用户名: 密码: 验证码:
含氮氧配体金属配合物的合成、晶体结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机配位聚合物是由金属中心离子与有机配体通过配位键的作用以及其它化学作用形成的,其多样化的结构导致了许多特殊的性能。
     本文通过水热法和液相扩散法合成了一系列具有新型结构的金属-有机配位聚合物,并通过红外光谱、元素分析、X-射线单晶衍射和热重分析等方法,对其结构和热稳定性进行了表征。主要内容如下:
     1.利用单一配体2,2'-联吡啶合成了一种简单的金属-有机配位聚合物Ⅰ:[Cu_4(bpy)_4(OH)_4]Cl_4·6H_2O。在此基础上,添加芳香二羧酸配体又合成出了两种配合Ⅱ:[Cu_2(C_(10)H_8N_2)_2(C_8H_4O_5)_2(H_2O)_2]和Ⅲ:{[Cu_2(bpy)(tpa)_2(bpy)]·H_2O}_n。其中Ⅰ是四核配合物,含有大量的分子间氢键(O-H…Cl和O-H…O),这些氢键沿着b轴方向形成交替连接的六元环和八元环。配合物Ⅱ的三维结构比较新颖,具有双核中心结构。在合成Ⅱ的过程中,间苯二甲酸在水热反应中被原位羟基化,证明了水热合成法容易产生结构新颖的配合物的优点。配合物Ⅲ的三维结构是由沿不同方向的两组平行一维“之”字链之间通过氢键和芳香(杂)环之间的π-π堆积作用而产生的。
     2.选用烟酸做配体合成了两种配合物Ⅳ:[Cu(NcA)_2]_∞和Ⅴ:[Cu(NcA)_2(H_2O)_4]。由于烟酸配体两种不同的配位原子N和O以及它们与Cu(Ⅱ)键合能力的不同,化合物Ⅳ和Ⅴ具有完全不同的结构特点:在化合物Ⅳ中,烟酸配体的N和O均与Cu(Ⅱ)配位,Ⅳ具有纯粹依靠共价键和配位键形成的无限三维网络结构;在化合物Ⅴ中仅有N与Cu(Ⅱ)配位,其结构在分子间O-H...O氢键和芳香杂环之间的π-π作用下扩展成无限二维面结构。
     3.在合成出配合物V后,我们加入与O配位能力较强的稀土金属盐,合成出了一种3d-4f异核化合物Ⅵ:[LaCu_3(C_8H_3O_5)_3(H_2O)_3]_n。和一种稀土金属配合物Ⅶ[Nd_2(C_8H_6O_4)_4(H_2O)]·H_2O。合成方法的不同再加上羧酸根配体的丰富的配位模式使得Ⅵ和Ⅶ的结构迥异。在水热合成化合物Ⅵ的过程中,间苯二甲酸配体同样发生了原位羟基化反应。化合物Ⅶ是采用液相扩散法合成的,因此间苯二甲酸配体直接与稀土金属离子配位。由于稀土离子的配位数比较高,因此在配合物中都含有大量的配位水分子,进而存在大量的分子内和分子间O-H...O氢键作用力,在进一步稳定化合物结构的同时将其扩展成无限三维网络结构。
Metalorganic coordination polymers are formed by the coordination bonds between organic ligands and metal ions. Diversified structures of the coordination polymers resulted in unusual properties of the novel materials.
