609-618.
    [4]侯增谦,高永丰,孟祥金,等.2004a.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报,20(2):239-248.
    [5]Hou Z Q,Gao Y F,Qu X M,et al.2004.Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J].Earth and Planetary Science Letters,220(1-2):139-155.
    [6]郑有业,多吉,王瑞江,等.2007.西藏冈底斯巨型斑岩铜矿带勘查研究最新进展[J].中国地质,34(2):324-334.
    [7]侯增谦,孟祥金,曲晓明,等.2005.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J].矿床地质,24(2):108-121.
    [8]曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带[J]?矿床地质,20(4):355-366.
    [9]曲晓明,侯增谦,李佑国.2002.S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山物质循环的指示[J].地质通报,21(11):768-776.
    [10]莫宣学,董国臣,赵志丹,等.2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报,11(3):281-290.
    [11]李光明,芮宗瑶.2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J].大地构造与成矿学,22(2):165-170.
    [12]郑有业,薛迎喜,程力军,等.2004.西藏驱龙超大型斑岩铜(钼)矿床发现、特征及意义[J].地球科学,29(1):103-108.
    [13]王小春,周维德,李作华,等.2006.西藏冈底斯带斑岩铜矿勘查的现状、走向和相关建议[J].地质与勘探,42(1):30-33.
    [14]黄崇轲,白冶,朱裕生,等.2001.中国铜矿床[M].北京:地质出版社,1-705.
    [15]芮宗谣,黄崇柯,齐国明,等.1984.中国斑岩铜(钼)矿床[M].北京:地质出版社,1-350.
    [16]王全海,王保生,李金高,等.2002.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估[J].地质通报,21(1):35-40.
    [17]徐正余,陈福忠,郑延中,等.1991.中华人民共和国地质矿产部地质专报(第20号)青藏高原主要矿产及其分布规律[M].北京:地质出版社,44-123.
    [18]张浩勇,巴登珠,夏代祥,等.1994.西藏自治区-江两河地区中部流域铬、金、铜矿第二轮成矿远景区划报告。
    [19]程裕淇.1994.中国区域地质概论[M].北京:地质出版社.
    [20]陈毓川,叶天竺,张洪涛,等.1999.中国主要成矿区带矿产资源远景评价[M].北京:地质出版社,502-504.
    [21]侯增谦,曲晓明,黄卫,等.2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质,28(10):27-29.
    [22]郑有业,王保生,樊子珲,等.2002.西藏冈底斯东段构造演化及铜金多金属成矿潜力分析[J].地质科技情报,21(2):55-60.
    [23]芮宗瑶,李光明,王龙生.2004.青藏高原的金属矿产资源[J].地质通报,23(1):20-23.
    [24]张绮玲,曲晓明,徐文艺,等.2003.西藏南木斑岩铜钼矿床的流体包裹体研究[J].岩石学报,19(2):251-259.
    [25]徐文艺,曲晓明,侯增谦,等,2006b.西藏雄村大型铜金矿床的特征、成因和动力学背景[J].地质学报,80(9):1392-1406.
    [26]佘宏全,丰成友,张德全,等.2005.西藏冈底斯中东段矽卡岩铜-铅-锌多金属矿床特征及成矿远景分析[J].矿床地质,24(5):508-520.
    [27]Pierce J A,Mei H.1988.Volcanic rocks of the 1985 Tibet GeotraverseLhasa to Golmud[J].Phil Trans.Roy.Soc.Lond.,A327:203-213.
    [28]Wang S,Li Z,Qiangba X.1983.Geologic map(1:1 000 000) and geologic report of the Xigaze area,Xizang Bureau of Geology and Mineral Resources,568.
    [29]西藏自治区地质矿产局.1993.西藏自治区区域地质志[M].北京:地质出版社.
    [30]尹安.2001.喜马拉雅.青藏高原造山带地质演化--显生宙亚洲大陆增长[J].地球学报,22(3):196-199.
    [31]程力军,李志,刘鸿飞,等.2001.冈底斯东段铜多金属成矿带的基本特征[J].西藏地质,(1):43-53.
    [32]孟祥金.2004.西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究[博士论文][D].导师:侯增谦.中国地质科学院矿产资源研究所.
