秦岭造山带东部新元古代热—构造事件及其地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Neoproterozoic Tectono-Thermal Events in the Eastern Qinling Orogen, and Their Geo-Tectonic Significances
  • 作者:陈志宏
  • 论文级别:博士
  • 学科专业名称:构造地质学
  • 学位年度:2005
  • 导师:陆松年
  • 学科代码:070904
  • 学位授予单位:中国地质科学院
  • 论文提交日期:2004-06-20
摘要
横亘于中国大陆中部扬子陆块和华北陆块之间的秦岭造山带多年来一直是地学界研究的热点地区之一,历来为国内外学者所关注。自上个世纪90年代以来,随着对秦岭—大别造山带及其高压超高压变质作用研究的深入,在该造山带内发现了越来越多的新元古代时期热—构造事件的年代学信息,从而引起了人们新的思考,这些热-构造事件的确切地质含义是什么?是否表征了新元古时期造山作用的存在?这些热-构造事件与新元古代Rodinia全球超大陆构造存在怎样的响应关系?本论文研究工作以秦岭造山带的东部为研究中心区,在注重区域地质背景研究、强调野外地质调查工作的基础上,主要通过对该区范围内发育的中元古代末-新元古代时期热-构造事件群的地质记录包括蛇绿岩、花岗质侵入岩(花岗质片麻岩)、(变)火山-沉积岩等的岩石学、地球化学以及同位素地质年代学特征进行详细研究,确定其形成地质构造环境、形成时代及演化序列,进而阐述其在陆块汇聚与裂解构造过程中的大地构造意义。
     研究表明,北秦岭地区松树沟蛇绿岩片中不仅发育残余地幔岩,同时还大量出现了超镁铁质堆晶岩及具洋中脊玄武岩(MORB)地球化学特征的变质镁铁质火山岩,它们在空间上密切相伴,在形成时代上相近,在成因上密切关联。其中超镁铁质堆晶岩(方辉橄榄岩、纯橄岩)全岩-矿物Sm-Nd内部等时线年龄为1079±63 Ma(εNd(T)=+5),与镁铁质火山岩的形成时代一致,论证了秦岭造山带中元古代末期洋盆构造的存在,而镁铁质火山岩的地球化学特征还显示这一洋盆构造可能是在具陆壳性质的基底上持续拉张所形成的,与不成熟洋盆构造环境基本相当。此外,通过运用SHRIMP和ID-TIMS法等高精度锆石U-Pb同位素测年方法,进一步准确确定了寨根、德河、牛角山等新元古代早期花岗片麻岩体的形成时代,分别为943±18Ma、954.6±5.1Ma、914±10Ma,同时还在西峡双龙镇石槽沟一带、松树沟蛇绿岩片之南识别出新的花岗片麻岩岩体,形成时代分别为937±21 Ma、843.6±4.4 Ma、844.4±3.1Ma。岩石学及地球化学研究结果显示,这些形成于新元古代早期的花岗岩为大陆碰撞花岗岩类侵入岩,呈现同碰撞型花岗岩、兼有弧型花岗岩的微量元素特征。松树沟中元古代末蛇绿岩及新元古代早期同碰撞花岗岩类侵入岩的厘定,表明了秦岭造山带新元古代造山作用的存在,即在秦岭地区存在一条新元古代早期造山带。秦岭造山带新元古代造山事件是全球Rodinia超大陆形成过程中汇聚地质构造作用的重要体现,其中对应于大规模同碰撞构造过程的岩浆侵入活动峰期出现于~960~900Ma,从而表明Rodinia超大陆最终汇聚的时代可能在~900Ma,滞后于经典格林威尔(Grenville)造山事件约100Ma。Rodinia超大陆的汇聚过程是穿时的,并非限定于或结束于格林威尔造山事件(1.3~1.0Ga)。
     秦岭造山带东部南秦岭地区大量发育南华纪裂解事件群的地质记录,其中耀岭河群及郧西群双峰式火山建造、吐雾山A型花岗岩以及与其时代相近的老君殿侵入杂岩均为这一时期裂解作用的产物,其时代跨度为~745Ma至~710Ma(分别为745.8±1.5Ma、713.7±6.6Ma、717±10Ma、716.6±3.9Ma、711±11Ma)。它们与扬子陆块北缘南华纪裂解作用所形成的火山岩、侵入岩在形成时代及构造属性上具有可比性,表明它们受控于统一的裂解构造体制,裂解作用的时限在~810Ma至~710Ma之间。秦岭造山带南华纪裂解事件是Rodinia超大陆裂解作用在扬子陆块的重要体现,表明~810Ma至~710Ma是Rodinia超大陆发生大规模裂解的重要时期。
     研究结果还表明,新元古代早期同造山花岗岩类侵入岩只出现于北秦岭,表明北秦岭经历了新元古时期洋壳俯冲、陆块汇聚构造过程,鉴于松树沟洋盆构造具扬子陆块内部裂解性质,说明松树沟洋盆的封闭是古洋壳分别向北秦岭、南秦岭俯冲消亡的结果,而相邻的华北陆块南缘却未发育同时代的热-构造事件,说明华北陆块未参与该新元古代构造旋回,因此,可以认为秦岭造山带中元古代末至新元古代早期汇聚地质事件仅仅表征了原同属扬子陆块的北秦岭和南秦岭之间新元古时期的造山作用,当时的北秦岭未与华北陆块南缘发生汇聚作用,推测两者该时期应相距较远。
     秦岭岩群是北秦岭最为重要的前寒武纪变质岩系,其形成时代、变质作用特点的研究也是认识秦岭造山带前寒武纪地质演化规律的重要基础。本次研究首次在秦岭造山带东部秦岭岩群内确立了麻粒岩相变质岩的存在,其中二辉麻粒岩与钙硅酸盐粒岩、石墨大理岩共生,其变质成岩时代为512.4±9.2Ma,结合秦岭岩群大量出现石墨大理岩、含石墨片麻岩、矽线片麻岩、石墨片岩、矽线石榴黑云石英片岩等富炭、富铝变质岩系的特点,认为秦岭岩群与孔兹岩建造相当。另外,本次研究还确定了秦岭岩群中深融淡色脉体的形成时代为499.3±4.3Ma。麻粒岩相变质及深融淡色脉体形成时代的确定,进一步证明加里东造山作用对秦岭造山带的强烈影响。
