用化学溶液法快速制备YBCO超导薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在超导材料中,YBa2Cu3O7-x (YBCO)涂层导体以其独特的电性能被认为是当今最有前途能够实用化的第二代高温超导材料,因此引起了全球人员多年的深入研究。在YBCO超导薄膜的制备技术中,物理法和化学法各有千秋,但是化学法相对操作简单、成本低廉,而且更容易实现工业化。在传统的三氟乙酸-金属有机沉积方法(TFA-MOD)中,由于低温分解时间过长,影响了YBCO薄膜的制备速率,不利于实现工业化。因此,本论文开展了对快速制备YBCO超导薄膜方法的研究。
     在TFA-MOD法中,研究了水气压对前驱膜形态和YBCO薄膜的形态以及电性能的影响。水汽含量的大小不仅影响低温分解后前驱膜的形貌,而且影响YBCO薄膜的形貌和组织结构以及电性能的高低。在低温分解过程中,通入水汽量过大,薄膜容易吸湿,从而造成膜局部收缩、变形和开裂。在高温晶化过程中,水汽不充分,YBCO成核就会不完全,从而有中间相出现和大的孔洞出现,造成非超导相存在,引起电流路径的减少和电子场密度的降低;水汽量过大,会造成膜开裂和较大的孔洞存在,两者都能造成临界电流降低。实验中,水汽量为8%时,制备的薄膜形貌、组织和电性能较好。
     选用稳定无氟的铜盐来代替前驱液中的三氟乙酸铜成为快速制备YBCO的一个重要方向。实验中我们用硝酸铜来替代三氟乙酸铜,并加入螯合剂聚乙二醇(PEG)和蔗糖,研究了两种不同螯合剂对YBCO薄膜的形貌、结构和电性能的影响。PEG在低温能够保持溶液的稳定均一,而蔗糖在高温发生的交联作用不仅使膜表面平整、光滑,而且两种螯合剂螯合硝酸铜后形成的新型铜盐分解速度较快,只需80min.,分解后的氧化铜颗粒比加入单一螯合剂的要小。在760℃,晶化1h后,加入蔗糖和PEG的YBCO薄膜致密、几乎为c轴晶粒;YBCO(00l)峰趋向明显,没有其他杂相峰,而且薄膜的电性能较好。
     高分子辅助沉积法(PAD)是近年发展起来的一种新型制备薄膜的化学沉积方法,通常前驱液是水相溶液。我们采用硝酸钇、硝酸钡和硝酸铜前驱物,在水溶液中加入螯合剂蔗糖、PEG和聚乙烯醇配置前驱液。DSC/TG分析表明螯合剂有利于硝酸盐的分解温度降低,证实了前驱膜能够实现低温快速分解。通过优化工艺后,在100ppmO2/N2氧分压下,制备的YBCO超导薄膜致密,YBCO(00l)峰趋向明显,膜的转变起始温度TC=91K,转变宽度△Tc=2K;临界电流密度为IMA/cm2 (在77K、自场下)。
     DEA/YBCO改进型前驱液制备YBCO超导薄膜具有快速、简单和易操作的特点。DEA不仅能螯合三氟乙酸铜抑制三氟乙酸铜原子升华,而且有利于膜内应力释放均匀,保持薄膜性质的稳定。实验证实:涂敷后的薄膜在空气中,低温分解温度325℃,保温90s,制备的前驱膜形貌较好,接着在晶化温度800℃和晶化时间70min制备的YBCO膜致密和电性能较好,该方法为涂层导体的长带生产提高了实验依据。
     对DEA/YBCO前驱液采用高温烧结一步法快速制备YBCO超导薄膜有利于简化制备工艺过程。我们省掉了低温分解这一独立过程,而是直接经行高温烧结阶段。因为低温分解时间较短,可以通过高温过程中400℃以前的缓慢加热和低氧气氛来补偿低温分解这一过程。通过DSC/TG热解曲线分析表明,形成的-Cu-DEA-Cu-大分子链使三氟乙酸铜分解温度得到提高,分解范围变宽,而且DEA大分子链有利于减少铜原子的挥发和过快分解。添加DEA后的溶液性质得到了改善,通过高温烧结一步法使整个制备时间缩短至少10h以上,而且在350℃通入水汽,晶化温度820℃和晶化时间60min的条件下,制备出的YBCO超导薄膜性能较好。高温烧结一步法制备的优点是制备过程得到简化,影响制备过程的参数更加容易控制,制备时间缩短,有利于工业化长带连续生产。
During superconducting materials, YBa2Cu3O7-xYBCO) coating conductor is widely considered to be the most promising high temperature superconductor of the second generation for its unique properties. Many researchers study its scale production and applications for a couple of decades. The physical method and chemical method are two important approaches for the preparation technology of YBCO superconducting film. Chemical method is more relatively simple operation, low cost, and more easily opertaion to implement. In traditional TFA-MOD (Metal Organic Deposition using Trifluoroacetates), the long calcinations time of YBCO film leads to a low production and needs to be solved in order to carry out a fast long tape production. Therefore, we studied the fast preparation methods of preparing the YBCO superconducting film in this thesis.