    [33]Gaetani M,Garzanti E.1991.Multicyclic history of the northern India continental margin (northwestern Himalaya)[J].Am Assoc.Pet.Geol.Bull.,75:1427-1446.
    [34]Durr S B,1996.Provenance of Xigaze fore-arc basin clastic rocks(Cretaceous,south Tibet)[J].Geol.Soc.Am.Bull.,108:669-684.
    [35]Allegre,C J and 34 others.1984.Structure and evolution of the Himalayan-Tibet orogenic belt[J].Nature,307:17-22.
    [36]Harrison T M,Copeland P,Kidd WSF,Yin A.1992.Raising Tibet[J].Science 255:1663-1670.
    [37]Yin A and Harrison T M.2000.Geologic evolution of the Himalayan-Tibetan orogen[J].Annu.Rev.Earth Planet.Sci.,28:211-280.
    [38]侯增谦,曲晓明,王淑贤,等.2003.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学(D辑),33(7):609-618.
    [39]赵文津.2007.大型斑岩铜矿成矿的深部构造岩浆活动背景[J].中国地质,34(2):179-205.
    [40]莫宣学,赵志丹,邓晋福,等.2003.印度-亚洲大陆主碰撞过程与火山作用响应[J].地学前缘.10:135-148.
    [41]Yin A and Harrison T M.2000.Geologic evolution of the Himalayan-Tibetan orogen[J].Annu.Rev.Earth Planet.Sci.,28:211-280.
    [42]李光明,王高明,高大发,等.2002.西藏冈底斯南缘构造格架与成矿系统[J].沉积与特提斯地质,22(2):1-7.
    [43]熊清华,左祖发.1999.西藏冈底斯岩带中段南缘韧性剪切带特征[J].中国区域地质,18(2):175-180.
    [44]侯增谦,潘桂棠,王安建,等.2006c.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,25(5):521-543.
    [45]Scharer U,Xu R H and Allegere C J.1984.U-Pb geochronology of the Gangdese(Transhimalaya)plutonism in the Lhasa-Xizang region,Tibet[J].Earth Planet.Sci.Lett.,69:311-320.
    [46]Harrison T M,Grove M,McKeegan K D,et al.1999.Origin and episodic emplacement of the Manaslu intrusive complex,central Hiamalaya[J].Petrol.,40:3-19.
    [47]Beck R A,Burbank D W,Sercombe W J,et al.1995.Stratigraphic evidence for an early collision between northwest India and Asia[J].Nature,373:55-58.
    [48]Le Fort P.1996.Evolution of the Himalaya.In:The Tectonics of Asia[M].Yin A,Harrsion T M(eds.).Cambridge University Press,New York,95-106.
    [49]Yin A,Harrison T M,Ryerson F J,et al.1994.Tertiary structural evolution of the Gangdes thrust system,southeastern Tibet[J].J.Geophys.Res.,99(18):175-201.
    [50]Coleman M,Hodges K.1995.Evidence for Tibetan Plateau uplift before 14 Ma ago from a new minimum age for east-west extension[J].Nature,374:49-52.
    [51]Bllsnluk P M,Hacker B,Glodny J,et al.2001.Normal faulting in central Tibet since at least 13.5 Mar ago[J].Nature,412:628-632.
    [52]侯增谦,杨竹森,徐文艺,等.2006a.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,25(4):337-358.
    [53]侯增谦,曲晓明,杨竹森,等.2006b.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,25(6):629-651.
    [54]Mo X X,Deng J F,Zhao Z D,et al.,2003.Volcanic records of India-Asia collision and post-collision processes[J].Proc EGSAGU-EUG Joint Assembly(Nice),263.
    [55]葛良胜,邓军,杨立强,等.2006.西藏冈底斯地块中新生代中酸性侵入岩浆活动与构造演化[J].地质与资源,15(1):1-10.
    [56]Coulon C,Maluski H,Bollinger C,Wang S.1986.Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:~(39)Ar/~(40)Ar dating,petrological characteristics and geodynamical significance[J].Earth Planet.Sci.Lett.,79:281-302.
    [57]Pan Y.1993.Unroofing history and structural evolution of the southern Lhasa terrane,Tibetan Plateau:Implications for the continental collision between India and Asia[D].Ph.D.dissertation,State University of New York,Albany,NY.