     秦岭岩群矽线黑云斜长片麻岩内继承碎屑岩浆锆石U-Pb同位素年龄(SHRIMP法)研究结果表明,该副变质岩中碎屑岩浆锆石的~(206)Pb/~(238)U表面年龄值分别集中于1200Ma~1300Ma和1500Ma~1800Ma,而秦岭岩群云母石英片岩中锆石的最小年龄为~1122Ma,集中出现于1500Ma~1800Ma,同时还出现了一些大于2000Ma的锆石年龄,因此,可以初步确定秦岭岩群的最大形成年龄在1100Ma~1200Ma,不支持前人关于秦岭岩群岩石形成于古元古代的认识,其成岩碎屑物来源于中元古代和古元古代岩石的风化剥蚀,这一成果的取得无疑将引发人们对秦岭造山带前寒武纪地质演化问题的重新思考。而南秦岭陡岭岩群副变质片麻岩中碎屑锆石业已获得了一组介于1635±22Ma~1672±25Ma的~(207)Pb/~(206)Pb年龄值,说明陡岭岩群的形成时代应新于1635±22Ma,也不支持前人关于陡岭岩群形成于古元古代的认识。
     总之,秦岭造山带新元古代早期汇聚、晚期裂解地质事件统一表征了全球Rodinia超大陆构造形成、裂解作用在扬子陆块的响应,其中汇聚造山作用的研究成果表明Rodinia超大陆最终汇聚结束的时代为~900Ma,滞后于经典格林威尔造山事件约100Ma,而~810Ma至~710Ma是Rodinia超大陆大规模裂解的重要时期。新元古代时期的北秦岭与华北陆块南缘之间不存在汇聚拼合构造过程。
Qinlin Orogen, which lies between Yangtze Craton and North China Craton and occurs in thecentral part of China, has already been the highlight region since many years before and attracts somuch attention of geologists from all over the world. Particularly, along with the detailed study ofHP and UHP metamorphism in Qinlin and Dabie Orogens from 90's last century, more and moregeochronological information of Neoproterozoic tectono-thermal events has also been identifiedwithin these orogen. What are the exactly geological significances of these Neoproterozoictectono-thermal events? Do these geological events represent the existence of Neoproterozoicorogenic process? What is the relationship between this geo-tectonic process and Rodinia? For thepurpose to answer these kinds of questions, this paper was designed to take the eastern part ofQinling Orogen as the key region and focused the main research work on the different geologicalrecords of late-Mesoproterozoic to Neoproterozoic tectono-thermal events occurred in this area.And systematic petrological, geochemical and geochronological studies of these kinds ofgeological records such as ophiolite, granitoid intrusions, (meta-) volcanic-sedimentary rocks,have been carded out on the base of detailed geological survey work in the field, for the aim todetermine their geo-tectonic setting, forming ages and evolutionary sequences and then reveal thestructural signiricances of these late-Mesoproterozoic to Neoproterozoic tectono-thermal events inthe process of continental assembly and break-up.