     In TFA-MOD, we studied the influences of the water partial pressure on properties, such as precursor film morphologies, YBCO films microstructure and the performance of the YBCO film. It was found that the range of P (H2O) not only affected the film morphologies after calcinations, but also influenced morphology, structure and performance of YBCO films. If the P (H2O) was too large to be moisture absorption during the decomposition process, it caused partial shrinkage, deformation and cracking in film. If the P (H2O) was lower in the crystallization process, the YBCO nucleation didn't grow completely, thus the non-superconducting-intermediate phases and large pores appeared, which led to not only the reduction of a current path area, but also the concentration of an electric field. If the films were treated under higher P (H2O), small pores and cracking film are existed, which suggested to reduce Ic. It was found that the YBCO films with better morphologies, microstructure and Jc were attained in P (H2O) of 8%.
     It was an important direction of higher YBCO preparation rates to choose stabile Cu-salt without F instead of TFA-Cu precursor. We studied the influences of two different chelating agents on the appearance, structure and performance of YBCO film, by replacing TFA-Cu whith nitric copper nitrate added chelating agent consisting of polyethylene glycol (PEG) and sucrose. PEG can help to maintain solution uniformity during decomposition. On the other hand, a cross-linking reaction during sucrose caramelization made the film surface smoother and flatter. The new copper salt, that is, two kinds of chelating agent coordinates with the copper nitrate, decomposed faster, just only 80 min., and smaller sizes of the copper oxide particles after decomposition appeared, compared with a single chelating agent added. After the crystallization process at 760℃, 1h, the YBCO films after adding the sugar and PEG had a better characteristics, such as a low pore, no a-axis grains, stronger YBCO(00l) peak, non-superconducting phases and better superconducting properties.
     A polymer-assisted deposition (PAD) process developed in recent years is a new solution deposition technique of preparing film. Generaly, the precursors were resolved in aqueous solution. A precursor solution was prepared by dissolving nitrates of Y, Ba and Cu in aqueous solution with the chelating agent of sucrose, PEG and polyvinyl alcohol. The DSC/TG thermal analysis indicated the presence of polymers and nitrates in the precursor resulted in a suppression of the nitrate decomposition temperatures. After identifying the optimal process condition of O2 pressure, crystallization at 100ppmO2/N2 resulted in high-quality YBCO films with denser morphologies, high phase purity, stronger YBCO(00l) peak, Tc~91K and Jc~1MA/cm2(77K, OT).
     The improved precursor solution DEA/YBCO for preparing YBCO superconducting film showed rapid, simple and easy fabrication characteristics. DEA (Diethanolamine) not only chelates TFA-Cu resulted in avoilding sublimation of Cu-TFA, but also prevents film buckling by relaxing stress gradients and make film stable. The as-deposited films pyrolyzed at 325℃in air for 90s showed smooth surface morphologies, and then, the YBCO film with preferable density and performance after crystallization temperature of 800℃,60min, was successfully obtained. This YBCO solution deposition method provides an experimental basis for production of commercializable coated conductor wires.