    [58]陈昌伦,夏玉全.1992.藏北班戈-桑巴中酸性侵入岩带的岩石特征与含矿性[J].西藏地质,(1):35-47.
    [59]冯孝良,管仕平,牟传龙,等.2001.西藏甲马铜多金属矿床的岩浆热液交代成因:地质与地球化学证据[J].地质地球化学,29(4):40-48.
    [60]李光明,芮宗瑶,王高明,等.2005.西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义[J].矿床地质,24(5):481-489.
    [61]杜光树,姚鹏,潘凤雏,等.1998.喷流成因矽卡岩与成矿--以西藏甲马铜多金属矿床为例[M].成都:四川科学技术出版社.
    [62]李光明,王高明,芮宗瑶,等.2003.西藏一江两河地区成矿规律与找矿方向综合研究.成都地质矿产研究所研究报告.
    [63]孟祥金,侯增谦,高永丰,等.2003.西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os年龄证据[J].矿床地质,22(3):246-252.
    [64]曲晓明,侯增谦,国连杰,等.2004.冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、Sr、Pb、O同位素约束[J].地质学报,78(6):813-821.
    [65]任云生,粟登逵,张金树,等.2002a.西藏甲马铜多金属矿床金的叠加成矿[J].吉林大学学报(地球科学版),32(3):225-228.
    [67]薛君治,白学让,陈武.1985.成因矿物学[M].武汉:中国地质大学出版社.
    [68]Cathelineau M,Nieva D.1985.A chlorite solid solution geothermometer:the LosAzufres(Mexico)geothermal system:Contributions to Mineralogy and Petrology,91,235-244.
    [69]袁万明,侯增谦,李胜荣,等.2001.西藏甲马多金属矿区热历史的裂变径迹证据[J].中国科学D辑,31(S1):117-121.
    [70]Bodnar R J.1993.Revised equation and table for determining the freezing point depression of H_2O-NaCl solutions[J].Geochim.Cosmochim.Acta,57:683-684.
    [71]Hall D L,Sterner S M and Bodnar R J.1988.Freezing point depression of NaCl-KCl-H_2O solutions[J].Econ.Geol.,83:197-202.
    [72]Roedder E.1984.Fluid inclusion[J].Reviews in Mineralogy,12:413-473.
    [73]Haas J L.1976.Physical properties of the coexisting phases and thermochemical properties of the H_2O component in boiling NaCl solutions[J].U.S.Geological Survey Bulletin,1421-A:1-73.
    [74]刘斌,沈昆.1999.流体包裹体热力学[M].北京:地质出版社.
    [75]Touret,J.et al..1979.Equation of state of CO_2:application to carbonic inclusions.Bull.Mineral.,102:577-583.
    [76]Pearce N.J.G.,Perkins W.T.,Westgate J.A.,Gorton M.P.,Jackson S.E.,Neal C.R.and Chenery S.P.1997.A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials.Geostandards Newsletter:The Journal of Geostandards and Geoanalysis,21(1):115-144.
    [77]Frantz J D,Mao H K,Zhang Y G,et al.1988.Analysis of fluid inclusions by X-ray fluorescence using synchrotron radiation[J].Chemical Geology,69:235-244.
    [78]Wedepohl K H.1995.The composition of the continental crust[J].Geochim Cosmochim Acta,59(7): 1217-1232.
    [79]姚鹏,顾雪祥,李金高,等.2006.甲马铜多金属矿床层控矽卡岩流体包裹体特征及其成因意义[J].成都理工大学学报(自然科学版),33(3):285-293.
    [80]佘宏全,丰成友,张德全,等.2006.西藏冈底斯铜矿带甲马矽卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究[J].岩石学报,22(3):689-696.
    [81]Zartman R E,Doe B R.1981.Plumbotectonics-the model[J].Tectonophysics,75:135-162.
    [82]Shinohara H and Hedenquist J W.1997.Condtraints on magma degassing beneath the Far Southeast porphyry Cu-Au deposit,Philippines.Journal of Petrology,38:1741-1752.
