基于电子输运/内耗性质及熔体状态探索非晶合金GFA
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于大块非晶合金(BMGs)的优异性能及应用前景,近半个世纪以来,人们在不断地尝试开发新的合金系统及新的制备工艺,并从非晶合金固体—深过冷液相—平衡与过热液相的物理性质与结构角度探索玻璃形成能力(GFA)的本质。尽管在GFA判据及成分选择的经验准则方面取得了瞩目的进展,对玻璃形成能力本质的认识及新型非晶合金设计准则上仍需不断求索。
     本文以多组具有不同GFA的多元合金系(CuZr-基、LaCe-基、La-基等)为研究对象,以电阻法、内耗温度/频率谱等为主要手段探索了诸多合金升、降温过程电子输运特性、内耗性质,并以所获得的现象和规律为依据,探讨了这些特性与玻璃形成能力的依存关系和内在本质,进而从新的角度尝试提出了GFA判据及非晶合金设计准则,并进一步验证了其有效性。此外,本文以实验揭示了CuZr二元非晶合金熔体发生温度诱导结构转变的可能;据此,探索了不同状态熔体GFA的差异,以及所获非晶样品的晶化行为和产物的变化;对此,论文还依据相竞争的认知探讨了液-固及固态转变过程的物理机制,并制备出目前临界尺寸最大的CuZr二元非晶合金。本文主要结论和创新点总结如下:
     1、非晶合金升温过程内耗测试结果表明,在玻璃转变温度之前,非晶合金的内耗值Q-1及相对模量M变化不大,发生玻璃转变时,其相对模量M发生明显的下降,材料由滞弹性转变为粘弹性,相应地内耗Q-1开始明显上升,并随之逐渐形成内耗峰,随后Q-1开始开始下降直至晶化结束。这种起始于玻璃转变而终止于晶化结束的内耗峰,表明非晶合金内耗峰包含了玻璃转变和晶化转变过程。“内耗-温度”峰的明显特征为:在同一加载频率下,升温速率越高,峰温越高,且峰值也越大;内耗峰的峰值随频率上升而降低。
     2、通过对不同非晶合金的内耗-温度谱、频率谱的研究,提出并验证了一种以内耗技术确定非晶合金晶化温度Tx的方法:在内耗-温度(升温)曲线中,非晶合金的Tx可通过对Q-1-T曲线上内耗-温度峰左侧的拐点温度(dQ-1-dT曲线的峰值温度)来表征。通过对一系列具有不同GFA的非晶合金进行的内耗研究结果发现,拐点内耗值与GFA之间存在着某种相关性:对于相同或相近合金系,GFA越好的合金,拐点内耗值越高。
     3、在本文研究所涉及的非晶合金系范畴内,从室温到Tg之前某一特定温度的升温中,非晶固体呈负的电阻率温度系数。将该区间数据按lnσ—1/T进行拟合结果表明,总体符合σ=σ0exp(ΔE/kBT)物理模型,即包含有对应于Mott的无序半导体电子传输机制,表明在升温过程中非晶合金由“定域态”受热激发而跃迁到“扩展态”,从而电阻率降低。
     4、基于电子输运性质提出了判断非晶合金玻璃形成能力新的判据,定义两个与电子输运性质有关的新参数:比电阻率(ρr=ρamor/ρcrystal)和储存电阻率(Δρ=ρamor-ρcrystal)。研究结果表明,对于相同或相近非晶合金系,ρr和Δρ的值越大,GFA越好。以该判据作为GFA的评判标准,通过元素替代法研究了Zr_(57)Cu_(20)Al_(10)Ni_8Ti_(5-x)Ag_x(x=0,1,2,3,4,5)非晶合金的GFA随Ag含量的变化规律。电阻率实验结果表明,Zr_(57)Cu_(20)Al_(10)Ni_8Ag_5非晶合金具有最大的ρr和Δρ值,说明该合金具有最高的玻璃形成能力。通过铜模吸铸法得到了具有最大形成尺寸为20mm且具有高强度高塑性的Zr_(57)Cu_(20)Al_(10)Ni_8Ag_5大块非晶合金。
     5、基于Cu_(64)Zr_(36)合金的非晶形成竞争相为Cu_(10)Zr_7相的认知,通过用Ti替代7.5%的Zr元素得到的新合金在铜模吸铸过程中,使得Cu_(10)Zr_7相的析出被完全抑制且新合金的非晶形成竞争相变成Cu_(51)Zr_(14)相,如愿地使合金GFA得以增强。Cu_(50)Zr_(50)合金的非晶形成竞争相为CuZr相,通过电阻率实验对Cu_(50)Zr_(50)非晶合金进行连续升降温测试发现:CuZr相仅能在高于988K的温度下存在,在冷却过程中将会分解为Cu_(10)Zr_7相和CuZr2相,然而该分解过程具有117K的温度滞后性。分析认为,滞后温度的存在对制备非晶复合材料的过程中对稳定CuZr相有重要的作用。
     6、前人对非晶合金制备的熔体条件多以不同过热温度进行试探,而本文则以作者专门搭建的高精度、高真空、高温熔体电阻测试系统为手段,事先探明了Cu_(50)Zr_(50)及Cu_(64)Zr_(36)合金熔体在特定温区的结构敏感量电阻率的异常行为(并辅以DTA热分析验证),进而基于其信息探索了熔体状态与合金GFA及非晶晶化行为的相关性。结果表明(:1)通过电阻方法发现Cu_(50)Zr_(50)及Cu_(64)Zr_(36)两种合金熔体在高于液相线300~400K温度范围内出现了异常温度变化行为,提示此合金熔体发生了温度诱导的液-液结构转变,这一现象和推测得到了DTA热分析结果的验证;(2)根据不同熔体状态的区间选择合适的温度制备了一系列非晶薄带,连续升温模式下的电阻率和DSC测试结果表明,熔体过热温度越高,所制备的非晶合金的GFA和热稳定性越好,且由于在不同熔体状态下制备的非晶薄带在晶化过程中晶化相的析出过程明显不同;(3)发生熔体结构转变后,通过喷铸制备的Cu_(50)Zr_(50)锥形块体非晶的最大形成尺寸由2mm提高到了3mm、通过喷铸制备的Cu_(64)Zr_(36)锥形块体非晶的最大形成尺寸由1mm提高到了2.5mm。
Owing to the unique property and application prospect of bulk metallic glasses (BMGs), inrecent half a century, reseachers are trying to explore new alloy systems and new preparationtechnology continuously, and exploring the essence of glass forming ability (GFA) from physicalproperties of BMG solids-supercooled liquid-equilibrium and overheat liquid. At present, there aregreat progresses on GFA criteria and the empirical rules on selecting compositions of BMGs.However, the acquaintance of the essence of GFA and designing rules of new BMGs still needcontinuously exploring.
     Multicomponent alloy systems (CuZr-based, LaCe-based, and La-based) with different GFAare selected in this paper, by means of heating and cooling, the temperature behaviors of internalfriction property, electron transport property (resistivity) of BMGs with different GFA are explored,and the relationship and essence between GFA and above mentioned property are discussed based onthe phenomenon and laws. For further, new GFA criterion and designing principle are tried toproposed, and the effectivenesses are tested. Besides, the possibility and mechanism of temperatureinduced structure transition of CuZr binary alloy melt was explored, and the possibility of the effectsof melt temperature on GFA (critical diameter) of BMGs was also studied, meanwhile, the differenceof crystallization behavior and crystallization products of BMGs with different melt temperature isanalyzed.Based on the above results, the physical mechanism of liquid-solid transition andsolid-solid transition are discussed based on the understanding of phase competition, and new CuZrbinary BMGs with largest critical diameter are successfully prepared. The main conclusions andinnovation points are summarized as follows:
     1. The internal friction results of BMGs on heating condition reveal that the internal frictionvalue (Q-1) and relative modulus (M) have no significant changes before glass transition. Wheneverglass transition appears, the relative modulus decrease obviously which means the material changesfrom anelastic to visoelastic. Accordingly, Q-1begining to increase, and internal friction peak willappear after crystallization, afterwards, the internal friction tend to decrease until the end ofcrystallization. The internal friction peak which starts from glass transition and ends with the final ofcrystallization implies that internal friction peak includes both glass transition process andcrystallization process. The obvious characteristic of “Q-1-T” can be summarized as follows: with thesame vibration frequency, the higher the heating rate the larger the internal friction peak temperature;the internal friction peak value decrease with the increase of frequency.