     The data of this dissertation show that a lot of ultra-maric accumulations and mafic meta-volcanicrocks which exhibit the geochemical features of MORB are formed within Songshugou ophiolitewhich occurred in North Qinling, except for the remnant pyrolite. All of them are closelycorrelated in space, forming age and genetic relationship. The whole-rock and minerals fromultra-maric accumulations of orthopyroxene peridotite and dunite determine a Sm-Nd isotopicisochron defining an age of 1079±63 Ma (εNd (T)=+5). This is consistent with the forming ageof the protolith of marie meta-volcanic rocks within this ophiolite, demonstrating the existence oflate-Mesoproterozoic oceanic basin structure in Qinling Orogen. Moreover, the geochemical dataof these mafic volcanic rocks also show that the development of this oceanic basin was probablyresulted in the on-going break-up of continental-related basement and can be compared to animmature oceanic basin structure. In addition, the forming ages of Niujiaoshan, Dehe and Zhaigengranitoid intrusions have been determined using high precise SHRIMP and ID-TIMS zircon U-Pbisotopic dating method, giving ages of 954.6±5.1 Ma, 943±18 Ma and 914±10 Ma, respectively. The newly recognized gneissic granitoid intrusions occurred in Shicaogou of Xixia County andSongshugou of Shangnan County have the forming ages of 937±21Ma、843.6±4.4 Ma and844.4±3.1 Ma, respectively. All the petrological and geochemical data show that these granitoidintrusions are formed in continental collisional tectonic setting, exhibiting characters ofsyn-collisional granitoid in large scale as well as with some features of volcanic arc granitoids intrace element geochemistry. The recognition of Songshugou late-Mesoproterozoic ophiolite andthe early-Neoproterozoic syn-collisional granitoid intrusions demonstrates the existence of theNeoproterozoic orogen in Qinling Orogen. The early-Neoproterozoic orogenic events are thesignificant response of the assembly process of Rodinia. The presence of large scaledsyn-collisional intrusive activities with forming ages between~960 Ma and~900 Ma suggeststhat the final assembly of Rodinia occurred around~900 Ma, nearly 100 Ma younger than thetiming period of the typical Grenvillian orogen (1.3~1.0Ga). From this point, the convergentprocesses of Rodinia are diachronous, not solely constrained by the Grenvillian orogeny.
     Many different geological records related to the break-up events of Nanhua Period, such asYaolinghe Group and Yunxi Group bimodal volcanic rocks、Tuwushan A-type granite andLaojundian intrusive rocks, occur in South Qinling in the eastern part of Qinling Orogen. Theirforming ages range from~745 Ma to~710 Ma (these are 745.8±1.5 Ma, 713.7±6.6 Ma,717±10 Ma, 716.6±3.9 Ma and 711±11Ma, respectively). These geological events are nearlyconsistent in time and tectonic setting with the formation of volcanic rocks and intrusions formedin the break-up process of Nanhua Period in north margin of Yangtze Craton, which demonstratesthat both of them are controlled by a uniform break-up tectonic system. These break-up events ofNanhua Period in Qinling Orogen are the significant response to the break-up process of Rodiniain Yangtze Craton. And~810 Ma to~710 Ma is the critical period of break-up process ofRodinia.
     The research results also show that all the early-Neoproterozoic syn-collisional granitoidintrusions only occur in north Qinling. That is to say the north Qinling was involved in thesubduction of the oceanic crust and subsequent collision of continental block to continental blockin the early-Neoproterozoic period. According to the fact that Songshugou oceanic basin wasoriginally formed within Yangtze Craton, the disappearance of Songshugou oceanic basin is thenthe result of subduction of ancient oceanic crust down to the north Qinling and south Qinling,respectively. However, there is not any coeval tectono-thermal event occurred in adjacent southmargin of North China Craton. This can be interpreted that the North China Craton does not getinvolved in the Neoproterozoic tectonic cycle at that time. So it is believed that thelate-Mesoproterozoic to early-Neoproterozoic geological events only represent the orogenicprocess between north Qinling and south Qinling. But there was no convergent process occurringbetween north Qinling and the adjacent south margin of North China Craton in Neoproterozoic era.
     Qinling Group is one of the most characteristic Precambrian metamorphic rock series occurred innorth Qinling. The studies of its forming age and metamorphism are quite helpful to therealization of Precambrian geological evolution of the Qinling Orogen. Firstly, the granulite faciesmetamorphic rocks have been recognized for the first time from Qinlin Group. One of them, theclinopyroxene- and hypersthene-bearing mafic granulite, occurs in association with calc-silicategranulite and graphite-bearing marble and gives a zircon U-Pb isotopic age of 512.4±9.2 Mawhich represents its metamorphic time. In combination with the fact that Qinling Group ischaracterized by the formation of aluminium- and carbon-rich meta-sedimentary rocks such asgraphite-bearing marble, graphite-bearing gneiss, sillimanite gneiss, graphite mica-schist andsillimanite garnet biotite quartz-schist, it seems to be concluded that the principal part of QinlingGroup is identical to the khondalite series. Moreover, the forming age of leucosome occurred inQinling Group has been determined giving an age of 499.3±4.3 Ma. This identification of theages of mafic granulite and leucosome further proves the strong impact of Caledonian orogen tothe Qinling Orogen.