     Crystallization one-step via a diethanolamine-modified trifluoroacetic precursor solution was a simple process for solution deposition method of YBCO superconducting film. Because the time of low temperature decomposition was relatively short, we can compensate for the process of the low temperature decomposition through high temperature process before 400℃at slow heating and low oxygen atmosphere. It was found that DEA appeared to extend the thermal decomposition range of the -Cu-DEA-Cu- molecular polymer chain and prevented Cu-TFA from sublimating through the DSC/TG analysis. The YBCO precursor solution was improved by DEA, which made the preparation time shorten 10h and above at least, and the YBCO superconducting film prepared by water gas at 350℃, the crystallization at 820℃for 60 min exhibted good performance. The crystallization one-step for preparation is the advantage of simple process, easier control parameters and shortened preparation time, and is helpful for fabrication of long-length YBCO tapes with high performance using the reel-to-reel system.
引文
[1]王冰.荷兰物理学家卡麦林·昂纳斯及其实验物理学成就[J].自然科学史研究,1989,8(3):27-238.
    [2]Onnes H. K.. The Supecronductivi of Mecury[J]. Phys. Lab Univ. Leeden.1911, 3:120a.
    [3]Bednorz J. G, Muller K. A.. Possible high Tc Supecronductivity in the Ba-La-Cu-O system[J]. Z.fur Phys.1986, (B64):189.
    [4]赵忠贤,陈立泉,等. Ba-Y-Cu氧化物液氮温区的超导电性[J].科学通报,1987,32(6),412.
    [5]Wu M. K., Ashbunr J. R., Tomg, C J. etal. Superconduetivity at 93K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Alllbient Perssuer[J]. Phys, Re. Lett.,1987,58:908.
    [6]Wu M. K., Ashbum J. R., etal. High Perssure in Science and Technology [J]. Phys. Rev. Lett.1987,58:908.
    [7]陶伯万,熊杰,刘兴钊,李言荣. YBCO超导带材研究进展[J].中国材料进展,2009,28(4):17.
    [8]Shiohara Y, Aoki Y. Activity of R&D for coated conductors in Japan[J]. Phys.C, 2005,426-43:1-2.
    [9]古宏伟,杨坚,刘慧舟,等.YBa2Cu3O7-x涂层导体的研究进展[J].中国稀土学报,2006,24(3):257.
    [10]金建勋,郑陆海.高温超导材料与技术的发展及应用[J].电子科技大学学报,2006,35(4):617-620.
    [11]Calestani G. and Rizzoli C. Crystal structure of the YBa2Cu3O7 superconductor by single-crystal X-ray diffraction[J]. Nature,1987,328(6131):606-607.
    [12]Santoro A., Miraglia S., Beech F., et al. Structure and properties of Ba2YCu3O6 [J]. Materials Research Bulletin,1987,22(7):1007-1013.
    [13]Schuller I. K., Hinks D. G, Beno M. A., et al. Structural phase transition in YBa2Cu3O7:the role of dimensionality for high temperature superconductivity [J]. Solid State Communications,1987,63(5):385-388.
    [14]杨国峰,孙爱民,沈东星,等.晶格常数与掺杂YBCO体系超导电性的关系[J].低温与超导,2007,35(6):515.
    [15]Degoy S., imenez J., Martin P., et al. Oxygen content of YBaCuO thin films[J]. Phys. C:Superconductivity,1996,256(3-4):291-297.
    [16]Graf T., Triscone G, and Muller J.. Variation of the superconducting and crystallographic properties and their relation to oxygen stoichiometry of highly homogeneous YBa2Cu3Ox[J]. Journal of the Less-Common Metals,1990,159: 349-361.
    [17]崔旭梅. TFA-MOD方法生长YBCO超导薄膜的结构和性能研究[D].成都:电子科技大学,2006.
    [18]Bindi M., Botarelli A., Gauzzi A., et al. High critical current density in YBCO coated conductors prepared by thermal co-evaporation[J]. Superconductor Science and Technology,2004,17(3):V512-516.
    [19]Berberich P., Assmann W., Prusselt W., et al. Large area deposition of YBa2Cu3O7 films by thermal co-evaporation[J]. Journal of Alloys and Compounds,1993,195(1):271-274.