     2. By studying the Q-1-T spectrum and frequency spectrum of different BMGs, a new methodfor determining the crystallization temperature of BMGs is proposed: on the Q-1-T curve, Txcan be determined from the inflexion which locates on the left side of internal friction peak (the peaktemperature of d Q-1-dT curve). By studying internal friction behaviors of a series BMGs withdifferent GFA, the results reveal that there exist certain relationships between GFA and the internalfriction value of inflexion: For BMGs with same base alloy, the higher the GFA, the larger theinternal friction value of inflexion.
     3. For the BMGs that have been studied in this paper, on heating from room temperature to acertain temperature before glass transition temperature, the temperature coffecient of BMGs isnegative with the temperature elvating. By fitting the electrical conductivity according to lnσ—1/T,the result is well in accordance with the physical model:σ=σ0exp(ΔE/(k BT)), e. g.,corresponding to the electron transport mechanism of semiconductor which proposed by Mott: theelecton which is bounded in the “localized state” can jump to the “extended state” as a result ofthermal activation which will cause the decrease of the resistivity.
     4. Owing to the special electron transport property of BMGs, new GFA criterions which relatewith electron transport property are proposed: reduced resistivity (ρr=ρamor/ρcrystal) and storageresistivity (Δρ=ρamor-ρcrystal). The results of resistivity measurements of a series BMGs reveal that thehigher the GFA, the larger the value of ρrand Δρ. Taking the electron transport criterion of BMGs asthe guiding principle of GFA, glass forming ability of Zr_(57)Cu_(20)Al_(10)Ni_8Ti_(5-x)Ag_x(x=0,1,2,3,4,5)BMGs with respect to Ag content are studied by element substitution. The results of resistivitymeasurements reveal that Zr_(57)Cu_(20)Al_(10)Ni_8Ag_5BMG has the largest ρrand Δρ, it implies thatZr_(57)Cu_(20)Al_(10)Ni_8Ag_5BMG has the best GFA. By preparing Zr_(57)Cu_(20)Al_(10)Ni_8Ag_5BMG using coppermould casting method,20mm rod with fully amorphous structure and high strength and plasticitycan be cast.
     5. Based on the understanding of Cu_(10)Zr_7phase which always competing on the glass formationof Cu_(64)Zr_(36)BMGs, by substituting7.5%Zr with Ti, the precipitation of Cu_(10)Zr_7phase can be fullyrestrained for the new alloy on copper mould casting process, and the competing crystal phase onglass formation the the new alloy change into Cu_(51)Zr_(14). The competing crystal phase on glassformation of Cu_(50)Zr_(50)BMG is CuZr. By examing the resistivity behavior with continuous heatingand cooling, we found that CuZr phase only exist in the temperature region of higher than988K, andit will decompose into Cu_(10)Zr_7and CuZr2on cooling, however, there exists large temperaturehysteresis of117K on decomposition process. It was believed that the hysteresis temperature isimportant for stabilizing CuZr phase on preparing BMG based composites.
     6. There are many reports about the effect of overheating on glass formation of BMGs, however,in the present paper, resistivity measurements of CuZr binary alloy melts on overheating conditionare performed on a special high accuracy, high vacuum melt resistivity measuring system. Abnormal temperature behaviors of Cu_(50)Zr_(50)and Cu_(64)Zr_(36)alloy melts are observed using resistivitymeasurement (proved by DTA results). Based on the results of melt state, the relationships betweenmelt state and GFA/crystallization behavior are explored. And the results are shown as follows:(1)Abnormal temperature behaviors of the melt in the temperature region of300~400K higher than theliquid temperature which implies that temperature induced liquid-liquid structure transition appeared,and this phenomenon was proved by DTA results;(2) Several overheating temperatures are selectedaccording to the different region of the melt state and metallic glass ribbons with different melt statewere prepared using single melt spinning method. Experimental results of resistivity and DSCmeasurements based on continuous heating mode reveal that elevating the overheating temperatureof alloy melts can improve the GFA and thermal-stability of CuZr binary BMGs, and crystallizationbehavior of CuZr binary BMGs are various for the CuZr binary BMGs with different meltstate.relevant melt state;(3) As liquid-liquid structure transition occurs, the critical diameter of theCu_(50)Zr_(50)cone shape sample is improved from2mm to3mm, and the critical diameter of the Cu_(64)Zr_(36)cone shape sample is improved from1mm to2.5mm.
引文
[1]惠希东,陈国良,块体非晶合金,北京:化学工业出版社,2006
    [2] J. Kramer, über nichtleitende Metallmodifikationen Ann. Phys.,1934,19:37-64.
    [3] J. Kramer, Der amorphe zustand der metalle, Z. Phys.,1937,106:675-691.
    [4] A. Brenner, D. E. Couch, E. K. Williams, J. Res, Nat. Bur. Stand.,195044:109-115.
    [5] D. Turnbull, Kinetics of solidification of supercooled liquid mercurydroplets, J. Chem. Phys.,1952,20:411-425.
    [6] W. Clement, R. H. Willens, P. Duwez, Non-crystalline structure insolidified Gold-Silicon alloys, Nature,1960,187:869-870.
    [7] H. S. Chen, J. T. Krause, E. Coleman, Elastic constants, hardness andtheir implications to flow properties of metallic glasses, J. Non-Cryst.Solids,1975,18:157-171.
    [8] W. H. Kui, A. L. Greer, D. Turnbull, Formation of bulk metallic glassby flusing, Appl. Phys. Lett.,1984,45:615-616.
    [9] A. Inoue, K. Kita, T. Zhang, T. Masumoto, An amorphous La55Al25Ni20alloy prepared by water quenching, Mater. Trans. JIM,1989,30:722-725.
    [10] A. Inoue, High strength bulk amorphous alloys with low criticalcooling rates (overview), Mater. Trans. JIM,1995,36:866-875.
    [11] A. Inoue, T. Zhang, Fabrication of bulk glassy Zr55Al10Ni5Cu30alloy of30mm in diameter by a suction casting method, Mater. Trans. JIM,1996,37:185-187.
    [12] A. Inoue, Stablization of metallic supercooled liquid and bulkamorphous alloys, Acta Mater.,2000,48:279-306.
    [13] A. Peker, W. L. Johnson, A highly processable metallic glass:Zr41.2Ti13.8Cu12.5Ni10Be22.5, Appl. Phys. Lett.,1993,63:2342-2344.
    [14] A. Inoue, N. Nishiyama, H. Kimura, Preparation and thermal stabilityof bulk amorphous Pd40Cu30Ni10P20alloy cylinder of72mm in diameter,Mater. Trans. JIM,1997,38:179-183.
    [15] Z. P. Lu, C. T. Liu, J. R. Thompson, W. D. Porter, Structuralamorphous steel, Phys. Rev. Lett.,2004,92:245503(1-4).
    [16] J. Shen, Q. Chen, J. Sun, H. Fan, G. Wang, Exceptionally highglass-forming ability of an FeCoCrMoCBY alloy, Appl. Phys. Lett.,2005,87:151907-151909.