     In this thesis, seven metal-organic coordination polymers with novel structures were hydrothermally synthesized. Structures and thermal stabilization of these coordination polymers were characterized by infrared spectra, elemental analysis, X-ray single crystal diffraction and thermal gravity methods. The main contents are as follows:
     1. 2,2'-bipyridine was used to synthesize one simple metal-organic coordination polymerⅠ:[Cu_4(bpy)_4(OH)_4]Cl_4·6H_2O. Benzendicaiboxylic acids were then added to synthesize coordination polymersⅡ:[Cu_2(C_(10)H_8N_2)_2(C_8H_4O_5)_2(H_2O)_2] andⅢ:{[Cu_2(bpy)(tpa)_2(bpy)]·H_2O}_n. Among them,Ⅰis tetra-nuclears structure which contains abundant inter-molecular hydrogen bonds O-H…Cl and O-H…O. These hydrogen bonds alternatively formed six-member and eight-member rings along b direction.Ⅱhas a novel three-dimensional network with a kind of binuclear-centered structure. In the process of synthesizingⅡ, isophthalic acid underwent in-situ oxidative hydroxylation before coordinating with Cu (Ⅱ) ion, proving that coordination compounds with novel structures are easily achieved by hydrothermal synthesis. The three-dimensional network ofⅢis constructed by inter-molecular hydrogen bonds andπ-πstacking interactions existing between two parallel "zigzag" chains in two different directions.
     2. Nicotinic acid was chosen as the ligand which contains N and O as the coordination atoms. Coordination polymersⅣ:[Cu(NcA)_2]_∞andⅤ:[Cu(NcA)_2(H_2O)_4] were synthesized. Due to the different bond abilities of N and O with Cu(Ⅱ), the structures ofⅣandⅤare different from each other. InⅣ, both N and O were bonded with Cu(Ⅱ) while only N did so inⅤ. Besides, the structure ofⅣis three-dimensional which was constructed by covalent bonds and coordinated bonds whileⅤhas a two-dimensional face structure extended by O-H…O hydrogen bonds andπ-πstacking interactions.
     3. On the basis of the synthesis ofⅤ, rare earth metal ions were added which have stronger bond abilities with O compared with N. One heteronuclear coordination polymerⅥ[LaCu_3(C_8H_3O_5)_3(H_2O)_3]_n and one rare earth metal-organic coordination polymerⅦ[Nd_2(C_8H_6O_4)_4(H_2O)]·H_2O were synthesized. InⅥ, isophthalic acid was also in-situ oxidative hydroxylated like that inⅡ. While inⅦwhich was produced by liquid diffusion isophthalic acid was directly coordinated with Nd(Ⅲ). Because the coordination number of rare earth metal ions is usually high, so a plenty of coordinated water molecules existed inⅥandⅦ, which further formed abundant hydrogen bonds. These hydrogen bonds helped to stabilize the structures ofⅥandⅦwhile at the same time extended them into three-dimensional networks.
引文
[1] G. Tsoucaris, Ed. Current Challenges on Large Supramolecular Assemblies: Dordrecht: Bos-ton: Kluwer Academic Publishers, 1999.
    [2]叶建平,秦利.吡啶羧酸铕(Ⅲ)配合物发光性能的研究中国稀土学报,1991,9(2):1461.
    [3] B. J. Holiday, C. A. Mirkin. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry. Angew. Chem Int. Ed. Engl., 2001, 40,2022-2026.
    [4] J. M. Lehn. Supramolecular Chemistry-Scope and Perspective Molecules, Supermolecules and Molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 1988,27,89-112.
    [5] C. B. Aakerry, K. R. Seddon. The hydrogen bond and crystal engineering. Chem. Soc. Rev., 1993,3:397-407.
    [6] M. Eddaoudi, D. B. Moler, H.L.Li, B. L. Chen, T. M. Reineke, M. O'Keeffe, O. M. Yaghi, "Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal - organic Carboxylate Frameworks", Acc.Chem. Res., 2001,34(4), 319 - 330.
    [7] B. F. Hoskins, R. Robson, "Infinite Polymeric frameworks consisting of three dimensionally linked rod-like segments", J. Am. Chem. Soc., 1989, 111, 5962-5964.
    [8] M. Fujita, D. Ogura. Migazawa et al. Self-assembly of ten molecules into nanometer-sized organic framework. [J]. Nature, 1995,378,469.
    [9]吴世华,解勤学,朱常英等.高分子科学与工程.[J]2000,16(3),1-5.
    [10]杨士姚.钴、镍、铜、锌离子与芳香羧酸配位聚合物的组装、结构和性质,博士学位论文,厦门大学,2002.