    [83]夏抱本,夏斌,王保弟,等.2007.冈底斯中段达布埃达克质含矿斑岩:增厚下地壳熔融与斑岩铜钼矿成因[J].地质科技情报,26(4):19-26.
    [84]董国臣,莫宣学,赵志丹,等.2006.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据[J].岩石学报,22(4):835-844.
    [85]李胜荣,孙丽,张华锋,等.2006.西藏曲水碰撞花岗岩的混合成因:来自成因矿物学证据[J].岩石学报,22(4):884-894.
    [86]Cline J S and Bodnar R J.1994.Direct evolution of brine from a crystallizing silicic melt at the Queta,New Mexico,Molybdenum deposit[J].Econ.Geol,89:1780-1802.
    [87]谢玉玲,衣龙升,徐九华,等.2006.冈底斯斑岩铜矿带冲江铜矿含矿流体的形成和演化:来自流体包裹体的证据[J].岩石学报,22(4):1023-1030.
    [88]Lowenstern J B,Mahood G A,Rivers M L,et al.1991.Evidence of extreme partitioning of copper into a magmatic vaporphase[J].Science,v.252:1405-1408.
    [89]Heinrich C A,Ryan C C,Mernagh T P,et al.1992.Segregation of ore metals between magmatic brine and vapor:a fluid inclusion study using PIXE microanalysis[J].Econ.Geol.,v87:1566-1583.
    [90]Heinrich C A,Gunther D,Audetat A,et al.1999.Metal fractionation between magmatic brine and vapor,determined by microanalysis of fluid inclusion[J].Geology,27:755-758.
    [91]Audetat A,Gunther D,and Heinrich C A.1998.Formation of a magmatic-hydrothermal ore deposit:insights with LA-ICP-MS analysis of fluid inclusions[J].Science,279:2091-2094.
    [92]Continental Minerals Corporation,2006,Initial Resource Estimate Shows Xietongmen Is A Significant High Grade Copper-Gold Deposit:http://www.hdgold.com/:News Releases,Feb.14.
    [93]西藏自治区地质矿产厅.1996.中华人民共和国区域地质调查报告,1:200000,谢通门幅,南木林幅,地质部分.
    [94]曲晓明,辛洪波,徐文艺.2007.三个锆石U-Pb SHRIMP年龄对雄村特大型铜金矿床容矿火成岩时代的重新厘定[J].矿床地质,26(5):512-518.
    [95]Continental Minerals Corporation.2005.Multi-rigdrilling rapidly expanding Xietongmen copper-gold deposit:http://www.hdgold.com/:News Releases,Dec.1.
    [96]莫宣学,赵志丹,邓晋福,等.2003.印度-亚洲大陆主碰撞过程与火山作用响应[J].地学前缘.10:135-148.
    [97]周肃,莫宣学,董国臣,等.2004.西藏林周盆地林子宗火山岩40Ar/39Ar年代格架[J].科学通报.49(20):2095-2103.
    [99]徐文艺,曲晓明,侯增谦,等,2005.西藏冈底斯中段雄村铜金矿床流体包裹体研究[J].岩石矿物学杂志,24(4):301-310.
    [100]徐文艺,曲晓明,侯增谦,等,2006a.西藏冈底斯中段雄村铜金矿床成矿流体特征与成因探讨[J].矿床地质,25(3):243-251.
    [101]Frape S K and Fritz P.1987.Geochemical trends for groundwaters from the Canadian shield[J].Geol.Assoc.Can.Spec.Pap.,33:19-38.
    [102]Helgeson H C.1968.Geologic and thermodynamic characteristics of the Salton Sea geothermal system[J].Am.J.Sci.,266:129-166.
    [103]McKibben M A,Williams A E,Elders W A and Eldridge C S.1987.Saline brines and metallogenesis in a modern sediment-filled rift:the Salton Sea geothermal system,California,U.S.A.[J].Appl.Geochem.,2:563-578.
    [104]Hedenquist J W and Henley R W.1985.The importance of CO_2 on freezing point measurements of fluid inclusions:Evidence from activegeothermal systems and implication for epithermal ore deposition[J].Econ.Geol.,80:1 379-1 406.
    [105]Jankovic S.1997.The Carpatho-Balkanides and adjacent area:a sectorof the Tethyan Eurasian metallogenic belt[J].Mineralium Deposita,32:426-433.