    [17] J. Schroers, W. L. Johnson, Ductile bulk metallic glass, Phys. Rev.Lett.,2004,93:255506(1-4).
    [18] H. Ma, L. L. Shi, J. Xu, Y. Li, E. Ma, Discovering inch-diametermetallic glass in three-dimensional composition space, Appl. Phys. Lett.,2005,87:181915(1-3).
    [19] H. B. Lou, X. D. Wang, F. Xu, S. Q. Ding, Q. P. Cao, K. Hono, J. Z.Jiang,73mm-diameter bulk metallic glass rod by copper mould casting,Appl. Phys. Lett.,2011,99:051910(1-3).
    [20] N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Q. Zeng, A.Inoue, The world’s biggest glassy alloy ever made, Intermetallics,2012,30:19-24.
    [21] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, Cu-based bulk glassyalloys with high tensile strength of over2000MPa, J. Non-Cryst. Solids,2002,304:200-209.
    [22] A. Inoue, B. L. Shen, H. Koshiba, H. Kato, A. R. Yavari, Ultra-highstrength above5000MPa and soft magnetic properties of Co–Fe–Ta–Bbulk glassy alloys. Acta Mater.,2004,52:1631-1637.
    [23] K. M. Flores, R. H. Dauskardt, Enhanced toughness due to stablecrack tip damage zones in bulk metallic glass, Scri. Mater.,1999,41:937-941.
    [24] A. Inoue, Amorphous, nanoquasicrystalline and nanocrystalline alloysin Al-based systems, Prog. Mater. Sci.,1998,43:365-520.
    [25] B. Zhang, D. Q. Zhao, M. X. Pan, W. H. Wang, A. L. Greer,Amorphous metallic plastic, Phys. Rev. Lett.,200594:205502(1-4).
    [26] V. Schroeder, C. J. Gilbert, R. O. Ritchie, Comparison of the CorrosionBehavior of a Bulk Amorphous Metal, Zr41.2Ti13.8Cu12.5Ni10Be22.5, with itsCrystallized Form, Scr. Mater.,1998,38:1481-1485.
    [27] H. Chen, Y. He, G. J. Shiflet, S. J. Poon, Mechanical properties ofpartially crystallized aluminum based metallic glasses, Scr. Mater.,1991,25:1421-1424.
    [28] H. Kato, H. S. Chen, A. Inoue, Relationship between thermalexpansion coefficient and glass transition temperature in metallic glasses,2008,58:1106-1109.
    [29] G. Kumar, A. Desai, J. Schroers, Bulk metallic glass: The smaller thebetter, Adv. Mater.,2011,23:461-476.
    [30] M. M. Trexler, N. N. Thadhani, Mechanical properties of bulk metallicglasses, Prog. Mater. Sci.,2010,55:759-839.
    [31] M. W. Chen, A brief overview of bulk metallic metallic glasses, NPGAsia Mater.,2011,3:82-90.
    [32] A. Inoue, Bulk metallic glasses, CRC Press, New York,2010
    [33]胡汉起,金属凝固原理,机械工业出版社,北京,2000
    [34] P. G. Debenedetti, F. H. Stillinger, Supercooled liquids and the glasstransition, Nature,2001,410:259-267.
    [35] Y. Z. Lu, Y. J. Huang, W. Zhang, J. Shen, Free volume and viscosity ofFe-Co-Cr-Mo-C-B-Y bulk metallic glasses and their correlation with glassforming ability, Intermetallics,358(2012)1274-1277.
    [36] R. Busch, J. Schorers, W. H. Wang, Thermodynamics and kinetics ofbulk metallic glass, MRS Bull,2007,32:620-623.
    [37] C. A. Angell, Formation of glass forming liquids and biopolymers,Science,1995,267:1924-1935.
    [38] R. Busch, W. L. Johnson, The kinetic glass transition of theZr46.75Ti8.25Cu7.5Ni10Be27.5bulk metallic glass former-supercooled liquids ona long time scale, Appl. Phys. Lett.,1998,72:2695-2697.
    [39] N. Mitrovic, S. Roth, J. Eckert, Kinetics of the glass-transition andcrystallization process of Fe72-xNbxAl5Ga2P11C6B4(x=0,2) metallic glasses,Appl. Phys. Lett.,2001,78:2145-2147.
    [40]夏磊,Nd-Al-Fe-Co大块非晶的非晶形成能力、磁性和显微结构研究,上海大学博士论文,2004
    [41] M. B. Tang, D. Q. Zhao, M. X. Pan, W. H. Wang, Binary Cu-Zrmetallic glass, Chin. Phys. Lett.,2004,21:901-903.
    [42] G. Adam, J. H. Gibbs, On the temperature dependence of cooperativerelaxation properties in glass forming liquids, J. Chem. Phys.43:139-1461965.
    [43] J. H. Gibbs, E. A. Dimarzio, Nature of the glass transition and theglassy state, J. Chem. Phys.,1958,28:373-383.
    [44] A. L. Greer, Confusion by design, Nature,1993,366:303-304.
    [45] R. Bush, A. Masuhr, W. L. Johnson, Thermodynamics and kinetics ofZr-Ti-Cu-Ni-Be bulk metallic glass forming liquids, Mater. Sci. Eng. A,2001, A304-306:97-102.
    [46] M. H. Cohen, D. Turnbull, Molecular transport in liquids and glasses,J. Chem. Phys.,1959,31:1164–1169.
    [47] D. Turnbull, Under what conditions can a glass be formed? Contemp.Phys,1969,10:473–488.
    [48] D. R. Uhlmann, A kinetic treatment of glass formation, J. Non-Cryst.Solids,1972,7:337–348.
    [49]卢博斯基,非晶态金属合金,北京:冶金工业出版社,1992
    [50]戴道生,韩汝琪,非晶态物理学,北京:电子工业出版社,1988
    [51]张博,非晶金属塑料,中国科学院博士学位论文,2007
    [52] Z. P. Lu, C. T. Liu, A new glass-forming ability criterion for bulkmetallic glasses, Acta Mater.,2002,50:3501-3512.
    [53] L. E. Tanner, R. Ray, Metallic glass formation and properties in Zr andTi alloyed with Be—I the binary Zr-Be and Ti-Be systems, Acta Mater.,1979,27:1727-1747.
    [54] X. H. Lin, W. L. Johnson, Formation of Ti-Zr-Cu-Ni bulk metallicglasses, J. Appl. Phys.,199578:6514-6519.
    [55] A. Peker, W. L. Johnson, A highly processable metallic glass:Zr41.2Ti13.8Cu12.5Ni10Be22.5, Appl. Phys. Lett.,1993,63:2342-2344.
    [56]葛庭燧,固体内耗理论基础,晶界弛豫与晶界结构,北京:科学出版社,2000
    [57] Y. M. Soifer, N. P. Kobelev, L. G. Brodova, Internal friction and theYoung’s modulus change associated with amorphous to nanocrystallinephase transition in Mg-Ni-Y alloy, Nano Structured Materials,1999,12:875-878.
    [58] Q. Wang, J. M. Pelletier, Y. D. Dong, Correlation betweenmicrostructure and internal friction in a Zr41.2Ti13.8Cu12.5Ni8Be22.5Fe2bulkmetallic glass, Mater. Sci. Eng. A,2004,379:197-203.
    [59] Y. Hiki, R. Tamura, S. Takeuchi. Internal friction of metallic glassmeasured as function of strain amplitude at various temperatures, Mater.Sci. Eng. A,2009,521-522:228-231.
    [60] Q. Wang, J. Lu, F. J. Gu, H. Xu, Y. D. Dong, Isothermal internalfriction behavior of a Zr based bulk metallic glass with large supercooledliquid region, J. Phys. D: Appl. Phys.,2006,39:2851-2855.