     The forming ages of detrital magmatic zircons from sillimanite biotite plagioclase gneiss ofQinling Group have been obtained using SHRIMP method. All their ~(206)Pb/~(238)U apparent ages aredivided into two groups aged at 1200 Ma~1300 Ma and 1500 Ma~1800Ma, respectively. Andthe detrital zircons from mica quartz schist of Qinling Group give ~(206)Pb/~(238)U apparent agesconcentrated around 1100 Ma~1300 Ma, 1400 Ma~1800 Ma and>2000 Ma, with a minimumage of~1122 Ma. These data suggest that the maximum forming age of Qinling Grouporiginated no more than 1100 Ma~1200 Ma and do not support the previous viewpoint thatQinling Group is originately formed in Palaeoproterozoic era. The sedimentary fragments ofQinling Group mainly come from the erosion of Mesoproterozoic and Paleoproterozoic rocks. Inaddition, one group of the detrital zircons from para-metamorphic gneiss of Douling Group gives~(207)Pb/~(206)Pb apparent ages ranging from 1635±22 Ma to 1672±25 Ma, demonstrating thatprotolith of Douling Group was formed later than 1635±22 Ma but not in Paleoproterozoicperiod.
     On the whole, all the geological events associated with the early-Neoproterozoic assembly andlate-Neoproterozoic break-up of Qinling Orogen represent the critical response within YangtzeCraton to the formation and break-up of Rodinia. The final assembly of Rodinia was finishedaround~900 Ma, 100 Ma younger than the timing period of the typical Grenvillian orogeny.And~810 Ma to~710 Ma is the critical period of break-up process of Rodinia. There was noconvergent process occurring between north Qinling and the adjacent south margin of North ChinaCraton in Neoproterozoic era
引文
白瑾,黄学光,王惠初等.中国前寒武纪地壳演化(第二版),北京:地质出版社,1996,1-259.
    陈丹玲,刘良,周鼎武等.东秦岭松树沟超镁铁质岩中辉石巨晶的成因和~(40)Ar-~(39)Ar定年及其地质意义.岩石学报,2002,18(3):355-362.
    陈能松,游振东,韩郁箐.豫西东秦岭造山带核部杂岩变质作用研究新进展.地质科技情报,1990,9(3):20-24.
    陈瑞保,张延安.豫西峡河岩群层序及变形特征.河南地质,1993,11(2):20-28.
    陈志宏,陆松年,李怀坤等.北秦岭德河黑云二长花岗片麻岩体的成岩时代—TIMS和SHRIMP锆石U-Pb同位素年代学.地质通报,2004a,23(2):136—141.
    陈志宏,陆松年,李怀坤等.秦岭造山带富水中基性侵入杂岩的成岩时代-锆石U-Pb及全岩Sm、Nd同位素年代学新证据.地质通报,2004b,23(4):322—328.
    程裕淇.中国区域地质概论.北京:地质出版社,1994,1-517.
    董云鹏,周鼎武,刘良,东秦岭松树沟超镁铁质岩侵位机制及其构造演化.地质科学,1997a,32(2):173-180.
    董云鹏,周鼎武,刘良等.东秦岭松树沟蛇绿岩Sm-Nd同位素年龄的地质意义.中国区域地质,1997b,16(1):218-221.
    董云鹏,周鼎武,刘良.东秦岭松树沟蛇绿橄榄岩结构构造及其组构特征.西北大学学报(自然科学版),1996,26(2):159—162.
    河南省地质局.河南省西峡、淅川、内乡一带区域地质调查报告(比例尺1:50000),1976,1-187.
    黄萱,吴利仁.陕西地区岩浆岩Nd、Sr同位素特征及其与大地构造发展的关系.岩石学报,1990,6(2):1-11.
    匡少平,张本仁.东秦岭商丹断裂带中松树沟超镁铁岩系地球化学研究.矿物岩石,1993,13(2):14-20.
    李怀坤,陆松年,陈志宏等.南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学.地质通报,2003,22(10):775-781.
    李怀坤,陆松年,赵凤清等.柴达木北缘新元古代重大地质事件年代格架.现代地质,1999,13(2):224-225.
    李曙光,陈移之,张国伟等.一个距今10亿年侵位的阿尔卑斯型橄榄岩体:北秦岭晚元古代板块体制的证据.地质论评,1991,37(3):235-241.
    李献华,李正祥,葛文春等.华南新元古代花岗岩的锆石U-Pb年龄及其构造意义.矿物岩石地球化学通报,2001a,20(4):271-273
    李献华,周国庆,赵建新等.赣东北蛇绿岩的离子探针锆石U-Pb年龄及其地质意义.地球化学,1994,23(2):125-131.
    李献华,周文汉,李正祥等.扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征.地球化学,2001b,30(4):315-322.
    李献华.广西北部新元古代花岗岩锆石U-Pb年代学及其构造意义.地球化学,1999,28(1):1-9.
    凌文黎,程建萍,王歆华,周汉文.武当地区新元古代岩浆岩地球化学特征及其对南秦岭晋宁期区域构造性质的指示.岩石学报,2002,18(1):25—36.
    刘国惠,张寿广,游振东等.秦岭造山带主要变质岩群及变质演化.北京:地质出版社,1993,1-190.
    刘良,周鼎武.东秦岭商南松树沟高压基性麻粒岩的发现及初步研究.科学通报,1994,39(17):1599-1601.
