高质量Cu(In,Ga)Se_2薄膜的低成本制备工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会的发展,人们对能源的需求越来越大,然而,目前人们普遍使用的能源如煤炭、石油等都不是可再生能源,这些能源正在枯竭。因此,寻找可再生、获取方便、价格低廉的替代能源己成为目前人类面临的迫切问题。太阳能作为一种清洁、安全可靠并且无处不在的可再生能源而受到人们的普遍亲睐,已经在各个领域得到了广泛应用。在太阳能电池中,CuInSe2(CIS)以其吸收系数高、价格低廉、高稳定性而受到人们的广泛关注,被认为是第三代太阳能电池的主要材料。
     本文首先以InCl、SeO2、CuCl2、络合剂柠檬酸和稳定剂KCl的水溶液为电解液,并以HCl溶液调节其PH值,在镀Mo的钠钙玻璃衬底上采用恒电位沉积的方法制备出太阳能电池吸收层CIS,并对所制备的薄膜进行热处理和后硒化工艺以提高薄膜的结晶性能和改善薄膜的化学计量比。其次用射频磁控溅射的方法以单一Cu(In,Ga)Se2 (CIGS)靶材在在镀Mo的钠钙玻璃衬底上溅射制备了Cu(In,Ga)Se2,同样对所制备薄膜进行了热处理和后硒化。最后用二者结合的方法,即先在镀Mo的钠钙玻璃衬底上用恒电位沉积的方法电化学沉积一层CIS,然后再在其上面射频磁控溅射生长一层CIGS。对所制备的薄膜进行了热处理和后硒化。实验中通过X射线衍射(XRD)、扫描电镜((SEM)、能谱仪(EDS)以及拉曼散射等方法对制备的CIS/CIGS薄膜的各种性能进行了表征。
     实验结果表明:利用电化学沉积和磁控溅射沉积二者结合的方法,既有效利用电化学沉积生长速度快,沉积方法简单易行,生产成本低等优点弥补了磁控溅射沉积在生长速度和生长成本方面的不足,又利用磁控溅射沉积成膜结晶性好,表面质量高等优点改善了电化学沉积所制备的薄膜。结果显示,二者结合所制备出来的薄膜结合良好,具有比电化学沉积生长薄膜明显好得多的表面平整度和均匀性,结晶性也有所提高,而且制备同等厚度的薄膜比只用磁控溅射沉积所用时间大大减少,降低了制备成本。本文利用恒电位电化学沉积和射频磁控溅射结合的方法探索出了一条高质量低成本CIS的制备之路。
With the development of human society, people growing demand for energy. However, the current widespread use of is not renewable but depleted energy, such as coal, oil and so on. So, to search the energy which renewable, convenient, affordable for alternative has become urgent problems faced by humanity. As a clean, safe, and renewable energy, solar energy can be get everywhere, so it was widely courted and has been used in many fields. With its high absorption coefficient, low cost and high stability, CuInSe2 (CIS) solar cells were wide attention by the people. It is considered the main materials for third-generation solar cell.
     First of all, this article make electrolyte potassium chloride with InCl3, SeO2, CuCl2, complexing agent sodium citrate and stabilizer KCl, use HCl to adjust the PH value. At Mo coated soda lime glass prepared thin film solar cell absorber CIS by the potentiostatic deposition method, and the films were during heat treatment and selenium process to improve crystallinity and stoichiometry. Second, use RF magnetron sputtering method prepared Cu (In, Ga) Se2 thin film on Mo coated soda lime glass substrate by a single Cu (In, Ga) Se2 (CIGS) targets sputtering, equally the films have heat treatment and selenium. Finally, a combination of both methods, on the Mo coated soda lime glass substrate deposit a layer CIS with a constant potential electrochemical deposition method first, and then RF magnetron sputtering growth of CIGS layer on the top, and always heat treatment and selenium the films. X-ray diffraction (XRD), scanning electron microscopy ((SEM), energy dispersive spectroscopy (EDS), Raman scattering and other methods were use to characterized the various properties of CIS/CIGS films in the experiment.
     The results show that:the method that combining of electrochemical deposition and magnetron sputtering use the character of electrochemical like high growth speed, deposition simple and low cost to make up for the shortage of magnetron sputtering at speed and cost first, and also improving the quality of the films that prepared by electrochemical deposition by use the sputtering deposition film's high quality crystalline and good surface morphology. The results showed that the film prepared by the two stage method have a good combination and much better surface smoothness and uniformity than the only electrochemical deposition films, the crystalline also increased. And the time that prepared the same thickness of the film was greatly reduced to compare with magnetron sputtering only, reduce the production cost. Use the combining of potentiostatic electrochemical deposition and RF magnetron sputtering method, we have explored a low cost processing for preparation high quality CIS in this paper.
引文
[1]王正安.铜铟镓硒薄膜太阳能电池CIGS吸收层的研究与制备.华东师范大学,硕士学位论文:1-4.