    [61] Y. Hiki, T. Yagi, T. Aida, S. Takeuchi, Low-frequencyhigh-temperature internal friction of bulk metallic glasses, J. AlloysCompds.,2003,355:42-46.
    [62] P. Wen, D. Q. Zhao, M. X. Pan, Relaxation behaviors of bulk metallicglass forming Zr46.75Ti8.25Ni10.0Be27.5alloy, Intermetallics,2004,12:1245-1249.
    [63] Y. Hiki, M. Tanahashi, S. Takeuchi, Stabilizaiton of metallic glassstudied by internal friction measurement, J. Non-Cryst. Solids,2008,354:1780-1785.
    [64] A. S. Nowick, B. S. Berry. Anelastic Relaxation in Crystalline Solids,Academic Press, Inc., New York,1972
    [65]闻平。Zr-基大块金属玻璃的玻璃态、热玻璃转变特征和过冷液体相变的研究,中国科学院博士学位论文
    [66]冯端等著,金属物理学-第三卷金属力学性质.科学出版社,北京,1999
    [67]田勇,无序合金的电子输运性质和热学性质研究,天津大学博士论文,2011
    [68] J. M. Ziman, A theory of the electrical properties of liquid metals. I:The monovalent metals, Philos. Mag.,1961,6:1013-1034.
    [69] R. Evans, D. A. Greenwood, P. Lloyd, Calculations of the transportproperties of liquid transition metals, Phys. Lett. A,1971,35:57-58.
    [70] R. Evans, B. L. Gyorffy, N. Szabo, J. M. Ziman, In proceedings of thesecond International conference on liquid metal,1972(Taylor and Francis,London,1973), P319
    [71] A. K. Sinha, Electrical Resistivity, Thermoelectric Power, and X-RayInterference Function of Amorphous Ni-Pt-P Alloys, Phys. Rev. B,1970,1:4541-4546.
    [72] S. R. Nagel, Temperature dependence of the resistivity in metallicglasses, Phys. Rev. B,1977,16:1694-1698.
    [73] P. J. Cote, L. V. Meisel, Resistivity in amorphous and disorderedcrystalline alloys, Phys. Rev. Lett.,1977,39:102-105.
    [74] N. F. Mott, The electrical resistivity of liquid transition metals, Philos.Mag.,1972,26:1249-1261.
    [75] K. Vladar, A. Zawadowski, Theory of the interaction betweenelectrons and the two-level system in amorphous metals, Phys. Rev. B,1983,28:1564-1581.
    [76] K. Vladar, A. Zawadowski, Theory of the interaction betweenelectrons and the two-level system in amorphous metals. Ⅱ. Second-orderscaling equations, Phys. Rev. B,1983,28:1582-1595.
    [77] K. Vladar, A. Zawadowski, Theory of the interaction betweenelectrons and the two-level system in amorphous metals, Phys. Rev. B,1983,28:1596-1612.
    [78] G. W. Webb, Z. Fisk, J. J. Engelhardt, Apparent T2dependence of thenormal-state resistivities and lattice heat capacity of high-TCsuperconductors, Phys. Rev. B,1977,15:2624-2629.
    [79] O. Haruyama, H. Kimura, A. Inoue, N. Nishiyama, Change inelectrical resistivity associated with the glass transition in a continuouslycooled Pd40Cu30Ni10P20melt, Appl. Phys. Lett.,2000,76:2026-2028.
    [80] O. Haruyama, H. Kimura, N. Nishiyama, A. Inoue, Change in electrontransport property after glass transition in several Pd-based metallic glasses,J. Non-Cryst. Solids,1999,250-252:781-785.
    [81] S. V. Khonik, L. D. Kaverin, N. P. Kobelev, N. T. N. Nguyen, A. V.Lysenko, M. Y. Yazvitsky, V. A. Khonik, The kinetics of structuralrelaxation of bulk and ribbon glassy Pd40Cu30N10P20monitored by resistanceand density measurements, J. Non-Cryst. Solids,2008,354:3896-3902.
    [82] H. Y. Bai, C. Z. Tong, and P. Zhang, Electrical resistivity inZr48Nb8Cu12Fe8Be24glassy and crystallized alloys, J. Appl. Phys.,2004,95:1269-1273.
    [83] J. Guo, F. Q. Zu, Z. H. Chen, S. B. Zheng, Y. Yuan, Exploration of anew method in determining the glass transition temperature of BMGs byelectrical resistivity, Solid State Commu.2005,135:103-107.
    [84]郭晶,Zr基大块非晶合金玻璃转变特性及GFA的电阻法探索.合肥工业大学硕士学位论文,2005
    [85]孙建俊,典型二元合金熔体结构研究,山东大学博士论文,2009
    [86]毛裕文,冶金熔体,北京:冶金工业出版社,1994
    [87] F. Sette, M. H. Krisch, Dynamics of glass and glass-forming liquidsstudied by inelastic X-ray scattering, Science,1998,280:1550-1555.
    [88] P. Poole, T. Grand, C. A. Angell, P. F. Mcmillan, Polymorphism inliquids and glasses, Science,1997,275:322-323.
    [89]刘全坤,材料成型基本原理,北京:机械工业出版社,2004
    [90]王致明,几种合金熔体的不均匀性及其特征研究,山东大学博士论文,2010
    [91]陈志浩,合金熔体结构转变动力学行为探讨,合肥工业大学博士论文,2007
    [92]黄中月,二元热电材料凝固行为及热电性能与熔体状态的相关性,合肥工业大学博士论文,2010
    [93] V. Filippov, P. PoPel. Investigation of mieroheterogeneities in Ga-Pbmelts by aeoustic methods, J.Non-Cryst. Solids,2007,353:3269-3273.
    [94] G. Sivkov, D. Yagodin, S. Kofanov, Physical properties of the liquidPd-18at%Si alloy, J. Non-Cryst. Solids,2007,353:3274-3278.
    [95] Y. C. Zhao, S. Z. Kou, H. L. Suo, R. J. Wang, Y. T. Ding, Overheatingeffects on thermal stability and mechanical properties of Cu36Zr48Al8Ag8bulk metallic glasses, Mater.&Desig,2010,31:1029-1032.
    [96] Z. Z. Wang, F. Q. Zu, Z. Zhang, Dependence of GFA andcrystallization behaviors of Al86Ni9La5metallic glass on its original liquidstate, Adv. Eng. Mater.,2012,14:898-901.
    [97] X. Y. Li, F. Q. Zu, W. L. Gao, X. Cui, L. F. Wang, G. H. Ding, Effectsof the melt state on the microstructure of a Sn-3.5%Ag solder at differentcooling rates, Appl. Surf. Sci.,2012,258:5677-5682.
    [98]陈光,傅恒志等,非平衡凝固新型金属材料,北京:科学出版社,2004
    [99] W. Hoyer, R. Jodicke. Short-range and medium-range order in liquidAu-Ge alloys, J Non-Cryst. Solids,1995,102:192-193.
    [100] H. H. Liberman. Warm consolidation and cladding of glassy alloyribbons. Mater. Sci. Eng.,1980,46:241-248.
    [101] E. E. Luborsky, H. H. Liberman. Effect of melt temperature on someproperties of Fe80.5B15Si4Co0.5and Fe40Ni40B20amorphous alloys. Mater.Sci. Eng. A,1981,49:257-261.
    [102] W. E. Brower, S. C. Megli, Influence of superheat and hammer speedon the formation of metallic glasses, Mater. Sci. Eng. A,1991,133:846-849.
    [103] G. E. Abrosimova, A. S. Aronin, S. P. Pankratov, A. V. Serebrjakov,Crystallization of the Fe-B system amorphous alloys, Metallofizika,1980,2:96-101.
