用户名: 密码: 验证码:
横向非均匀纳米硅(nc-Si)薄膜和氧化亚铜薄膜的制备及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为两个部分。第一部分研究了横向非均匀热伏纳米硅薄膜;第二部分研究了氧化亚铜(Cu2O)光伏薄膜。
     采用磁控溅射技术在石英衬底上沉积一层200nm厚的非晶硅(a-Si)薄膜,并用真空热蒸发在其上沉积两个横向接触的厚度不同(分别为50nm和100 nm)的Al膜。将已沉积好的薄膜在N2气氛中600℃下退火45min,得到两个横向接触的具有不同晶化程度的纳米晶硅(nc-Si)薄膜。利用X射线衍射(XRD)、拉曼Raman、扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究了所制备样品的结构特性;利用自制测量装置研究了所制备样品的热伏特性。利用两种简单的化学浴方法制备了氧化亚铜(Cu2O)薄膜,第一种制备方法是将铜片放入沸腾的硫酸铜(CuSO4)溶液中,并在其表面经过化学反应制备得到氧化亚铜(Cu2O)薄膜;第二种方法是在室温下,将铜片完全浸没在CuSO4溶液中12h来制备较厚的氧化亚铜(Cu2O)薄膜。利用XRD、原子力显微镜(AFM)、SEM、紫外可见近红外分光光度计(UV-VIS)和PL光谱等研究了相同浓度不同时间与相同时间不同浓度下所制备薄膜的结构和光学特性。本论文得出如下结论:
     1.XRD研究结果表明,退火后样品的Si晶粒的平均晶粒尺寸,在A区(沉积Al膜厚度为100nm的a-Si薄膜区域)为25nm,在B区(沉积Al膜厚度为50 nm的a-Si薄膜区域)为15 nm。
     2. Raman光谱研究表明,在退火样品中存在纳米晶硅。利用高斯拟合,可估算得A区与B区的晶化率分别为56%和23%。这说明较厚Al膜诱导非晶硅薄膜晶化更充分,产生的nc-Si颗粒也较大,与XRD的测量结果一致。
     3.TEM研究表明,退火过程中Al层与a-Si层之间发生了层交换。
     4.热伏效应测试表明,在没有温度梯度的情况下,这两个不同晶化程度的nc-Si薄膜之间具有横向热伏效应。当温度为273K时,其开路电压为1.2mV,短路电流为40nA;当温度达到373K时,其开路电压达到25mV,短路电流达到1.171μA。
     5.实验的最佳条件是:在沸腾的CuSO4溶液将铜片煮1h,成膜厚度可达1.5μm,且晶粒尺寸可达μm量级;
     6.用紫外可见近红外分光光度计研究了Cu2O薄膜的光学特性,第一种方法下得出其光学带隙为1.91 eV;第二种方法下得出其光学带隙为1.88 eV;
     7.研究表明,氧化亚铜(Cu2O)薄膜在510 nm和540 nm具有光致发光峰,激发光波长为325nm,发光峰来源归因于Cu2O的带隙。
The thesis includes two parts. In the first part, we have studied the transversal thermovoltaic effect of the nc-Si thin film with different crystallization degree. In the second part, we have prepared and studied the cuprous oxide (CU2O) film photovoltaic materials.
     Two transversal contacted nanocrystalline Si (nc-Si):amorphous Si (a-Si) films with different crystallization degree has been prepared on a quartz substrate by crystallizing a 200 nm thick amorphous Si (a-Si) film using two different thick Al films (50nm and l00nm) deposited on it, and annealing at 600℃for 45 min, in N2. The structural properties of the prepared films have been studied by X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM) and TEM. The thermovoltaic effects of the prepared films have been studied by self-made measurement device. We have used two simple chemical methods to prepare Cu2O film. The first one is that copper plate was put into boiling CuSO4 solution which is used to prepare Cu2O film; The second one is that copper plate was put into CUSO4 solution for 12h under room temperature. The structural properties of the prepared films have been studied by XRD, atomic force microscope (AFM), SEM. The optical properties of the prepared films have been studied by ultraviolet-visible infrared spectrophotometer (UV-VIS) and PL. In this thesis, we obtained the following conclusions:
     1. XRD measurements indicate that the average size of nc-Si film induced by Al film is 25nm in region A and 15nm in region B.
     2. Raman spectra research proves that the nanocrystalline silicon exist in annealing sample. Through Gauss fitting, we can estimate the crystallization rate is 56% and 23% in region A and B, respectively. The research results indicate that both the crystalline volume fraction and size of crystalline grain increase with the thickness of A1 film increase, which is consistent with XRD measurements.
     3. TEM measurements indicate that during annealing process layer exchange has happened between A1 and a-Si layers.
     4. Thermovoltaic effect tests proves that there is a transversal thermovoltaic effect between the two nc-Si films, which is uniformly heated in the absence of external temperature gradients. The open circuit voltage and short circuit current is 1.2mV/40 nA at 273K,25mV/1.171μA at 373K.