    [2]沈辉,舒碧芬,闻立时,中国储能电池与动力电池及其关键材料学术研讨会.2005.5,中国,长沙.
    [3]《中国新能源和可再生能源》1999年白皮书.北京:中国计划出版社.(2000).
    [4]杨德仁,太阳电池材料.北京:化学工业出版社.(2008)
    [5]Ben G.Streetman,Sanjay Banerjee著,杨建红泽.固体电子器件.兰州大学出版社,2007年第五版:290-295.
    [6]马丁·格林,太阳电池工作原理、工艺和系统的应用.电子工业出版社,1987,北京.
    [7]倪萌,M.K.Leung, K.Sumathy,研究与试验,114(2004)9-1
    [8]Darren M.Bagnall,Matt Boreland. Photovoltaic technologies, Energy Policy 36(2008):4390-4396.
    [9]Green M A, In:Proeeeding of the 21st IEEE Photovoltaic Specialists Conferense.Orlando, USA:IEEE Publication,1990.
    [10]Goetzberger A, Knobloch J, Vob B, Crystalline silicon solar cell. Chichester: JohnWiley&Sons;1998.
    [11]施敏主编,现代半导体器件物理.科学出版社,2001年第一版370.
    [12]赵玉文,林安中.晶体硅太阳电池及材料[J].太阳能学报特刊.1999:85.
    [13]Are K, Tagaya H,Ogata T,et al. Electro-chemical intercalation organic molecules into layered oxides,MoO3. MaterRes Bull,1996,31(3):283
    [14]Mohseni M,James P F,Wright P V. Vanadium-based organic-inorganic hybrid materials prepared by a sol-gel method. J Sol-Gel Sci Techn,1998,13:495
    [15]Shao K,Ma Y,Cao Y A,et al. Inclusion of poly (tetramethyl-p-p henylene diamine dihydro-chloride) into MoO3:A cooperative formation route to construct a polymer/MoO3 layered structure. Chem Mater,2001,13:250.
    [16]Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To and Rommel Noufi,19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor.Prog.Photovolt:Res. Appl.2008; 16:235-239
    [17]Schock H W, Shab A. Barcelona:14th European Photovoltaic Solar Energy Conference 1997
    [18]Kazmerski L L,Christopher Heblinga,Hans-Wemer Schock. Materials Science and Engineering R,2003,40:1.
    [1]W E Devaney,R A Mickelsen, W S Chen, et al. Cadmium Sulfide/copper Ternary Hetero-junction Cell Research. Final Technical Progress Report for the period. July 1987,21-24.
    [2]Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To and Rommel Noufi,19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor.Prog.Photovolt:Res.Appl.2008; 16:235-239
    [3]铜铟镓硒薄膜太阳能电池CIGS吸收层的研究与制备
    [4]ULLAL H S,ZWEIBEL K,VON-ROEDERN B. Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies[R].New Orleans, Louisiana, The 29th IEEE PV Specialists Conference,2002.
    [5]Jonas Hodstrom, Marika Bodegard, Dimitri Hariskoas, et al. ZnO/CdS/Cu(In,Ga)Se2 thin films solar cells with improved performance. Schwartz RJ. The 23rd IEEE Photovoltaic Specialists Conference, Louisville KY,1993 [C]. Louisville, KY:Electron Device Sociaty,1993:364-371.
    [6]Stolt L, Hedstrom J, Kessler J, et al.ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance [J].Appl.Phys.Lett.,1993,62:597.
    [7]Holz J, Karg F, Phillisborn V, et al.The effects of substrate impurities on the electronic conductivity in CIGS thin films [A].Proc.12th. European Photovoltaic Solar Energy Conf.[C].Amsterdam,H. S. Stephens &Associates:Bedford,1994,1592.
    [8]Contreras M A, Egass B, Dippo P, et al. On the role of Na and modifications to Cu(In,Ga)Se2 absorber materials using thin MF(M=Na, K, Cs)Precursor layers, Conf.Reeord.26th.IEEE Photo voltaie Specialists Conf. Anaheim, IEEE Press:Piscaataway,1997.159.
    [9]Rau U, Schmitt M, Engelhardt F, et al.Influence of Na and S in corporation on the electronic transport mechanisms of Cu(In, Ga)Se2 solar cells[J].Solid State Commun.1998b,107:59.
    [10]Nakada T, Iga D, Ohbo H, et al. Effects of sodium on Cu(In,Ga)Se2 based thin film and solar cells[J]. JPn. J. APPI. Phys.,1997,36:732.
    [11]Keyes B M, Hasoon F, Dippo P, et al. Influence of Na on the electro optical Properties of Cu(In,Ga)Se2[A].Conf. Record 26th. IEEE Photovoltaic Pecialists Conf[C].Anaheim, IEEE Press: Piscaataway,1997.479.