    [104]张博,ZrAlNiCu(Nb)大块非晶的内耗行为,合肥工业大学硕士论文,2003
    [105]李如生.非平衡热力学和耗散结构.北京:清华大学出出版社,1986
    [106] E. G. Jia, A. Q. Wu, L. J. Guo, Experimental evidence of thetransformation from microheterogeneous to microhomogeneous states inGa–Sn melts, Phys. Lett. A,2007,364:505–509.
    [107] U. Dahlborg, M. Besser, M. Calvo-Dahlborg, Structure of moltenAl–Si alloys, J. Non-Cryst. Solids,2007,353:3005-3010.
    [108] M. Dutkiewicz, E. Dutkiewicz; Study of microheterogeneousstructure of non-aqueous mixed solvents by non-linear dielectric andviscometric methods. Electro. Acta.2006,51:2346-2350.
    [109] S. Mudry, I. Shtablavyi, The influence of doping with tin on thestructure of Cu0.7Si0.3eutectic melt. J. Non-Cryst. Solids,2006,352:4287-4291.
    [110]陈镜泓,李传儒,热分析及其应用,北京:科学出版社,1985
    [111]裴光文,钟维烈,岳书彬,单晶、多晶和非晶物质的射线衍射,济南:山东大学出版社,1989
    [112]左演声,陈文哲,材料现代分析方法,北京:北京工业大学出版社,2000
    [113] X. G. Li, Y. Z. He, Internal friction of metallic glass Ni74P16B6Al4near Tx, Phys. Stat. Sol.(a),1986,95:467-472.
    [114] H. R. Sinning, Low frequency internal friction of metallic glassesnear Tg, J. Non-Cryst. Solids,1989,110:195-202.
    [115] Z. Z. Wang, F. Q. Zu, Z. Zhang, X. Cui, L. Li, J. P. Shui, Correlationbetween quenching temperature and internal friction behavior inZr55Al10Ni5Cu30bulk metallic glasses, Phys. Stat. Sol.(a),2011,208:2760-2764.
    [116] K. W. Yang, E. G. Jia, J. P. Shui, Z. G. Zhu, Crystallization study ofamorphous Pd43Ni10Cu27P20alloy by internal friction measurement, Phys.Stat. Sol.(a),2007,204:3297-3304.
    [117] B. Cai, L. Y. Shang, P. Cui, J. Eckert, Mechanism of internal frictionin bulk Zr65Cu17.5Ni10Al7.5metallic glass, Phys. Rev. B,2004,70:184208(1-5).
    [118] B. Zhang, F. Q. Zu, K. Zhen, J. P. Shui, P. Wen, Internal frictionbehaviors in Zr57Al10Ni12.4Cu15.6Nb5bulk metallic glass, J. Phys.: Condens.Matter,2002,14:7461-7470.
    [119] S. V. Nemilov, The review of possible interrelations between ionicconductivity, internal friction and the viscosity of glasses and glass formingmelts within the framework of Maxwell equations, J. Non-Cryst. Solids,2011,357:1243-1263.
    [120] Y. Z. He, X. G. Li, A new type of internal friction peak of metallicglasses near Tg, Phys. Stat. Sol.(a),1987,99:115-120.
    [121] C. Wang, Q. F. Fang, Z. G. Zhu, Internal friction study ofPb(Zr,Ti)O3ceramics with various Zr/Ti ratios and dopants, J. Phys. D:Appl. Phys.,2001,36:2657-2665.
    [122] E. Stratakis, E. Spanakis, H. Frizsche, P. Tzanetakis, Stress andinternal friction associated with light-induced structural changes of a-Si: Hdeposited on crystalline silicon microcantilevers, J. Non-Cryst. Solids,2000,266-269:506-510.
    [123] I. Yoshida, T. Asai, M. Ono, Internal friction of Ti-Ni alloys, J. AlloysCompd.,2000,310:339-343.
    [124] B. S. Berry, W. C. Pritchet, Gorsky relaxation and hydrogen diffusionin the metallic glass Pd80Si20Scr. Mater.,1981,15:637-642.
    [125] A. C. Damask, A. S. Nowick, Internal Friction Peak Associated withPrecipitation in an Al-Ag Alloy, J. Appl. Phys.,1955,26:1165-1172.
    [126] J. M. Pelletier, D. V. Louzguine-Luzgin, S. Li, A. Inoue, Elastic andviscoelastic properties of glassy, quasicrystalline and crystalline phases inZr65Cu5Ni10Al7.5Pd12.5alloys, Acta Mater.,2011,59:2797-2806.
    [127] A. J. Kailath, K. Dutta, T. C. Alex, A. Mitra, Crystallization study ofCu56Zr7Ti37metallic glass by electrical resistivity measurement, J. Mater.Res.,2011,27:275-279.
    [128] M. Dikeakos, Z. Altounian, M. Fradkin, Electronic transportproperties in amorphous and crystalline FeZr2examined via the density ofstates, Phys. Rev. B,2004,70:024209(1-6).
    [129] H. R. Sinning, F. Haessner, Determination of the glass transitiontemperature of metallic glasses by low-frequency internal frictionmeasurements, J. Non-Cryst. Solids,1987,93:53-66.
    [130] A. S. Nowick, B. S. Berry, Anelastic Relaxation in Crystalline Solids(Academic Press, New York,1972)
    [131] J. Perez, B. Duperray, D. Lefevre, Viscoelastic behavior of an oxideglass near the glass transition temperature, J. Non-Cryst. Solids,1981,44:113-136.
    [132] Q. Wang, J. M. Pelletier, L. Xia, H. Xu, Y. D. Dong, The viscoelasticproperties of bulk Zr55Cu25Ni5Al10Nb5metallic glass, J. Alloys Compd.,2006,413:181-187.
    [133] J. C. Qiao, J. M. Pelletier, Analysis of atomic mobility in aCu38Zr46Ag8Al8bulk metallic glass, J. Alloys Compd.,2013,549:370-374.
    [134] J. C. Qiao, J. M. Pelletier, Mechanical relaxation in a Zr-based bulkmetallic glass: Analysis based on physical models, J. Appl. Phys.,2012,112:033518(1-8).
    [135] R. Li, S. J. Pang, C. L. Ma, T. Zhang, Influence of similar atomsubstitution on glass formation in (La-Ce)-Al-Co bulk metallic glasses,Acta Mater.,2007,55:3719-3726.
    [136] Z. L. Long, H. Q. Wei, Y. H. Ding, P. Zhang, G. Q. Xie, A. Inoue, Anew criterion for predicting the glass-forming ability of bulk metallicglasses, J. Alloys Compd.,2009,475:207-219.
    [137] H. B. Lou, X. D. Wang, F. Xu, S. Q. Ding, Q. P. Cao, K. Hono, J. Z.Jiang,73mm-diameter bulk metallic glass rod by copper mould casting,Appl. Phys. Lett.,2011,99:051910(1-3).
    [138] Q. Luo, W. H. Wang, Rear earth based bulk metallic glasses, J.Non-Cryst. Solids,2009,355:759-775.
    [139]黄昆,固体物理学,北京:高等教育出版社,1988
    [140] P. W. Anderson, Absence of diffusion in certain random lattices, Phys.Rev.,1958,109:1492-1505.
    [141] E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan,Scaling theory of localization: Absence of quantum diffusion in twodimensions, Phys. Rev. Lett.,1979,42:673-676.
    [142] N. F. Mott, Charge transport in non-crystalline semiconductors,Advances in Solid State Physics,1969,9:22-45.
    [143] P. C. Agarwal, Phonon dispersion in Zr-Ti-Cu-Ni-Be bulk metallicglasses, Phys. B,1969,381:239-245.