     5.The best condition of experiment is:Boiling copper plates in CUSO4 solution for 1h, the thickness of film can be 1.5μm, and Cu2O grain size can reach the micron-grade;
     6. The Optical properties of the Cu2O film were studied by ultraviolet-visible infrared spectrophotometer (UV-VIS) and the optical band-gap energies of the films prepared using two different methods were determined to be 1.91eV and 1.88eV, respectively.
     7. The observed PL band centered at 510nm and 540nm are all attributed to the optical bandgap of the Cu2O.
引文
[1]G. Mahan, B.Sales, J. Sharp.[J]. Phys.Today,1997,50:42.
    [2]高敏,张景韶,Rowe D M温差电转换及其应用[M].北京:兵器工业出版社,1963.3.
    [3]Disalvo F.J., [J]. Science,1999,285:703.
    [4]Gerald, Mbrian, Jeff S. Thermoelectric materials:new approaches to an old problem [J].Physics Today,1997,50(2):42
    [5]周芸,沈容,史庆南,等.热电材料的最新进展[J].昆明理工大学学报,2003,28(3):14
    [6]Fan P,Zheng Z H,Liang G X,Zhang D P,Chai X M.[J].Acta Phys Sin,2010,59:1243.
    [7]Cheng XY,XuXF,Hu R X,Ren Z,Xu Z A,Cao G H.[J]. Acta Phys Sin,2007,56:1627.
    [8]田民波、刘德令薄膜科学与技术手册[M].北京:机械工业出版社,1991:421-422.
    [9]尾崎义治,贺集诚一郎著,赵修建,张联盟译.纳米微粒导论[M].武汉:武汉工业大学出版社,1991:121
    [10]田民波,刘德令.薄膜科学与技术手册[M].北京:机械工业出版社,1991:391.
    [11]田民波,刘德令.薄膜科学与技术手册[M].北京:机械工业出版,1991:345-346.
    [12]S.Aoshima&T.Asamki:Proc.6th.[J].Itern'l Cong.1974:253
    [13]T.Asamaki etal.:Japan.[J].J.Appl.Phys.32 1993:54
    [14]Ohyama M,Kozuka H,Yoko T.[J].Thin Solid Films,1997,306(1):78.
    [15]Ohyama M,Kozuka H,Yoko T.J.Ame. [J].Ceramic Soc.1998,81(6):1622
    [16]Ishizaki K,et al.[J].J Mater Sci.1989,24:3553
    [17]E Pihan,A Slaoui,Pri Cabarrocas,A Focsaa.Polycrystalline silicon films by alu minium-induced crystallisation:growth processvs.silicon deposition method[J].T hin solid Films.2004,451-452:328-333
    [18]K.Kinoshita et al:JPn.J.Appl.Phys.6(1967)42
    [19]吴锦雷.纳米光电功能薄膜[M].北京:北京大学出版社,2006:42-44
    [20]吴自勤,王兵.薄膜生长[M].北京:北京大学出版社,2003:320-353
    [21]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:78-84
    [22]J. I. Langgord, and A. J.C. Wilson,[J]. J.Appl. Crystallogr,1978,11:102.
    [23]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:78-84
    [24]何于亮,陈光华,张仿清.非晶态半导体物理学[M].北京:科学出版社,1989:65-70
    [25]M.Jana, D.Das, A.K.Barua. Promotion of microcrystallization by argon in moderately hydrongen diluted silane plasma[J]. Solar Energy Materials&Solar Cells,2002,74:407-413
    [26]D.Das, M.Jana. Hydrogen plasma induced microcrystallization inlayer-by-layer growth scheme[J]. Solar Energy Materials Solar Cells.2004,81:169-181.
    [27]D.Han, J.D.Lorentzen, J.Weinberg-Wolf,et al.Raman study of thin films of amorphous to microcrystalline silicon prepared by hot-wire chemical vapor deposition[J]. Journal of Applied Physics,2003,94(5):2930-2936.
    [28]Z. Iqbal, and S. Veprek.[J]. J. phys. C,1982,15:377.
    [29]S. Noultadakis, S. Logothetidis, S. Ves,[J]. J. Appl. Phys,1993,73:914.
    [30]Yang S E, Wen L W, Cheng Y S, Wang C Z, Gu J H, Hao X Y,Lu J X,[J]. Acta Phys Sin,2008,57:5176.
    [31]R.Tsu, J.Gonzalez-Hernandez, J.Dohler, S.R.Oshinsky,[J]. Solid State Communcation,1983,46:79.
    [32]Nemanich R J, Solin S A, Martin R M, Light scattering study of boron nitride microcrystals. Phys Rev B,1981,23(12):6348-6356
    [33]Campbell I H, Fauchet P M.The effects of microcrystal size and shape onthe phonon Raman spectra of crystallines semiconductors.[J]. Solid State Communications,1986,58(10):739-741
    [34]廖乾初,蓝芬兰。扫描电镜分析技术与应用[M].机械工业出版社,1990
    [35]方克明等.纳米材料微观结构的透射电镜和高分辨电镜表征技术[J].纳米科技,2005(3),26-29
    [36]张德添,何昆.原子力显微镜发展近况及其应用[J].现代仪器,2002(3):6-9
    [37]O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, S. R. Wenham,[J]. Appl. Phys. Lett,1998,73:3214.