    卢欣祥,董有,尉向东等.东秦岭吐雾山A型花岗岩的时代及其构造意义.科学通报,1999,44(5):975-978.
    卢欣祥.秦岭花岗岩揭示的秦岭构造演化过程——秦岭花岗岩研究进展.地球科学进展.1998,13(2):213-214.
    卢欣祥.秦岭造山带花岗岩与构造演化.河南地质矿产与环境文集,北京:中国环境科学出版社,1996,19-23.
    陆松年,李惠民.蓟县长城系大洪峪组火山岩中锆石精确定年[J].中国地质科学院院报,1991,22,137-145.
    陆松年,参加中澳造山作用国际讨论会总结报告(2)—中澳野外考察纪实.前寒武纪研究进展,1999,22(3):51-59.
    陆松年.新元古时期Rodinia超大陆研究进展述评.地质论评,1998,44(5):489~495.
    陆松年,李怀坤,于海峰.地质事件、序列和事件群.地质论评,2001,47(5):521-526.
    陆松年主编.青藏高原北部前寒武纪地质初探.北京:地质出版社,2002,1-125.
    陆松年,李怀坤,李惠民等.华北克拉通南缘龙王幢碱性花岗岩U—Pb年龄及其地质意义.地质通报,2003a,22(10):762~768.
    陆松年,李怀坤,陈志宏.塔里木与扬子新元古代热-构造事件特征、序列和时代—扬子与塔里木连接(YZ-TAR)假设.地学前缘,2003b,10(4):321~326.
    陆松年,陈志宏,李怀坤等.秦岭造山带中-新元古代(早期)地质演化.地质通报,2004a,23(2):107—112.
    陆松年,李怀坤,陈志宏等.秦岭中-新元古代地质演化及对Rodinia超级大陆事件的响应.北京:地质出版社,2004b(印刷中).
    陆松年,李怀坤,陈志宏等.新元古时期中国古大陆与罗迪尼亚超大陆的关系.地学前缘,2004c,11(2):515-523.
    莫宣学,邓晋福,董方浏等.西南三江造山带火山岩-构造组合及其意义.高校地质学报,2001,7(2):121-138.
    聂凤军,江思宏,刘妍,林源贤.阿拉善东七一山萤石矿床萤石钐—钕同位素年龄及地质意义.矿床地质,2002,21(1):10—15.
    欧阳建平,张本仁,北秦岭微古陆形成与演化的地球化学证据.中国科学(D辑),1996,26(增刊):42-48.
    潘杏南,赵济湘,张选阳等.康滇构造与裂谷作用.重庆:重庆出版社,1987,1-298.
    裴先治.东秦岭商丹构造带的组成与构造演化.西安:西安地图出版社,1997,1-133.
    邱家骧,曾广策,许继锋等,秦巴地区碱性岩地质特征及含矿性.北京:地质出版社,1990,1-167.
    沈洁,张宗清,刘敦一.东秦岭陡岭群变质杂岩Sm-Nd、Rb-Sr、40Ar/39Ar、207Pb/206Pb年龄.地球学报,1997,18(3):248-254.
    舒良树,周国庆,施央申等.江南造山带东段高压变质蓝片岩及其地质时代研究.科学通报,1993,38(20):1879-1882.
    宋彪、张玉海、万渝生等,锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,2002,48(增刊):26-30.
    宋述光,苏犁,杨合群,王懿圣.陕西商南松树沟橄榄岩体的成因及其侵位机制.岩石学报,1998,14(2):212-221.
    汤耀庆,卢一伦.东秦岭蛇绿岩的形成时代和构造环境.成都地质学院学报,1986,13(2):52-65.
    王剑.华南新元古代裂谷盆地演化—兼论与Rodinia解体的关系,北京:地质出版社,2000,1-146.
    王涛,李伍平,王晓霞.秦岭杂岩牛角山花岗质片麻岩体锆石U-Pb同位素年龄及其地质意义.中国区域地质,1998a,17(3):262-265.
    王涛,王晓霞,李伍平.秦岭杂岩中牛角山花岗质古深成岩体变形作用的初步研究及其构造意义.西安工程学院学报,1998b,20(3):5-10.
    王涛,王晓霞,李伍平等.秦岭群中花岗质正片麻岩的确认及其意义.中国区域地质,1994,3:211-214.
    王涛,张国伟,王晓霞,李伍平.一种可能的多陆块、小洋盆、弱俯冲的动力学特征及其花岗岩演化特点一以秦岭造山带核部花岗岩为例.南京大学学报(自然科学),1999,35(6):659—667.
    王晓霞,王涛,李伍平.秦岭杂岩中花岗质片麻岩体的岩石地球化学特征及成因.矿物岩石,1997,17(3):76—82.
    王艺芬,徐贵忠.东秦岭耀岭河群火山岩的初步研究.成都地质学院学报,1990,17(3):57—67.
    夏林圻,夏祖春,徐学义.南秦岭中-晚元古代火山岩性质与前寒武纪大陆裂解.中国科学(D),1996a,26(3):237-243.