    [144] A. Faggionato, H. Schulz-Baldes, D. Spehner, Mott law as lowerbound for a random walk in a random environment, Commun. Math. Phys.,2006,263:21-64.
    [145] T. C. Davey, E. H. Baker, Electrical conductivity studies of somechacogenide glasses over a large temperature range, J. Mater. Sci.,1983,18:717-720.
    [146] J. Krempasky, A theory of electrical conductivity in metallic glasses,Czech. J. Phys. B,1978,28:653-662.
    [147] J. M. Freitag, Z. Altounian, Electron transport properties of Al-Y-Nimetallic glasses, Mater. Sci. Eng. A,1997,226-228:1053-1055.
    [148] U. Mizutani, K. Yoshino, Effect of2kF/kPon electron transport anddensity of states in Hume-Rothery type metallic glasses, J. Non-Cryst.Solids,1984,61-62:1313-1318.
    [149] V. F. Gantmakher, G. I. Kulesko, V. M. Teplinsky, Resistivity ofmetallic systems with a strong dynamic disorder, Pramana J. Phys.,1987,28:509-516.
    [150] R. Gupta, A. Gupta, A. K. Nigam, G. Chandra, Effect of induceddisorder on low temperature resistivity of some non-magnetic and magneticmetallic glasses, J. Alloys Compds.,2001,326:275-279.
    [151] D. N. Manh, D. Mayou, F. C. Lackmann, A. Pasturel, Electronicstructure and chemical short-range order in amorphous CuZr and NiZralloys, J. Phys F,1987,17:1309-1321.
    [152] I. Kokanovic, Effect of disorder on the electrical resistivity in thepartially crystalline Zr76Ni24metallic glasses, J. Alloys Compds.,2006,421:12-18.
    [153] M. X. Xia, S. G. Zhang, C. L. Ma, J. G. Li, Evaluation of glassforming ability for metallic glasses based on order-disorder competition,Appl. Phys. Lett.,2006,89:091917.
    [154] Q. Jiang, B. Q. Chi, J. C. Li, A valence electron concentrationcriterion for glass-formation, Appl. Phys. Lett.,2003,82:2984-2986.
    [155] W. H. Wang, Roles of minor additions in formation and properties ofbulk metallic glasses, Prog. Mater. Sci.,2007,52:540-596.
    [156]刘绍军,王鹏飞,万冰冰,马清,Nd掺杂K0.53Na0.47NbO3基无铅压电陶瓷的结构和性能,中国有色金属学报,2012,,2:2010-2015.
    [157]司杭,何海燕,潘必才,表面效应对Li掺杂的ZnO薄膜材料p型电导的影响,物理学报,2012,61:157301(1-7).
    [158]张国英,刘贵立,曾梅光,钱存富,钢中小角度晶界区的电子结构及掺杂效应,物理学报,2000,49:1344-1347.
    [159] Z. P. Lu, C. T. Liu, Role of minor alloying additions in formation ofbulk metallic glasses: A review, J. Mater. Sci.,2004,39:3965-3974.
    [160] Y. Wu, X. D. Hui, Z. P. Lu, Z. Y. Liu, L. Liang, G. L. Chen, Effects ofmetalloid elements on the glass forming ability of Fe-based alloys, J.Alloys Compd.,2009,467:187-190.
    [161]陆文华,李隆盛,黄良余,铸造合金极其熔炼,北京:机械工业出版社,2002
    [162] A. Inoue, N. Nishyama, H. Kimura, Preparation and thermalstabilityof bulk amorphous Pd40Cu30Ni10P20alloy cylinder of72mm in diameter,Mater. Trans. JIM,1997,38:179-183.
    [163] N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Q. Zeng, A.Inoue, The world’s biggest glassy alloy ever made, Intermetallics,2012,30:19-24.
    [164] B. Q. Zhao, Y. Z. Jia, S. T. Wang, G. Li, S. F. Shan, Z. J. Zhan, R. P.Liu, W. K. Wang, Effect of silicon addition on the glass forming ability of aZr-Cu-based alloy, J. Alloys Compd.,2009,468:187-190.
    [165] X. M. Luo, Y. Zhou, J. Q. Lu, G. S. Yu, J. G. Lin, W. Li,Microstructural and mechanical behavior of Zr-based metallic glasses withthe addition of Nb, J. Mater. Res.,2009,44:4389-4393.
    [166] D. V. Louzguine, A. Inoue, Multicomponent metastable phase formedby crystallization of Ti–Ni–Cu–Sn–Zr amorphous alloy, J. Mater. Res.1999,14:4426-4430.
    [167] L. Q. Xing, P. Ochin, M. Harmelin, F. Faudot, J. Bigot, J. P. Chevalier,Cast bulk Zr-Ti-Al-Cu-Ni amorphous alloys, Mater. Sci. Eng. A,1996,220:155-161.
    [168] O. N. Senkov, D. B. Miracle, Effect of the atomic size distribution anglass forming ability of amorphous metallic alloys, Mater. Res. Bull.,2001,36:2183-2198.
    [169] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses byatomic size difference, heat of mixing and period of constituent elementsand its application to characterization of the main alloying element(overview), Mater. Trans. JIM,2005,46:2817-2829.
    [170] A. L. Zhang, D. Chen, Z. H. Chen, Predicting the thermal stability ofRE-based bulk metallic glasses, Intermetallics,2010,18:74-76.
    [171]胡赓祥,蔡珣,戎咏华,材料科学基础,上海交通大学出版社:上海,2000
    [172] W. H. Wang, J. J. Lewandowski, A. L. Greer, Understanding theglass-forming ability of Cu50Zr50alloys in terms of a metastable eutectic, J.Mater. Res.,2005,20:2307-2313.
    [173] X. H. Lin, W. L. Johnson, Formation of Ti-Zr-Cu-Ni bulk metallicglasses, J. Appl. Phys.,1995,78:6514-6519.
    [174] H. Men, Z. Q. Hu, J. Xu, Bulk metallic glass formation in theMg-Cu-Zn-Y system, Scri. Mater.,2002,24:699-703.
    [175] H. E. Kissinger, Variation of peak temperature with heating rate indifferential thermal analysis, J. Res. Natl. Bur. Stand.,1956,57:217-221.
    [176] H. E. Kissinger, Reaction kinetics in differential thermal analysis,Anal. Chem.,1957,29:1702-1706.
    [177] L. Xia, Y. D. Dong, Kinetics and thermal stability of Nd55Al20Fe25bulk metallic glass, Mod. Phys. Lett. B,2006,20:225-232.
    [178]陈志浩,刘兰俊,张博,席赟,王强,祖方遒,Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变的动力学性质,物理学报,2004,53:3839-3844
    [179]方祺,王庆,赵哲龙,董远达,Nb添加对Cu-Zr非晶合金玻璃转变和晶化动力学的影响,物理学报,2007,56:1292-1296
    [180] N. Mitrovic, S. Roth, J. Eckert, Kinetics of the glass-transition andcrystallization process of Fe72-xNbxAl5Ga2P11C6P4(x=0,2) metallic glasses,Appl. Phys. Lett.,2001,78:2145-2147.
    [181] Y. X. Zhuang, W. H. Wang, Effects of relaxation on glass transitionand crystallization of ZrTiCuNiBe bulk metallic glass, J. Appl. Phys.,2000,87:8209-8211.
    [182] D. V. Louzguine, A. Inoue, Evaluation of the thermal stability of aCu60Hf25Ti15metallic glass, Appl. Phys. Lett.,2002,81:2561-2562.
    [183] B. C. Xu, R. J. Xue, B. Zhang, Superior glass-forming ability and itscorrelation with density in Ce-Ga-Cu ternary bul metallic glasses,Intermetallics,2013,32:1-5.