    [20]Satoh K., Yoshihara M., Nakajima M., et al. Characterization of Y-Ba-Cu-O thin films on metallic substrates using Co-evaporation technique [J]. Japanese Journal of Applied Physics, Part2:Letters,1991,30(8):1363-1366.
    [21]Bagarinao K. D., Yamasaki H., Nie J. C., et al. Control of porosity and composition in large-area YBCO films to achieve micrometer thickness and high Jc on sapphire substrates [J]. IEEE Trans. Appl. Supercond,2005,15(2) PART Ⅲ:2962-2965.
    [22]Watanabe T,Kuriki R,Iwai H,et al.High rate deposition by PLD of YBCO films for coated conductors [J]. IEEE Trans. Appl. Supercond,2005,15(2) PART Ⅲ: 2566-2569.
    [23]Hong Z., Hong W., Cong-Xin R., et al. Anisotropy of the current-carrying characteristics of YBCO film fabricated by magnetron sputtering [J]. Superconductor Science&Technology,1994,7(6):359-363.
    [24]Chiodoni A., Ballarini V., Botta D., et al.Characterization of silicon-YBCO buffered multilayers grown by sputtering [J]. Applied Surface Science,2004,238: 485-489.
    [25]Liu X. Z., Tao B. W., Luo A., et al. The preparation of double-sided YBCO thin films by simultaneous sputtering from single target[J].Thin Solid Films,2001, 396(1-2):225-228.
    [26]Tao B. W., Li Y. R., Liu X. Z., et al. A biaxial rotation for depositing homogeneous large-areadouble-sided YBa2Cu3O7-x thin films[J]. Journal of Vacuum Science and Technology A:Vacuum, Surfaces and Films,2002,20 (6):1898-1902.
    [27]Kim C. J., Jun B. H., Kim H. J., et al. Comparative study of YBCO film growth in the cold wall type and hot wall type MOCVD processes[J]. Phys. C: Superconductivity and its Applications,2005,426-431(11):915-919.
    [28]Zeng J., Chou P., Zhang X., et al. Microstructures of YBa2Cu3O7-x thick films grown by photo-assisted metal-organic chemical vapor deposition[J].Materials Research Society Symposium Proceedings,2004, EXS:49-51.
    [29]Selvamanickam V., Lee H. G., Li Y, et al. Scale up of high-performance Y-Ba-Cu-O coated conductors [J]. IEEE Trans. Appl. Supercond.,2003,13: 2492-2495.
    [30]Stadel O.,Schmidt J.,Wahl G, et al. Continuous YBCO deposition by MOCVD for coated conductors [J]. Phys. C:Superconductivity and its Applications,2002, 372-376 (2):751-754.
    [31]Li A. H., Ionescu M., Liu H. K., et al. Microstructures and phase evolution in YBa2Cu3O7-x filmsgrown on various substrates fabricated via a non-fluorine sol-gel route[J].Physica C:Superconductivity and its Applications,2005, 426-431(Ⅱ):1408-1414.
    [32]Mouganie T.,Moram M. A., Sumner J., et al. Chemical and physical analysis of acetate-oxide sol-gel processing routes for the Y-Ba-Cu-O system[J]. J. Sol-Gel Sci. Technol.,2005,36(1):87-94.
    [33]Shi D., Xu Y, Yao H., et al. The development of YBa2Cu3Ox thin films using a fluorine-free sol-gel approach for coated conductors [J]. Supercond. Sci. Technol., 2004,17(12):1420-1425.
    [34]Yao H., Zhao B., Shi K., et al. Fluorine-free sol gel deposition of epitaxial YBCO thin films for coated conductors[J].Phys. C:Superconductivity and its Applications,2003,392-396(11):941-945.
    [35]Aoki Y, Teranishi R., Kitoh Y, et al. Fabrication of 10-m class Y-123 coated conductors using continuous reel-to-reel process by TFA-MOD method[J]. Phys.C:Superconductivity and its Applications,2005,426-431(Ⅱ):945-948.
    [36]Nakaoka K., Tokunaga Y., Matsuda J. S., et al. Fabrication of YBCO coated conductors using advanced TFA-MOD process [J].Physica C:Superconductivity and its Applications,2005,426-431(11):954-958.