    肖庆辉,邓晋福,马大铨等.花岗岩研究思维与方法.北京:地质出版社,2002,172-192.
    徐备,乔广生.赣东北晚元古代蛇绿岩套的Sm-Nd同位素年龄及原始构造环境.南京大学学报(地球科学版),1998,3:108-114.
    许继锋,张本仁,韩吟文.东秦岭造山带两类元古宙地壳基底及其地壳增生.地球科学—中国地质大学学报,1996,21(5):476—480.
    杨经绥,许志琴,裴先治等,秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别.地质学报,2002,76(4):484-495.
    游振东,索书田,韩郁菁等.秦岭杂岩的变形变质史.见:刘国惠,张寿广主编,秦岭—大巴山地质论文集(一),变质地质.北京;北京科学技术出版社,1990,1-10.
    游振东,索书田等著.造山带核部杂岩变质过程与构造解析-以东秦岭为例.武汉:中国地质大学出版社,1991b.
    张本仁,韩吟文,许继锋等.北秦岭新元古代前属扬子板块的地球化学征据.高校地质学报,1998,4(4):369-382.
    张本仁,张宏飞,赵志丹等.东秦岭及邻区壳幔地球化学分区和演化及其大地构造意义.中国科学(D 辑),1996,26(3):201-208.
    张本仁.秦岭地幔柱源岩浆活动及其动力学意义.地学前缘,2001,8(3):57-66.
    张成立,周鼎武,刘颖宇.武当山地块基性岩墙群地球化学研究及其大地构造意义.地球化学,1998,28(2):126-135.
    张成立,周鼎武,金海龙等.武当地块基性岩墙群及耀岭河群基性火山岩的Sr、Nd、Pb、O同位素研究.岩石学报,1999,15(3):430-437.
    张国伟,张本仁,袁学诚,肖庆辉等.秦岭造山带与大陆动力学.北京:科学出版社,2001,1-885.
    张宏飞,欧阳建平,凌文黎等.从Pb同位素组成特征论东秦岭陡岭块体的构造归属.地球科学,1996,21(5):487-490.
    张宏飞,张本仁,凌文黎,高山,欧阳建平.南秦岭新元古代地壳增生事件:花岗质岩石钕同位素示综.地球化学,1997,26(5):16—23.
    张泽军.陕西松树沟超镁铁岩中两类铬尖晶石及其岩石学意义.西北大学学报(自然科学版),1994,24(6):541-546.
    张泽军,安三元.松树沟超镁铁岩—铬铁岩的稀土地球化学.西安地质学院学报,1989,11(4):16-23.
    张泽军,安三元.松树沟超镁铁质岩岩石化学特征及其成因意义.西安地质学院学报,1990,12(2):21-27.
    张泽军,周鼎武,董云鹏.秦岭造山带松树沟元古宙蛇绿岩及其大地构造背景.大地构造与成矿学,1995,19(2):121-132.
    张正伟,潘振祥,戴耕,华北陆块南缘富碱侵入岩岩石组合及时空分年.河南地质,1996,14(4):263-271.
    张宗清,刘敦一,付国民.北秦岭变质地层同位素年代研究.北京:地质出版社,1994,1-191.
    张宗清,张国伟,付国民等.秦岭变质地层年龄及其构造意义.中国科学(D辑),1996,26(3):216-222.
    张宗清,张国伟,唐索寒.南秦岭变质地层同位素年代学.北京:地质出版社,2002b,1-256.
    周鼎武,张成立,刘良等.秦岭造山带及相邻地块元古代基性岩墙群研究综述及相关问题讨论.岩石学报,2000,16(1):22-27.
    周鼎武,董云鹏,刘良,张旗,张宗清.松树沟元古宙蛇绿岩Nd、Sr、Pb同位素地球化学特征.地质科学,1998a,33(1):31-38.
    周鼎武,张成立,刘良等.武当地块基性岩墙群的Sm-Nd定年及其相关问题讨论.地球学报,1998b,19(1):25-30.
    周鼎武,张成立,王居里等.武当地块基性岩墙群初步研究及其地质意义.科学通报,1997,42(23):2546-2549.
    周鼎武,张泽军,董云鹏等.东秦岭商南松树沟元古宙蛇绿岩片的地质、地球化学特征.岩石学报,1995,11(增刊):154-164.
    周国庆,赵建新.华南扬子克拉通东南缘赣东北蛇绿岩的Sm-Nd同位素研究.科学通报,1991,36(2):129-132.
    周玲棣,一个早元古代碱性花岗岩的U-Pb同位素年龄研究.科学通报,1993,38(15):1407-1410.
    Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 1999, 46: 605-626.
    
    Batchelor R A and Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol., 1985, 48: 43-55.
    
    Borg S G, DePolo D J and Smith B M. Isotopic structure and tectonics of the central Transantarctic Mountains. J Geophys Res, 1990, 95: 6647-6667.
    Chen Jiangfeng, Foland K A, Xing Fengming. Magmatism along the southeast margin of the Yangtze and Cathysia blocks of China. Geology, 1991, 19: 815-818.