    [11] S.R.Batten, R.Robson., Interpenetrating Nets: Ordered, Periodic Entanglement[J],Angew. Chem. Ed. English, 1998,37:1460-1477.
    [12] B. F. Abrahams, B. F. Hoskins,R. Robson, A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks J. Am. Chem. Soc., 1991,113,3606.
    [13] S. R. Baten, R. Robson, Interpenetrating Nets: Ordered, Periodic Entanglement Angew .Chem. Int. Ed. Engl., 1998,37,1460-1494.
    [14] Electron chemistry and ESR spectroscopy of mononuclear and heterodinuclear complexes. [J]. Inorg. Chem., 1989,28:1133-1148.
    [15] T. Hayashi, T. Takimura, H. Ogoshi. Photoinduced Singlet Electron Transfer in a Complex Formed from Zinc Myoglobin and Methylviologen: Artificial Recognition by a Chemically Modified Porphyrin. [J]. Am. Chem. Soc., 1995, 117:11606-11607.
    [16] M. Ohba, N. Maruono, H. Okawa, T. Enokl, J. M. Preparation, Clathration Ability, and Catalysis of a Dimensional Square Network Material Composed of Cadmium(Ⅲ) and 4,4'-bipyridine. [J]. Am. Chem. Soc., 1994,116:1151-1152.
    [17] M. Ohba, H. Okawa, N. Fukita, Y. Hashimoto. Quantum Mechanical Analysis of an a-Carboxylate-substituted Oxocarbenium Ion Isotope Effects for Formation of the Sialyl Cation and the Origin of an Unusually Large Secondary ~(14)C Isotope Effect. [J]. Am. Chem. Soc., 1997,119:1011-1017.
    [18] P. J. Stankie Wice, M. J. Gesser, A. S. Tracey, et al. Biochem. [M]. 1987, 26: 1264.
    [19] Z. Y. Wang, R. G. Xiong, B. M. Foxman, W. B. Lin. Nanoporous, Interpenetrated Metal-organjc Diamondoid Networks. [J]. Inorg. Chem., 1999, 38:2969-2973.
    [20] Owen R. Evans, G. Xiong, Z. Y. Wang, George K. Wong, W. B. Lin. Crystal Engineering of Acentric Diamondoid Metal-organic Coordination Networks[J]. Angew. Chem. Int. Ed. Engl., 1999,38: 536-538.
    [21] Q Yang, H. G. Zhu, B. H. Liang, X. M. Chen. Synthesis and crystal structures of four metal-Organic Coordination networks constructed from cadmium(Ⅱ) thiocyanate and nicotinic acid derivative with hydrogen bonds. [J]. Chem. Soc., Dalton Trans, 2001,580-585.
    [22] D. M. PooJary, B. Zhagn. A clear gield. pillared layered metal phosphonates, synthesis and X-ray powder structure copper and zinc Alkylenebis(Phosphonates). [J]. Am. Chem. Soc 1997,119:12550-12559.
    [23] A. P. Cote, M. J. Ferguson, K. A. Khan, G. D. Enright, A. D. Kulynych, et.Intercalation of Alcohols in Ag Sulfonates: Topotatic Behavior Despite Flexible Layers. [J]. Inorg. Chem., 2002,41: 287-292.
    [24]郑汝骊,王恩波.多酸化学.[J].化学通报,1984,9:12.
    [25]M.T.Pope,王恩波等译.杂多和同多金属氧酸盐.[M].吉林:吉林大学出版社,1991.
    [26]李伟,方瑞云.邻菲啰啉、间苯二甲酸和Ce~(3+)配合物的合成及晶体培养.广东化工,2006,33(162):17.
    [27]李选,陈晓影,袁荞龙等.草酰胺配体的微波合成.有机化学,2006,26(8):1100.
    [28]谭迪,杨克儿,佟珊玲等.无溶剂微波合成法MeSO_2苯基四苯并卟啉锌.化学与生物工程,2006,23(7):51.