    [184] A. L. Greer, metallic glasses, Science,1995,267:1947-1953.
    [185] Y. Q. Chen, E. Ma, Atomic-level structure and structure-propertyrelationship in metallic glasses, Prog. Mater. Sci.,2011,56:379-473.
    [186] A. Inoue, T. Negishi, H. M. Kimura, T. Zhang, A. R. Yavari, Highpacking density of Zr-and Pd-based bul amorphous alloys, Mater. Trans.JIM,1998,39:318-321.
    [187] P. Gong, K. F. Yao, Y. Shao, Effects of Fe addition on glass-formingability and mechanical properties of Ti-Zr-Be bulk metallic glass, J. AlloysCompd.,2012,536:26-29.
    [188] N. Khademian, R. Gholamipour, F. Shahri, M. Tamizifar, Effect ofvanadium substitution for zirconium on the glass forming ability andmechanical properties of a Zr65Cu17.5Ni10Al7.5bulk metallic glass, J. AlloysCompd.,2013,546:41-47.
    [189] H. Ma, L. L. Shi, J. Xu, Y. Li, E. Ma, Discovering inch-diametermetallic glasses in three-dimensional composition space, Appl. Phys. Lett.,2005,87:181915(1-3).
    [190] A. Inoue, T. Zhang, T. Masumoto, Al-La-Ni Amorphous alloys with awide supercooled liquid region, Mater. Trans. JIM,1989,30:965-972.
    [191] A. Inoue, T. Zhang, T. Masumoto, Zr-Al-Ni Amorphous alloys withhigh glass transition temperature and significant supercooled liquid region,Mater. Trans. JIM,1990,31:177-183.
    [192] A. Inoue, J. S. Gook, Fe-based ferromagnetic glassy alloys with widesupercooled liquid region, Mater. Trans. JIM,1995,36:1180-1183.
    [193] H. W. Kui, A. L. Greer, D. Turnbull, Formation of bulk metallic glassby fluxing, Appl. Phys. Lett.,1984,45:615-616.
    [194] T. Zhang, A. Inoue, Thermal and mechanical properties ofTi-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid regionbefore crystallization, Mater. Trans. JIM,1998,39:1001-1006.
    [195] D. Xu, G. Duan, W. L. Johnson, Unusual glass-forming ability ofbulk amorphous alloys based on ordinary metal copper, Phys. Rev. Lett.,2004,92:245504(1-4).
    [196] D. Xu, B. Lohwongwatana, G. Duan, W. L. Johnson, C. Garland,Bulk metallic glass formation in binary Cu-rich alloy series Cu100-xZrx(x=34,36,38.2,40at.%) and mechanical properties of bulk Cu64Zr36glassActa Mater.,2004,52:2621-2624.
    [197] A. Inoue, W. Zhang, Formation, thermal stability and mechanicalproperties of Cu-Zr and Cu-Hf binary glassy alloy rods, Mater. Trans. JIM,2004,45:584-587.
    [198] D. Wang, Y. Li, B. B. Sun, M. L. Sui, K. Lu, E. Ma, Bulk metallicglass formation in the binary Cu-Zr system, Appl. Phys. Lett.,2004,84:4029-4031.
    [199] K. J. Zeng, M. H m l inen, H. L. Lukas, A new thermodynamicdescription of the Cu-Zr system, J. Phase Equilib. Diff.,1994,15:577-586.
    [200] A. Inoue, T. Shibata, T. Zhang, Effect of additional elements on glasstransition behavior and glass formation tendency of Zr-Al-Cu-Ni alloys,Mater. Trans. JIM,1995,36:1420-1426.
    [201] T. P. Weihs, T. W. Barbee, M. A. Wall, Hardness, ductility, andthermal processing of Cu/Zr and Cu/Cu Zr nanoscale multilayer foils,Acta Mater.,1997,45:2307-2315.
    [202] S. T. Deng, H. F. Zhang, A. M. Zhang, H. Li, B. Z. Ding, Z. Q. Hu,Improving glass forming ability of Zr50.5Cu36.5Ni4Al9alloy by suppressingCuZr phase precipitation, J. Alloy Compd.,2008,460:182-185.
    [203] Y. J. Sun, D. D. Qu, Y. J. Huang, K. D. Liss, X. S. Wei, D. W. Xing, J.Shen, Zr–Cu–Ni–Al bulk metallic glasses with superhigh glass-formingability, Acta Mater.,2009,57:1290-1299.
    [204] á. Révész, A. Concustell, L. K. Varga, S. Suri ach, and M. D. Baró,Influence of the wheel speed on the thermal behaviour of Cu60Zr20Ti20alloys, Mater. Sci. Eng. A,2004,375–377:776-780.
    [205] Q. Wang, J. B. Qiang, Y. M. Wang, J. H. Xia, C. Dong, Bulk metallicglass formation in Cu–Zr–Ti ternary system, J. Non-Cryst. Solids,2007,353:3425-3428.
    [206] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, High-strength Cu-basedbulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems, Acta mater.,2001,49:2645-2652.
    [207] A. Inoue, T. Zhang, T, Masumoto, Zr-Al-Ni Amorphous alloys withhigh glass transition temperature and significant supercooled liquid region,Mater. Trans. JIM,1990,31:177-183.
    [208] W. H. Wang, C. Dong, C. H. Shek, Bulk metallic glasses, Mater. Sci.Eng. R,2004,44:45-89.
    [209] M. M. Trexler, N.N. Thadhani, Mechanical properties of bulkmetallic glasses, Prog. Mater. Sci.,2010,55:759-839.
    [210] J. M. Liu, X. G. Yuan, H. F. Zhang, H. M. Fu, Z.Q. Hu,Microstructure and Compressive Properties of In-Situ Martensite CuZrPhase Reinforced ZrCuNiAl Metallic Glass Matrix Composite, Mater.Trans.,2010,51:1033-1037.
    [211] J. M. Liu, H. F. Zhang, H. M. Fu, Z. Q. Hu, X. G. Yuan, In situspherical B2CuZr phase reinforced ZrCuNiAlNb bulk metallic glassmatrix composite, J. Mater. Res.,2010,25:1159-1163.
    [212] S. Pauly, J. Das, C. Duhamel, J. Eckert, Martensite Formation in aDuctile Cu47.5Zr47.5Al5bulk metallic glass composite, Adv. Eng. Mater.,2007,9:487-491.
    [213] Y. F. Sun, B. C. Wei, C. H. Shek, Plasticity-improved Zr-Cu-Al bulkmetallic glass matrix composites containing martensite phase, Appl. Phys.Lett.,2005,87:05195(1-3).
    [214] J. S. C. Jang, J. B. Li, S. L. Lee, Y. S. Chang, S. R. Jian, J. C. Huang,T. G. Neih, Prominent plasticity of Mg-based bulk metallic glasscomposites by ex-situ spherical Ti particles, Intermetallics,2012,30:25-29.
    [215] J. S. C. Jang, T. H. Li, S. R. Jian, J. C. Huang, T. G. Neih, Effects ofcharacteristics of Mo dispersions on the plasticity of Mg-based bulkmetallic composites, Intermetallics,2011,19:738-743.
    [216] D. Schryvers, G. S. Firstov, J. W. Seo, J. Van-Humbeeck, Y. N. Koval,Unit cell determination in CuZr martensite by electron microscopy andx-ray diffraction, Scr. Mater.,1997,36:1119-1125.
    [217] S. Pauly, J. Das, J. Bednarcik, N. Mattern, K. B. Kim, D. H. Kim, J.Eckert, Deformation induced martensitic transformation in Cu-Zr-(Al,Ti)bulk metallic glass composites, Scr. Mater.,2009,60:431-434.