    [37]Sathyamurthy S., Paranthaman M., Bhuiyan M. S., et al. Solution deposition approach to high Jc coated conductor fabrication[J].IEEE Trans. Appl. Superconductivity,2005,15(2)PART Ⅲ:2974-2976.
    [38]Jia Q.X., Mccleskey T. M., Burrell A. K., et al. Polymer-assisted deposition of metal-oxide films[J]. Nature Mater.,2004,3:529-532.
    [39]Apetrii C., Schlorb H., Falter, M. I. et al.YBCO thin films prepared by fluorine-free polymer-based chemical solution deposition[J]. IEEE Trans.Appl. Supercond.2005, (15):2642.
    [40]Jia Q.X. Mccleskey T. M., Burrell A. K., et al. Polymer-assisted deposition of metal-oxide films [J].Nature Mater.,2004,3:529.
    [41]Jia Q. X., McCleskey T. M., Burrell A. K., et al. Polymer-assisted deposition of films. United States Patent Application[P].20050043184,2005.
    [42]Manasevit H. M. Single Crystal Galluim Aresenide on Insulating Substrates [J]. Appl. Phys. Lett.,1968,12:156.
    [43]Manasevit H. M.. The Use of Metalorganils in the preparation of Semicondutor Materials[J]. J. Cryst. Growth,1972,13:306.
    [44]Yamane, H., Masumoto, H., Hirai, T., et al. Y-Ba-Cu-O superconducting films prepared on SrTiO3 substrates by chemical vapor deposition [J]. Appl. Phys. Lett., 1988,53(16):1548-1550.
    [45]Chou P., Zhong Q., Li Q. L., et al. Optimization of Jc of YBCO thin films prepared by photo-assisted MOCVD through statistical robust design[J]. Phys. C, 1995,254:93.
    [46]Rupich M. W., Verebelyi D. T., Zhang W, et al. Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires[J]. MRS Bull.,2004,8:572.
    [47]Klee M. and Mackens U. Sol-gel and mod processing of layered perovskite films[J]. Integrated Ferroelectrics,1996,12(1):11-22.
    [48]Selvaduray, G. Zhang C., Balachandran U., et al. J. Mater. Res.1992,7(2):283.
    [49]Gupta A., Jagannathan R., Cooper E. I., et al. Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors [J]. Appl. Phys. Lett.1988,52(24):2077.
    [50]McIntyre P. C., Cima M. J., Ng M. F., Metalorganic deposition of high-Jc YBa2Cu3O7-x thin films from trifluoroacetate precursors onto (100)SrTiO3[J]. J. Appl. Phys.1990,68 (8):4183.
    [51]McIntyre P. C., J. Cima Mi.. Mixed-state behavior in large magnetic fields of high-temperature superconducting films prepared by metalorganic deposition[J]. Appl. Phys. Lett.1988,58(18):2032.
    [52]Feenstra R., Lindemer T. B., Budai J. D., et al. Effect of oxygen pressure on the synthesis of YBa2Cu3O7-x thin films by post-deposition annealing[J]. Appl. Phys., 1991,69(9):6569.
    [53]McIntyre P. C., Cima M. J., Smith J. A., et al. Effect of growth conditions on the properties and morphology of chemically derived epitaxial thin films of Ba2YCu3O7-x on (001) LaAIO3[J]. Appl. Phys.,1992,71(4):1868-1869.
    [54]Patta, Y. R., Wesolowski D. E., Cima M. J.. Aueous polymer-nitrate solution deposition of YBCO films[J]. Phys. C,2009,469:129-131.
    [55]Wesolowski D. E., Patta Y. R., Cima M. J.. Conversion behavior comparison of TFA-MOD and non-fluorine solution-deposited YBCO films[J]. Phys. C,2009, 469:766-767.
    [56]Shiohara Y, Yoshizumi M., Izumi T., et al. Present status and future prospect of coated conductor development and its application in Japan[J]. Supercond. Sci. Technol.,2008,468:1501.
    [57]Izumi T., Yamada Y, Shiohara Y. All Japan efforts on R&D of HTS coated conductors for future applications[J]. Phys. C,2003,392-396:9-16.