    [38]R. P. Nair, M. Zou,[J]. Surface & Coatings Technology,2008,203:657.
    [39]D. Tsukada, Y. Matsumoto, R. Sasaki, M. Takeishi, T. Saito, N. Usami, T. Suemasu, [J]. J. Crystal Growth,2009,311:3581.
    [40]刘伟,硕士学位论文,铝诱导晶化制备多晶硅薄膜的研究[J],陕西:陕西师范大学,2008
    [41]梁厚蕴等.在铝诱导下非晶硅薄膜低温快速晶化研究[J],汕头大学学报(自然科学版),2001,16(1):35-38
    [42]S.R. Herd, P. Chaudhari, M.H. Brodsky, Metal contact induced crystallization in films of amorphous silicon and germanium[J] J. Non-Cryst.Solids 7 (1972) 309.
    [43]A. Sarikov, J. Schneider, M. Muske, S.Gall, W.Fuhs, Theoretical study of the kinetics of grain nucleation in the aluminium-induced layer-exchangepr ocess [J] J.Non-Cryst.Solids, these Proceedings, doi:10.1016/j.jnoncrysol.2005.12. 048.
    [44]G. Ekanayake, T. Quinn, H. S. Reehal. [J]. J. Crystal Growth,2006,293:351.
    [45]NAST O, WENHAM S R.[J]. Journal of Applied Physics,2000,88:124.
    [46]邓志杰,郑安生.半导体材料[M].北京:化学工业出版社,2004.268.
    [47]Li Z Q, Lin J J. Electrical resistivities and thermopowers of transparent Sn-doped indium oxide films [J]. Journal of Applied Physics,2004,96(10):5918-5920.
    [48]Gnanadurai P, Soundararajan N, Sooriamoorthy C E Investigation on the influence of thickness and temperature on the Seebeck coefficient of silver telluride thin films[J]. Vacuum,2002,67:275-284.
    [49]D1 Snoke 1 Coherent Exciton Waves[J] Science,1996,273:1351-13521
    [50]Poizot P, Laruelle S, G rugeon S, et a.l Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Na2ture,2000,407:496-4991
    [51]Huang Y, Duan X, Cu iY, et al Logic gates and computation from as sembled nanow ire building b locks [J] Science,2001,294 (9):1313-13171
    [52]Wang D, MoM, Yu D, et all Large-scale growth and shape evolution of CU2O cub es [J] Cryst Growth,2003,3(5):717-7201
    [53]Elena DM ishina, Kazunor iNaga,i Seiich iro Nak abayashi Self-As sembed Cu /Cu2O Multilayers:Deposit ion, Structure and Optical Properties[J] Nano Let t. 2001,1(8):401-4041
    [54]Gou L F, Murphy C J1 Solution-phase synthesis of CU2O nanocubes [J] Nano Lett.,2003,3(2):231-2341
    [55]Siripalaw, Perera L, Silva K. Study of Annealing Effects of Cuprous Oxide Grown by Electrodepos it ion Technique[J].Solar Energy Materials and Solar Cells,1996, 44:251-260.
    [56]周延春,Switzer J.溶液温度对电化学沉积氧化亚铜薄膜相成分和显微结构的 影响[J].材料研究学报,1996,10:512-516(in Chinese). Zhou Y C, Switzer J. Effect of Bath Temperature on the Phase Com pos it ion and Microstructure of Galvanostatic Electrodeposited Cuprous Oxide Films[J]. Chinese Journal of Materias Research,1996,10:512-516.
    [57]Fernando C, Wetthasinghe S K. Investigation of Photoelectro chemical Characteris tics of n-type CU2O Films [J]. Solar Energy Materials and SolarCells,2000,63: 299-308.
    [58]Musa AO, Akomolafe T, CarterM J. Production of Cuprous Oxide, a Solar C ellMateria, by Thermal Oxidation and a Study of Its Physical and Electrical Properties[J]. Solar Energy Materials and Solar Cells,1998,51:305-316.
    [59]Balamu rugan B, Mehta B R. Optical and Structural Properties of Nanocrystalline Copper Oxide Thin Film s Prepared by Activated Reactive Evaporation [J].Thin Solid Film s,2001,396(1-2):90-96.
    [60]R.N. Briskman, Sol. Energy Mater. Sol. Cells 27(1992) 361.
    [61]V. Kumar, S.K. Sharma, T.P. Sharma, V. Singh, Opt. Mater.12(1999)115.
    [62]J.I. Pankove.Optical process in semiconductors [M] Prentice Hall Inc.NewJ ersey, 1971,34.
    [63]Georgieva V, Risov M. Electro deposited cuprous oxide onindium thin oxide for solar applications[J]. Sol. EnergyMater. Sol. Cells,2002,73:67-73.
    [64]N. A. Mohemmed Shanid, M. Abdul Khadar. Evolution of nanostructure, phase transition and band gap tailoring inoxidized Cu thin films[J].Thin Solid Films, 2008,516:6245-6252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700