    Chen Zhihong, Lu Songnian, Li Huaikun and Li Huimin. Geology, Petrology and Geochemistry of Neoproterozoic granitoids of the Qinling Orogen, Centrel China, and its geological significance. In "The role of Sri Lanka in Rodinia and Gondwana assembly and break-up " (Editor: Kehelpannala K. V W), 2003, 62-64.
    Compston W, Williams I S, Krischvink J L, et al. Zircon U - Pb ages of early Cambrian time - scale (J) . J. Geol. Soc, 1992,149:171-184.
    Dalziel I W D. Pacific margins of Laurentia and East Antarctic-Australia as a conjugate rift pair; evidence and implication for an Encambrian supercontinent. Geology, 1991, 19: 598-601.
    Dalzier I W D., Mosher S., Gahagan L M. Laurentia-Kalahari collision and the assembly of Rodinia. J. Geol., 2000, 108:499-513.
    Dehler C M., Elrick M., Karlstrom K E., Smith G A., Crossey L J., Timmons J M. Neoproterozoic Chuar Group (~800-742Ma), Grand Canyon: a record of cyclic marine deposition during global cooling and supercontinent rifting. Sedimentary Geol., 2001, 141-142:465-499.
    Evans D A D, Li Z X et al, A high quality mid-Neoproterozoic paleomagnetic pole from South China with implication for ice age and the breakup configuration of Rodinia. Precambrian Research, 2000, 100: 313-334.
    Fetter A H and Goldberg S A. Age and geochemical characteristics of bimodal magmatism in the Neoproterozoic Grandfather Mountain Rift Basin. J Geol, 1995, 103: 313-326.
    Foster H J., Tischendorf G., Trumbull R B. An evolution of the Rb vs. (Y+Nb) discrimination diagram to infer tectonic setting of silisic igneous rocks. Lithos, 1997, 40: 261-293.
    Hanchar J M., Miller C F. Zircon zonation pattern as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chemical Geol. 1993, 110:1-13.
    Hanchar J M., Hoskin P W O. Zircon. Reviews in mineralogy & geochemistry. 2003, 53:1-500.
    Hartnady, C J H. About turn for supercontinents. Nature, 1991, 352, 476-478.
    Heaman L M, LeCheminant A N and Rainbird R H. Nature and timing of Franklin igneous events, Canada: implications for a Late Proterozoic mantle plume and the break-up of Laurentia. Earth Planet Sci Lett, 1992, 109: 117-131.
    Hoffman PF. Did the breakup of Laurentia turn Gondwana inside out? Science, 1991, 252: 1409-1412.
    Hoffman P F. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball earth. J. African Earth Sci. 1999, 28:17-33.
    Kalsbeek F., Thrane K., Nutman A P., Jepsen H F. Late Mesoproterozoic to early Neoproterozoic histry of the East Greenland Caledonides: evidence for Grenvillian orogenesis? Journal of the Geological Society, London, 2000, 157:1215-1225.
    
    Krogh T E. A low contamination method for the hydrothermal decomposition of zircon and extraction of U and Pb for isotope age determination. Geochim Cosmochim Acta, 1973, 37: 485~494.
    Kuzmichev A B., Bibikova E V Zhuravlev D Z. Neoproterozoic (~ 800 Ma) orogeny in the Tuva-Mongolia Massif (Siberia): island- continent collision at the northeast Rodinia margin. Precambrian Res., 2001, 110: 109-126.
    Li X H. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: timing of Neoproterozoic Jinning: orogeny in SE China and implications for Rodinia assembly. Precambrian Res., 1999, 97: 43-57.
    Li X H., Li Z X., Zhou H., Liu Y., Kinny P D. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian rift of South China: implications for the initial rifting of Rodinia. Precambrian Res., 2002, 113: 135-154.
    Li Z X., Li X H., Kinny P D., Wang J., Zhang S., Zhou H. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Res., 2003, 122: 85-109.
    Li Z X, Li X H, Kinny P D et al.. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth Planet Sci Lett, 1999a, 173: 171-181.
    Li Z X, Li X H, Powell C M, Wang J. 830-820 Ma mafic to felsic igneous activity in South China part of plume-induced rifting that led to the breakup of Rodinia? J. Conf. Abst., 1999b, 4: 117.
    Li Z X, Zhang L H, Powell C M. Positions of the East Asian cratons in the Neoproterozoic super-continent Rodinia. Australia J Earth Science, 1996, 43(6): 593-604.
    Li Z X, Zhang L H, Powell C M. South China in Rodinia: part of the missing link between Australia—East Antarctic and Laurentia? Geology, 1995, 23(5): 407-410.
    Ling W., Gao S., Zhang B., Li h., Liu Y., Cheng J. Neoproterozoic tectonic evolution of the northern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Res. 2003,122: 111-140.
    Lu Songnian, Yang Chunliang, Li Huaikun and Li Humin. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 2002, 5(1): 123-131.
    Ludwig K R. Isoplot—A plotting and refression program for radiogenic-isotope data (J) . USGS Open-file report, Version 2.75,1994, 41-45.