    [58]Shiohara Y. Progress and future prospect of R&D on coated conductors in Japan[J]. Phys. C 2004,412-414:1-9.
    [59]Nakaoka K., Matsuda J., Kitoh Y, et al. Influence of starting solution composition on superconducting properties of YBCO coated conductors by advanced TFA-MOD process[J]. Phys. C,2007,463-465:521.
    [60]Shiohara Y, Yoshizumi M., Izumi T., et al. Current status and prospects of national project on coatedconductors in Japan[J]. Phys. C,2007,463-465:3.
    [61]Kutami H., Hayashida T., Hanyu S., et al. Progress in research and development on long length coated conductors in Fujikura[J]. Phys. C,2009,469:1291.
    [62]Shiohara Y., Fujiwara N., Hayashi H., et al. Japanese efforts on coated conductor processing and its power applications:New 5 year project for materials and power applications of coated conductors (M-PACC)[J]. Phys. C,2009,469:865.
    [63]Martin W. Rupich, Li X. P., Thieme. C. Advances in second generation high temperature superconducting wire manufacturing and R&D at American Superconductor Corporation[J]. Supercond. Sci. Technol.,2010,23:014-015.
    [64]Zhou H., Maiorov B., Baily S. A., et al.Thickness dependence of critical current density in YBa2Cu3O7-δ films with BaZrO3 and Y2O3 addition[J]. Supercond. Sci. Technol.,2009,22,085013(6pp).
    [1]Paul C. McIntyre, Michael J. Cima, John A. Smith, et al. Effect of growth conditions on the properties and morphology of chemically derived epitaxial thin films of Ba2YCu3O7-x on (001) LaAIO3[J]. Appl. Phys.,1992,71(4):1868-1869.
    [2]Matsuda J. S., Y. Tokunaga, R. Teranishi a, et al. Effects of heat-treatment conditions on microstructure of multi-coating Y123 films deposited[J]. Phys. C, 2004,412-414:892-894.
    [3]Teranishi R., Matsuda J., Nakaoka K., et al. High-Ic processing for YBCO coated conductors by TFA-MOD process[J]. Phys.C,2005,426-431:959-965.
    [4]Araki T, Yamagiwa K., Hirabayashi I., et al.Large-area uniform ultrahigh-Jc YBa2Cu3O7-x film fabricated by the metalorganic deposition method using trifluoroacetates[J] Supercond. Sci. Technol,2001,14:L21.
    [5]Araki T. and Izumi Hirabayashi. Review of a chemical approach to YBa2Cu3O7-x-coated superconductors—metalorganic deposition using trifluoroacetates[J]. Supercond. Sci. Technol.,2003,16:R74.
    [6]Araki T, Niwa T., Yamada Y. et al. Growth model and the effect of CuO nanocrystallites on the properties of chemically derived epitaxial thin films of YBa2Cu3O7-x[J]. J. Appl. Phys.,2002,92(6):3319-3320.
    [7]Smith J. A., Cima M. J., Sonnenberg N.. High Critical Current Density Thick MOD-Derived YBCO Films[J]. IEEE Trans. Appl. Supercond.,1999,9(2),1531.
    [8]Niwa T., Araki T., Muroga T., Yasuhiro Iijima, et al. Calcining Conditions for YBa2Cu3O7-x Films by Metalorganic Deposition Using Trifluoroacetates[J]. IEEE Trans. Appl. Supercond.,2003,13(2),2749.
    [9]Finlayson A. P., Mouganie T., Cordero-Cabrera M. C.. Phase transformation analysis throughout an anhydrous fluorine based sol-gel YBCO processing route[J]. Mater. Chem. Phys.,2007,105:102-103.
    [10]Kosse A. I., Prokhorov A. Yu, Khokhlov, V. A., et al. Measurements of the magnetic field and temperature dependences of the critical current in YBCO films and procedures for an appropriate theoretical model selection[J]. Supercond. Sci. Technl.,2008,21(7):075015(10PP).
    [11]Honjo T., Nakamura Y, Teranishi R., et al. Fabrication and growth mechanism of YBCO coated conductors by TFA-MOD process[J]. Phys. C,2003,392-396: 880.