    [29]郝保红,黄俊华.晶体生长机理的研究综述.北京石油化工学院学报,2006,14(2):58.
    [30]杨健明,温晓燕,吕剑.含氧芳香族环化合物的加氢催化剂研究进展.工业催化,2003,11(3):25.
    [31]黄晓春,张杰鹏,陈小明.[Zn(bim)_2]·(H_2O)_(1.67):具有方钠石拓扑结构的金属-有机敞开骨架.科学通报,2003,48(14).
    [32]申屠宝卿,吴健一,翁志学.聚合物配位体结构对钴卟啉氧结合性能的影响.化工学报.2006,57(2):409.
    [33]金岚,汪长春.配位诱导铕(Ⅲ)/聚乙二醇-聚丙烯酸嵌段聚合物胶束的研究.化工学报.2006,64(4):357.
    [34]洪茂椿,陈荣,梁文平.21世纪的无机化学[M]北京:科学出版社,2005,3-19,281-306.
    [35]M. Eddaoudi, D. B. Moler, H. Li, B. Chen, et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res., 2001,34: 319-330.
    [36]杜淼,布显和.阴离子在构筑配位聚合物网络结构中的作用.[J].无机化学学报,2003,19(1):1-6.
    [37] Du Miao, Bu Xian-He, Guo Ya-Mei, Joan Ribas, Proton-controlled inter-conversion between an achiral discrete molecular and a chiral interpenetrated double-chain architecture, Carmen diaz, Chem. Commun., 2002, 2(21): 1359-7345.
    [38] Tong M. L., Chen X. M.. Helical Silver(Ⅰ) Chain Organized into 2-D Networks by Metal-Counterion or Metal-Metal Bonding. Inorg. Chem., 1998, 37, 5278-5281.
    [39]马春宏,王仁章,郭东刚等.梯形(phen)Zn-O-MoO_2晶体的水热合成与表征. 东北师范大学报,2006,38(1):59.
    [40]杨勇,沈泓滢,刑航等.微孔配位聚合物作为新型储氢材料的研究.化学进展.2006,18(5):648.
    [41]柏龚,党东宾,朱润生.多孔金属有机框架的组装与性能研究进展.化学研究.2006,17(3):93.
    [42]张泉平,杜海燕,孙家等.光致发光稀土有机配合物材料的研究进展及应用.化工新型材料,2006,34(6):1.
    [43] Dutzler R., Campbell E. B.; Mackinnon R. Gating the selectivity Filter in sicchloride channels. Science, 2003,300,108.
    [44] Haiper S. R., Cohen S. M., Self-Assembly of Two Distinct Supramolecular Motifs in a Single Crystalline Framework. Angew. Chem., Int. Ed., 2004, 43, 2385.
    [45] Cui Y., Lee J. S., Lin W. B., Interlocked Chiral Nanotubes Assembled From Quintuple Helices. J. Am. Chem. Soc., 2003,125,6014.
    [46]王巧玲,李丕高,冯勇等.新型分子双链配位聚合物的合成、晶体结构和表征,延安大学学报(自然科学版),2006,25(3):46.
    [47] S. J. Miller, A. J. Epstein. Organic and Organometallic Molecular Magnetic Materials-Designer Magnets. Angew. Chem. Int. Ed. Engl., 1994,33(4): 385.
    [48]徐筱杰.超分子建筑-从分子到材料.北京:科学技术文献出版社,2000,23.
    [49]沈吴宇,廖代正.生物体系和模型化合物顺磁离子间的磁相互作用.化学通报,1998,10:14.
    [50] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C., Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, SIR97: a new tool for crystal structure determination and refinement, J. Appl. Cryst., 1999, 32,115-119.
    [51] G. M. Sheldrick, SHELXL97, Program for the refinement of crystal structures, Univ. G(?)ttingen 1997.
    [52] K. Bechgard. Structure and Properties of Molecular Crystals, Elsevier Science Publishers, B. V. Amsterdam, 1990,20,1546-1548.