    [218] J. Das, S. Pauly, C. Duhamel, B. C. Wei, J. Eckert, Micro-structureand mechanical properties of slowly cooled Cu47.5Zr47.5Al5, J. Mater. Res.,2007,22:326-333.
    [219] S. Zhang, T. Ichitsubo, Y. Yokoyama, T. Yamamoto, E. Matsubara, A.Inoue, Crystallization Behavior and Structural Stability of Zr50Cu40Al10Bulk Metallic Glass, Mater. Trans. JIM,2009,50:1340-1345.
    [220] N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Q. Zeng, A.Inoue, The world’s biggest glassy alloy ever made, Intermetallics,2012,30:19-24.
    [221] Y. Wu, H. Wang, H. H. Wu, Z. Y. Zhang, X. D. Hui, G. L. Chen, D.Ma, X.L. Wang, Z. P. Lu, Formation of Cu-Zr-Al bulk metallic glasscomposites with improved tensile properties, Acta Mater.,2011,59:2928-2936.
    [222] Y. Wu, Y. H. Xiao, G. L. Chen, C. T. Liu, Z. P. Lu, Bulk metallic glasscomposites with transformation-mediated work-hardening and ductility,Adv. Mater.,2010,22:2770-2773.
    [223] Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata,K. Funakoshi, A first-order liquid-liquid phase transition in phosphorus,Nature,2000,403:170-173.
    [224] K. Koga, H. Tanaka, X. C. Zeng, First-order transition in confinedwater between high-density liquid and low-density amorphous phases,Nature,2000,408:564-567.
    [225] M. Togaya, Pressure dependences of the melting temperature ofgraphite and the electrical resistivity of liquid carbon, Phys. Rev. Lett.,1997,79:2474-2477.
    [226] E. G. Jia, A. Q. Wu, L. J. Guo, C. S. Liu, W. J. Shan, Z. G. Zhu,Experimental evidence of the transformation from microheterogeneous tomicrohomogeneous states in Ga–Sn melts, Phys. Lett. A,2007,364:505-509.
    [227] S. V. Prokhorenko, The structure-thermodynamic state and themechanism of crystallization of gallium-based melts, High Temp.2005,43:700-705.
    [228] C. Fan, A. Inoue, Influence of the liquid state on the crystallizationprocess of nanocrystal-forming Zr-Cu-Pd-Al metallic glass, Appl. PhysLett.,1999,75:3644-3646.
    [229] Z. W. Zhu, H. F. Zhang, H. Wang, B. Z. Ding, Z. Q. Hu, Influence ofcasting temperature on the thermal stability of Cu-and Zr-based metallicglasses: Theoretical analysis and experiments, J. Mater. Res.,2008,23:2714-2719.
    [230] Z. Z. Wang, F. Q. Zu, C. Xiao, X. Y. Li, Effect of liquid state on thecrystallization of Zr65Al7.5Ni10Cu17.5metallic glass, Cryst. Res. Technol.,2012,47:939-943.
    [231] C. Fan, M. Imafuku, H. Kurokawa, A. Inoue, Influence of the liquidtemperatures on nanocrystal-forming Zr-based metallic glasses, ScriptaMater.,2001,44:1993-1997.
    [232] J. Mao, H. F. Zhang, H. M. Fu, A. M. Wang, H. Li, Z. Q. Hu, Theeffects of casting temperature on the glass formation of Zr-based metallicglasses, Adv. Eng. Mater.,2009,11:986-991.
    [233] Z. W. Zhu, S. J. Zheng, H. F. Zhang, H. Wang, B. Z. Ding, Z. Q. Hu,P. K. Liaw, Y. D. Wang, Y. Ren, Plasticity of bulk metallic glassesimproved by controlling the solidification condition, J. Mater. Res.,2008,23:2714-2719.
    [234] Z. W. Zhu, H. F. Zhang, H. Wang, B. Z. Ding, Z. Q. Hu, H. Huang,Influence of casting temperature on microstructures and mechanicalproperties of Cu50Zr45.5Ti2.5Y2metallic glass prepared using copper moldcasting, J. Mater. Res.,2009,24:3108-3115.
    [235] Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata,K. Funakoshi, A first-order liquid-liquid phase transition in phosphorus,Nature,2000,403:170-173.
    [236] F. Q. Zu, Z. G. Zhu, L. J. Guo, B. Zhang, J. P. Shui, and C. S. Liu,Liquid-liquid phase transition in Pb-Sn melts, Phys. Rev. B,2001,64:180203(1-4).
    [237] M. Togaya, Pressure dependence of the melting temperature ofGraphite and the electrical resistivity of liquid carbon, Phys. Rev. Lett.,1997,79:2474-2477.
    [238] Z. Z. Wang, F. Q. Zu, Z. Zhang, X. Cui, L. F. Wang, and G. D. Sun,Dependence of GFA and Crystallization Behaviors of Al86Ni9La5MetallicGlass on Its Original Liquid State, Adv. Eng. Mater.,2012,14:898-901.
    [239] J. Barzola-Quiquia, P. Haussler, Electronic transport properties ofamorphous and quasicrystals TMxAl100-xalloys, J. Non-Cryst. Solids,2007,353:3237-3242.
    [240] X. Y. Li, F. Q. Zu, W. L. Gao, X. Cui, L. F. Wang, G. H. Ding, Effectsof the melt state on the microstructure of a Sn-3.5%Ag solder at differentcooling rates, Applied Surface Science,2012,258:5677-5682.
    [241] M. Dikeakos, Z. Altounian, M. Fradkin, Electronic transportproperties in amorphous and crystalline FeZr2examined via the density ofstates, Phys. Rev. B,2004,70:024209(1-6).
    [242] A. Inoue, T. Shibata, T. Zhang, Effect of additional elements on glasstransition behavior and glass formation tendency of Zr-Al-Cu-Ni alloys,Mater. Trans. JIM,1995,36:1420-1426.
    [243] K. F. Kelton, G. W. Lee, A. K. Gangopadhyay, R. W. Hyers, T. J.Rathz, J. R. Rogers, M. B. Robinson, D. S. Robinson, First X-RayScattering Studies on Electrostatically Levitated Metallic Liquids:Demonstrated Influence of Local Icosahedral Order on the NucleationBarrier Phys. Rev. Lett.,2003,90:195504(1-4).
    [244] W. Hoyer, R. Jodicke, Short-range and medium-range order in liquidAu-Ge alloys, J. Non-Cryst. Solids,1995,192-193:102-105.
    [245] V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M.Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, Y. Tarakanov, Influenceof the treatment of melt on the properties of amorphous materials: ribbons,bulks and glass coated microwires Mater. Sci. Eng. A,2001,304-306:54-60.
    [246] S. Zhang, T. Ichitsubo, Y, Yokoyama, T. Yamamoto, E. Matsubara,and A. Inoue, Mater. Trans.,2009,50:1340-1345.
    [247] W. H. Wang, J. J. Lewandowski, A. L. Greer, Understanding theglass-forming ability of Cu50Zr50alloys in terms of a metastable eutectic, J.Mater. Res.,2005,20:2307-2313.
    [248] B. J. McCoy, Cluster kinetics for glass forming materials, J. Phys.Chem. Solids,2002,63:1967-1974.
    [249] H. Fredriksson and E. Fredriksson, A model of liquid metals and itsrelation to the solidification process, Mater. Sci. Eng. A,2005,413–414:455-459.
    [250] D. W. Henderson, Thermal analysis of non-isothermal crystallizationkinetics in glass forming liquids, J. Non-Cryst. Solids,1979,30:301-315.
    [251] H. S. Chen: A method for evaluating viscosities of metallic glassesfrom the rates of thermal transformations. J. Non-Cryst. Solids,1978,27:257-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700