    [12]Chung K. C., Yoo J. M., Kim Y. K., et al. The effect of water pressure on the texture and morphology of MOD-YBCO films on buffered metal substrates [J]. Supercond. Sci. Technol.2009,22:025007(5pp).
    [13]Nakaoka K., Yoshizumi M., Izumi T., et al. Relationship between crystallization process and superconducting properties of YBCO films by TFA-MOD method using starting solution with various compositions [J]. Phys. C,2010,470: 1242-1445
    [1]McIntyre, P. C., Chiu, R. C., Cima, M. J., et al. Metalorganic Decomposition and Microstructure Development in Barium Yttrium Copper Oxide (Ba2ycu3O7-x) Films from Metal Trifluoroacetate Precursors[J]. Mat. Res. Soc. Symp. Proc., 1990,169:743.
    [2]Izumi T., Yoshizumi M., Matsuda J., Progress in development of advanced TFA-MOD process for coated conductors [J]. Physi.C,2007,463-465:513.
    [3]Izumi T., Yoshizumi M., Miura M., et al. Present status and strategy of reel-to-reel TFA-MOD process for coated conductors [J],. Phys. C,2009,469: 1324.
    [4]Miura M., Ichikawa H., Sutoh Y., K. et al. Development of multi-turn reel-to-reel crystallization large furnace for high production rate of YBa2Cu3Oy coated conductors derived from TFA-MOD process[J]. Phys. C,2009,469: 1336-1340.
    [5]Shiohara Y., Fujiwara N., Hayashi H., et al. Japanese efforts on coated conductor processing and its power applications:New 5 year project for materials and power applications of coated conductors (M-PACC)[J]. Phys. C,2009,469:865.
    [6]Bhuiyan M. S., Paranthaman M., Sathyamurthy S., et al. Development of Modified MOD-TFA Approach for YBCO Film Growth[J]. IEEE Trans. Appl. Supercond.,2007,17(2),3537-3539.
    [7]Harwalker V. R., Ma C. Y..Thermal Analysis of Food[M]. Elsevier Science Publishers,1990.
    [8]Patta Y. R., Wesolowsk D. E.i, Cima M. J.. Aueous polymer-nitrate solution deposition of YBCO films[J]. Phys. C,2009,469:132.
    [9]李见,材料科学基础[M].北京:冶金工业出版社,2006:161-162.
    [10]崔旭梅. TFA-MOD方法生长YBCO超导薄膜的结构和性能研究[D].成都:电子科技大学,2006.
    [1]Bhuiyan M. S., Paranthaman M., Salama K.. Solution-derived textured oxide thin films—a review[J].Supercond. Sci. Technol.2006,19:R1-R2.
    [2]Wesolowski D. E., Yoshizumi M., Cima M. J.. Understanding the MOD Process Between Decomposition and YBCO Formation[J]. IEEE Trans. Appl. Supercond.,2007,17(2),3351.
    [3]Jia Q. X., Mccleskey T. M., Burrell A. K., et al. Polymer-assisted deposition of metal-oxide films[J]. Nature Mater.2004,3:529.
    [4]Jia Q. X., McCleskey T. M., Burrell A. K., et al. Polymer-assisted deposition of films. United States Patent Application[P].20050043184,2005.
    [5]林媛,杨丹丹,代超等.高分子辅助沉积法制备氧化物和氮化物薄膜[J].电子科技大学学报,2009,38(5):524-525.
    [6]Patta Y. R., Wesolowski D. E., Cima M. J.. Aueous polymer-nitrate solution deposition of YBCO films[J]. Phys. C,2009,469:131.
    [7]Apetrii C., Schlorb H., Falter M., et al. YBCO Thin Films Prepared by Fluorine-Free Polymer-Based Chemical Solution Deposition[J]. IEEE Trans. Appl. Supercond.,2005,15(2),2642-2644.
    [8]Fuji H., Honjo T., Y. Nakamura, et al. Fabrication processing of Y123 coated conductors by MOD-TFA method[J]. Phys. C,2002,378-381:1015.
    [9]Dean J. A.. Solubilities of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures[M]. Lange's Handbook of Chemistry, 15th ed., McGraw-Hill,1999.