    [53] Telfer S. G., Kuroda R. 1,1'-Binaphthyl-2,2'-diol and 2,2'-diamino-1,1'-binaphthyl: versatile frameworks for chiral ligands in coordination and metallosupramolecular chemistry. Coord Chem. Rev., 2003, 242,33-46.
    [54] Li J. R., Tao Y., Yu Q. et al. A pcu-type metal-organic framework with spindle [Zn_7(OH)_8]~(6+) cluster as secondary building units. Chem. Commun., 2007, 1527-1529.
    [55] Maji T. K., Matsuda R., Kitagawa S. A flexible interpenetrating coordination framework with a bimodal porous functionality. Nature Mater., 2007,6,142-148.
    [56] Shi X., Zhu G. S., Qiu S. L, et al. Zn_2[(S)-O_3PCH_2NHC_4H_7CO_2]_2: A Homochiral 3D Zinc Phosphonate with Helical Channels. Angew. Chem. Int. Ed., 2004, 43, 6482-6485.
    [57] Abourahma H., Moulton B., Kravtsov V., et al. Supramolecular Isomerism in Coordination Compounds: Nanoscale Molecular Hexagons and Chains. J. Am. Chem. Soc., 2002,124,9990-9991.
    [58] Rowsell J. L. C., Spencer E. C., Echert J., et al. Gas Adsorption Sites in a Large-Pore Metal-Organic Framework. Science., 2005,309,1350-1354.
    [59] Zhu H. F., Fan J., Okamura T., et al. Metal-Organic Architectures of Silver(Ⅰ), Cadmium(Ⅱ), and Copper(Ⅱ) with a Flexible Tricarboxylate Ligand. Inorg. Chem., 2006,45,3941-3948.
    [60] Zhang Z. H., Shen Z. L., Okamura T., et al. Syntheses and Structures of Two Series of Coordination Frameworks Based on the Assembly of 1,3,5-Benzenetriacetic Acid with Lanthanide Metal Salts. Cryst. Growth Des., 2005,5,1191-1197.
    [61] A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, Synthesis, structure, and spectroscopic properties of copper(Ⅱ) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(Ⅱ) perchlorate. J. Chem. Soc., Dalton Trans. 1984,1349-1356.
    [62] X.M. Chen, M.L. Tong, Solvothermal in Situ Metal/Ligand Reactions: A New Bridge between Coordination Chemistry and Organic Synthetic Chemistry Acc. Chem. Res., 2007,40,162-170.
    [63] J. Tao, Y. Zhang, M.L. Tong, T. Yuen, C.L. Lin, X.Y. Huang, J. Li, A mixed-valence copper coordination polymer generated by hydrothermal metal/ligand redox reactions. Chem. Commun. 2002,1342-1343.
    [64] Y.Z. Zheng, M.L. Tong, X.M. Chen, Controlled hydrothermal synthesis of copper(Ⅱ or Ⅰ,Ⅱ) coordination polymers via pH-dependent in situ metal/ligand redox reactions. New J. Chem. 2004,28,1412-1415.
    [65]K. Nakamoto, Infraed and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, New York, 1986.
    [66] Chen W., Yue Q., Chen C., et al. Assembly of a manganese(Ⅱ) pyridine-3,4-dicarboxylate polymeric network based on infinite Mn-O-C chains. [J].J. Chem. Soc. Dalton. Trans., 2003,28-30.
    [67] Tong M. L., Kitagawa S., Chang H. C., et al. Temperature-controlled hydrothermal synthesis of a 2D ferromagnetic coordination bilayered polymer and a novel 3D network with inorganic Co_3(OH)_2 ferrimagnetic chains. [J]. Chem. Commun., 2004,418-419.
    [68] Sekiya R., Nishikiori S., Ogura K. Crystalline Inclusion Compounds Constructed through Self-Assembly of Isonicotinic Acid and Thiocyanato Coordination Bridges. [J]. J. Am. Chem. Soc., 2004,126,16587-16600.