    McMenamin M A S, McMenamin D L S. The Emergence of Animals: the Cambrian Breakthrough. New York: Columbia University Press, 1990, 1-12.
    Moores E W. South West U.S.—East Antarctic (SWEAT) connection: a hypothesis. Geology, 1991, 1.9: 425-428.
    Park J K, Buchan K L and Harlan S S. A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagnetism of ca. 780 Ma mafic intrusions in western North America. Earth Planet Sci Lett, 1995, 132: 129-139.
    Pearce J A, Harris N B W and Tindle A G Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 1984, 25: 956-983.
    Pearce J A. A user's guide to basalt discrimination diagrams. In: Wyman D. A. (ed. ), Trace element geochemistry of volcanic rocks: application for massive sulphide exploration. 1996. Winnipeg, Manitoba, pp: 79-112.
    Pisarevsky S A, Wingate M T D, Powell CMcA. Models of Rodinia assembly and fragmentation. From Yoshida M & Windley B F. ( eds) Proterozoic East Gondwana: Supercontinent Assembly and Breakup. 《Proterozoic East Gondwana: Supercontinent Assembly and Breakup》 edited by M Yoshida, BF Windlet and S Dasgupta, Geological Society, London, Special Publications, 2003, 35~56.
    Powell C McA, Pisarevsky S A. Late Neoproterozoic assembly of East Gondwanaland. Geology, 2002, 30: 3-6.
    Powell C McA, Li Z X, McElhinny M W, Meert J G & Park J K. Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology, 1993, 21: 889-892.
    Powell C McA, Preiss W V, Gatehouse C G et al., South Australia record of a Rodinia epicontinental basin and its mid-Neoproterozoic breakup (~ 700 Ma) to form the Palaeo-Pacific Ocean. Tectonophysics, 1994, 237: 113-140.
    Soderlund U., Moller C., Andersson J., Johansson L., Whitehouse M. Zircon geochronology in polymetamotphic gneiss in the Sveconorwegian orogen, SW Sweden: ion microprob evidence for 1.46-1.42 and 0.98-0.96 Ga reworking. Precambrian Res., 2002, 113: 193-225.
    Su Q, Goldberg S A and Fullagar P D. Precise U-Pb zircon ages of Neoproterozoic plutons in the southern Appalachian Blue Ridge and their implications for the initial rifting of Laurentia. Precam Res., 1994, 68: 81-95.
    Sylvester P J. Post-collisional strongly peraluminous granites. Lithos, 1998, 45: 29-44.
    Tack L., Wingate M T D., Liegeois J P., Fernandez-Alonso M., Deblond A. Early Neoproterozoic magmatism (1000-910Ma) of the Zadinian and Mayumbian Group (Bas-Congo): onset of Rodinia rifting at the western edge of the Congo craton. Precambrian Res., 2001, 110:277-306.
    Vernikovsky V A., Vernikovskaya A E. Central Taimyr accretionary belt (arctic Asia): Meso-Neoproterozoic tectonic evolution and Rodinia break-up. Precambrian Res., 2001, 110: 127-141.
    Wang J, Li Z X, Li X H et al. Nanhua rift: A story of continental rift related to Rodinia break-up. Gondwana Res, 1999, 2:614-615.
    Wang T., Wang X., Zhang G., Pei X., Zhang C. Remnants of a Neoproterozoic collisional orogenic belt in the core of the Phanerozoic Qinling orogenic belt (China). Gondwana Res, 2003, 6: 699-710.
    Watt G R., Kinny P D., Friderichsen J D. U-Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides. Journal of the Geological Society, London, 2000, 157:1031-1048.
    
    Watt G R. .Thrane K. Early Neoproterozoic events in East Greenland. Precambrian Res., 2001, 110:165-184.
    
    Wilde S A, Zhao G C, Sun M. Development of the North China Craton during the late Archaean and its final araalgmation at 1.8Ga: some speculations on its position within a global Paleoproterozoic supercontenent. Gondwana Research, 2002, 5: 85-94.
    Williams I S. and Claesson S. Isotope evidence for the Precambrian province and Caledonian metamorphism of high - grade paragneiss from the Seve Nappes, Scandinavian Caledonides, II. Ion microprobe zircon U - Th -Pb (J) . Contrib. Mineral. Petrol., 1987, 97:205—217.
    Wingate M T D, Campbell I H, Compston W et al.. Ion microprobe U-Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precam Res, 1998, 87: 135-159.
    Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the Central Zone of the North China Craton: implication for Paleoproterozoic tectonic evolution[J]. Precamb. Res., 2000, 107: 45-73.
    Zhao J X, McCulloch M T and Korsch R J. Characterisation of a plume-related ~ 800 Ma magmatic event and its implications for basin formation in central-southern Australia. Earth Planet Sci Lett, 1994, 121: 349-367.
    Zhou M F., Kenney A K., Sun M., Malpas J., Lesher C M. Neoproterozoic arc-related mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia. J. Geol. 2002, 110:611-618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700