    [10]Quintas M., Brandao T. R. S., Silva C. L. M., et al. Food Eng.,2006,77(4):844.
    [11]Patnaik P.. Handbook of Inorganic Chemicals[M]. McGraw-Hill,2003.
    [12]Dubinsky S., Lumelsky Y., Grader G. S., et al. Thermal degradation of poly(acrylic acid) containing metal nitrates and the formation of YBa2Cu3O7-x [J]. Polym. Sci.Part:B Polym. Phys.,2005,43:1168.
    [13]Wong N. W., Cook L. P., Suh J., et al. Melting investigation of the system BaF2-BaO-1/2Y2O3-CuOx-H2O[J]. Supercond. Sci. Technol.2005,18:442.
    [1]Dawley J. T., Clem P. G, Siegal M. P., et al. High Jc YBa2Cu307-δ films via rapid, low Po2 pyrolysis[J]. J. Mater. Res.,2001,16(1):13-15.
    [2]Dawley J. T., Clem P. G, Siegal M. P., et al. Thick Sol-gel Derived YBa2Cu307-δ Films[J]. IEEE Trans. Appl. Supercond.,2001,11(1),2875-2876.
    [3]Dawley J. T., Clem, M.P. Siegal P. G, et al. Improving Sol-gel YBa2Cu3O7-δ Film morphology using high-boilin-ponit solvents[J]. J. Mater. Res.2002,17(8), 1900-1903.
    [4]Siegal M. P., Dawley J. T., Clem P. G, et al. Improving chemical solution deposited YBa2Cu3O7-δ film properties via high heating rates[J]. Phys. C,2003, 399:144-150.
    [5]Dawley J. T., Clem P. G, Boyle T. J., Rapid processing method for solution deposited YBa2Cu3O7-δ thin films[J]. Phys. C.,2004,402:150.
    [6]Izumi T., Shiohara Y. R&D of coated conductors for applications in Japan[J]. Physica C,2010,470:967-970.
    [7]Jang S. H., Lim J. H., Kim K. T. et al., The effects of the firing temperature of YBCO coated conductors fabricated by TFA-MOD process[J]. Phys. C.,2006, 445-448:591.
    [8]Zalamova K., Pomar A., Palau A., Intermediate phase evolution in YBCO thin films grown by the TFA process[J]. Supercond. Sci. Technol,2010,23: 014012(11pp)
    [1]Dawley J. T., Clem P. G, Boyle T. J., Rapid processing method for solution deposited YBa2Cu307-5 thin films[J]. Phys. C.,2004,402:149.
    [2]Knoth K., Engel S., Apetrii C.. Chemical solution deposition of YBa2Cu3O7-x coated conductors [J]. Phys. C.,2006,205-216:212.
    [3]Araki T. and Hirabayashi I. Review of a chemical approach to YBa2Cu3O7-x-coated superconductors—metalorganic deposition using trifluoroacetates[J]. Supercond. Sci. Technol.,2003,16:R82.
    [4]Araki T., Niwa T., Yamada Y. Growth model and the effect of CuO nanocrystallites on the properties of chemically derived epitaxial thin films of YBa2Cu3O7-x[J]. J. Appl. Phys.,2002,92(6):3319.
    [5]Finlayson A.P., Mouganie T., Cordero-Cabrera M. C.. Phase transformation analysis throughout an anhydrous fluorine based sol-gel YBCO processing route[J]. Mater. Chem. Phys.,2007,105:102.
    [6]Llordes A., Zalamova K., Ricart S.. Evolution of Metal-Trifluoroacetate Precursors in the Thermal Decomposition toward High-Performance YBa2Cu3O7,Superconducting Films[J].2010, Chem. Mater.,22(5):1694
    [7]Teranishia R., Tanakab T., Matsudab J., Dependence of crystallization time on microstructures and Jc properties of YBa2Cu3Oy films by TFA-MOD chemical solution process[J].Mater. Sci. Engineering B,2010,173:61-65.
    [1]Izumi T., Shiohara Y. R&D of coated conductors for applications in Japan[J]. Phys. C,2010,470:967-970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700