    [106]Grancea L,Bailly L,Leroy J,Banks D,Marcoux E,Milési J,Cuney M,AndréA,Istvan D and Fabre C.2002.Fluid evolution in the Baia Mare epithermal gold/ polymetallic district,Inner Carpathians,Romania[J].Mineralium Deposita,37:630-647.
    [107]Richards J P,Bray C J,Channer D M and Spooner E T C.1997.Fluidchemistry and processes at the Porgera gold deposit,Papua NewGuinea[J].Mineralium Deposita,32(2):119-132
    [108]Kilias S P,Kalogeropoulos S I and Konnerup-Madsen J.1996.Fluid inclusion evidence for the physicochemical conditions of sulfide deposition in the Olympias carbonate- hosted Pb-Zn(Au,Ag)sulfide ore deposit,E.Chalkidiki peninsula,N.Greece[J].Mineralium Deposita,31(5):394-406.
    [109]Qin K,Li G,Li J,Ding K and Xie Y.2005.The Xiongcun Cu-Zn-Au deposit in the western segment of the Gangdese,Tibet:A Mesozoic VHMS- type deposit cut by late veins[A].In:Mao J and Bierlein F P,eds.Mineral deposit research:Meeting the globle challenge[C].Springer,2:1255-1258.
    [110]叶先仁,吴茂炳,孙明良.2001.岩矿样品中稀有气体同位素组成的质谱分析[J].岩矿测试,20(3):174-178.
    [111]叶先仁,陶明信,余传螯,等.2007.用分段加热法测定的雅鲁藏布江蛇绿岩的He和Ne同位素组成:来自深部地幔的信息[J].中国科学(D),37(5):573-583.
    [112]胡瑞忠,毕献武,Turner G,等.1999.哀牢山金矿带成矿流体He和A r同位素地球化学[J].中国科学(D辑),29(4):321-330.
    [113]潘凤雏,粟登奎,姚鹏,等.1997.西藏甲马喷流矽卡岩型铜多金属矿床地质特征[J].西藏地质,18(2):62-73.
    [114]潘凤雏,邓军,姚鹏,等.2002.西藏甲马铜多金属矿床夕卡岩的喷流成因[J].现代地质,16(4):359-364.
    [115]姚鹏,杜光树.1999.西藏甲马多金属矿床容矿岩石的地球化学特征及其成因初步研究[J].特提斯地质:46-57.
    [116]彭勇民,姚鹏,李金高,2001.西藏甲马铜多金属矿区上侏罗统-白垩系层序地层与成矿[J].地质论评,47(6):584-589.
    [117]任启江,邱检生,徐兆文,等.1991.安徽沙溪扮演铜(金)矿床矿化小岩体的形成条件[J].矿床地质,10(3):232-242.
    [118]沈渭洲.1987.稳定同位素地质[M].北京:原子能出版社.78-83.
    [119]张理刚.1985.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社.
    [120]Giggenbach W F.1992.Isotopic shifts in waters from geothermal andvolcanic systems along convergent plate boundaries and their origin[J].Earth Planet.Sci.Lett.,113:495-510.
    [121]Taylor B E.1992.Degassing of H_2O from rhyolite magma during eruption and shallow intrusion,and the isotopic composition of magmatic water in hydrothermal systems[J].Japan Geol.Surv.Rep.,279:190-194.
    [123]Turner W,Richards J,Nesbitt B,Muehlenbachs Kand Biczok J.2001.Proterozoic low- sulfidation epithermal Au-Ag mineralization in the Mallery Lake area,Nunavut,Canada[J].Mineralium Deposita,36(5):442-457.
    [124]徐永昌,沈平,刘文汇,等.1998.天然气中稀有气体地球化学.北京:科学出版社,99.
    [125]曲晓明,侯增谦,李振清.2003.冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及地质意义[J].地质学报,77(2):245-252.
    [126]Stuart F M,Bunard P G,Taylo r R P,et al,.1995.Reso lvingmantle and crustal contributions to ancient hydro thermal fluids:He-Ar isotopes in fluid inclusions from Dae Hw a W-Mo mineralization,South Korea.Geochim.Cosmochim.Acta,59:4663-4673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700