    [12]刘恩科,朱秉升,罗晋升等.半导体物理学[M],西安:西安交通大学出版社,1998.159~166
    [13]任驹,郭文阁,郑建邦.基于P-N结的太阳能电池伏安特性的分析与模拟[J],光子学报,Vol.35 No.2 February 2006.
    [14]Spiering S, Hariskos D, Powalla M, et al. Cd-free Cu(In,Ga)Se2 thin film solar cells modules with In2Se3buffer layer by ALCVD. Thin solid Films,2003,359:431
    [15]Ben G.Streetman,Sanjay Banerjee著,杨建红泽.固体电子器件[M].兰州大学出版社,2007年第五版:290-295.
    [16]杜晶晶,龙飞,邹正光等,CIS(CIGS)薄膜材料的研究进展[J].材料导报,2007年4月,Vo121.4:9-12.
    [17]陈光华,邓金祥.新型电子薄膜材料[M].北京:化学工业出版社,2003
    [18]White F R, Clak A H, Gxaf M C. Molecular beam epitaxy techniques for preparing CuInSe2thin films[J]. Appl Phys,1979,50:544
    [19]Kaelin M, Rudamann D, Kurdesau F, et al. Low-cost CIGS solar cells by paste coating and selenization[J]. Thin Solid Films,2004,457:391
    [20]Eberspacher C, Paula K, Serra J. Non-vacuum processing of CIGS solar cells[A]. Photovoltaic Specialists Conference,2002. Conference Records of the 29thIEEE PVSEC[C]. USA: New Orleans,2002.684
    [21]Kaelin M, Rudmann D, Kurdesau F, et al. CIS and CIGS layers from selenized nanoparticle precursors[J]. Thin Solid Films,2003,431-432:58
    [22]杨南如,余桂郁.溶胶一凝胶法简介.材料导报,1993.12(2):56-64
    [23]Hodstrom J,Bodegard M,Hariskoas D,et al.ZnO/CdS/CIGS thin film solar cells with improved performance.Electron Device Society,1993.364~371.
    [24]方惠群,虞振新.电化学分析.北京:原子能出版社,1984.182~196.
    [25]Hashimoto Y, Kohara N, Negami T et al. Chemical bath deposition of CdS buffer layer for CIGS solar cells. Solar Energy Materials and Solar Cells,1998.50(1-4):71~77.
    [26]Nakada, Tokio, Kume. Superstrate-type Cu(In, Ga)Se2 thin film solar cells with ZnO buffer layers.Japanese Journal of Applied Physics,1998.37(5A):499~501.
    [27]周伟舫.电化学测量.上海:上海科学技术出版社,1985.231~271.
    [28]藤岛昭,相泽益男,井上彻.电化学测定方法.北京:北京大学出版社,1995.143~187.
    [1]Savadogo O. Chemically and electrochemically deposited thin films for energy materials.Solar Energy Materials and Solar Cells,1998.52:361~388
    [2]Ganchev M G,Kochev K D.Investigation of the electrodeposition process in the Cu-In-Se system. Solar Energy Materials and Solar Cells 1993.31:163~170
    [3]中承民,张校刚,力虎林.电化学沉积制备半导体CIS薄膜[J].感光科学与光化学,2001.19(1):1-7
    [4]Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To and Rommel Noufi,19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor.Prog.Photovolt:Res.Appl.2008;16:235-239
    [5]张寅.衬底对C uInSe2薄膜太阳电池性能的影响[J].太阳能学报,2000.21(2):225-228
    [6]方玲,张弓,庄大明等.溅射和硒化工艺对CIS薄膜性能的影响[J].太阳能学报,2003.4增刊:77-80.
    [7]盛世雄译,方正知审.X射线衍射技术-多晶体和非晶材料[M].冶金工业出版社.1983,140-150.
    [8]李树棠.晶体X射线衍射学基础[M].冶金工业出版社.1990,116-160.
    [9]L. Kaupmees, M. Altosaar, O. Volubujeva, E. Mellikov. Study of composition reproducibility of electrochemically co-deposited CuInSe2 films onto ITO[J]. Thin Solid Films 515 (2007) 5891-5894.
    [10]陈鸣波,邓薰南,尤金跨.电沉积CuInSe2薄膜的热处理研究[J].应用化学.Vo1.11 No.1Feb.1994:102-104.
    [1]杨邦朝,王文生.薄膜物理与技术[M].成都:电子科技大学出版社,1994:61-85.
    [2]谢大弢,赵夔,王莉芳等,用磁控溅射和真空硒化退火方法制备高质的铜铟硒多晶薄膜量[J].物理学报,Vol.51,No.6,June,2002:1377-1382.
    [3]徐学基,诸定吕.气体放电物理[M].上海:复旦大学出版社,1996:121-193.
    [4]王磷,余欧明,杭凌侠等.磁控溅射镀膜中工作气压对沉积速率的影响[J].真空.Vo1.41,No.1Jan,2004:9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700