    [69] Zhang M. B., Zhang J., Zheng S. T., et al. A 3D Coordination Framework Based on Linkages of Nanosized Hydroxo Lanthanide Clusters and Copper Centers by Isonicotinate Ligands. [J]. Angew. Chem. Int. Ed., 2005,44,1385-1388.
    [70] K. Nakamoto, Infraed and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, New York, 1986.
    [71] Bunzli J. C. G., Piguet C., "Lanthanide-containing Molecular and Supermolecular Polymetalli Functional Assemblies", Chem. Rev., 2002, 102, 1897-1928.
    [72] Choudhury D. P., Srikanth H.. "Magnetoelectrodynamics at High Frequencies in the Antiferromagnetic and Superconduction States of DyNi_2B_2C", Phys. Rev. B., 1998,58,14490-14497.
    [73] Bencini A., Bianchi A., A novel Fluorescent Chemosensor Exhibiting Exciplex Emission. An Example of an Elementary Molecular Machine Driven by pH and by Light. Chem. Commun., 2000,1639-1640.
    [74] Liu D. Q., Li J. R., Gao S., Anion Controlled 2D Assembly of a La-Cu Cation Array and its Unusual Magnetic Properties., Chem. Commun., 2002,1685-1686.
    [75] Piguet C., Edder C., Rigault S., Bernardinelli G., Bunzli J. C. G., Hopfgartner G., Isolated d-f Pairs in Supramolecular Complexes with Tunable Structural and Electronic Properties. J. Chem. Soc., Dalton Trans., 2000, 3999-4006.
    [76] Manseki K., Nakamura O., Horikawa K., Sakamoto M., Sakiyama H., Sadaoka Y., Okawa H., Synthesis of Copper(Ⅱ)-Lanthanum(Ⅲ) Complex of a Dinuclearting Macrocycle and its Hydrolytic Property for 4-Nitrophenylphosphate., Inorg. Chem., Comm., 2002,5(1), 56-58.
    [77] Coppo P., Duati M., Cola L. D., White-light Emission from an Assembly Comprising Luminescent Iridum and Europium Complexes., Angew. Chem. Int. Ed. Engl., 2005,44,1086-1810.
    [78] Edder C., Piguet C., Bunzli J. C. G., Hopfgertner G., High-Spin Iron(III) as a Semitransparent Partner for Tuning Europium(III) Luminescence in Heterodimetallic d-f Complexes., Chem. Eur., J. 2001,14(7): 3014-3024.
    [79] Wang X.; Guo Y.; Li Y.; Wang E.; Hu C.; Hu N. Novel Polyoxometalate-Templated, 3-D Supramolecular Networks Based on Lanthanide Dimers: Synthesis, Structure, and Fluorescent Properties of [Ln_2(DNBA)_4(DMF)_8][Mo_6O_(19)] (DNBA = 3,5-Dinitrobenzoate). Inorg.Chem. 2003,42,4135-4140.
    [80] Liu, C. B.; Sun, C. Y.; Jin, L. P.; Lu, S. Z. Supramolecular architecture of new lanthanide coordination polymers of 2-aminoterephthalic acid and 1, 10-phenanthroline. New J. Chem. 2004,28,1019-1026.
    [81] Gu X.J, Xue D.F. 3D Coordination Framework [Ln_4(μ_3-OH)_2Cu_6I_5(IN)_8(OAc)_3] (IN = Isonicotinate): Employing 2D Layers of Lanthanide Wheel Clusters and 1D Chains of Copper Halide Clusters. Inorg. Chem. 2007,46, 5349-5353.
    [82] Gu X. J, Xue D. F, Incorporating Metal Clusters into Three-Dimensional Ln(III)-Cu(I) Coordination Frameworks through Linear Ligands. Crystal Growth & Design, 2007,7,1726-1732.
    [83] He F., Tong M. L.g, Yu X. L., Chen X. M. Controlled Aggregation of Heterometallic Nanoscale Cu_(12)Ln_6 Clusters (Ln = Gd~(III) or Nd~(III)) into 2D Coordination Polymers. Inorg. Chem. 2005,44,559-565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700