AZO靶材热压致密化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透明导电薄膜具有高可见光透过率和低电阻率,因此可以作为平面显示器和太阳能平面电极材料,也可用在节能方面,如建筑玻璃表面和汽车玻璃表面。AZO透明导电薄膜的禁带宽度达到3.4ev,本征吸收限为360nm,可减少P,N型掺杂区对光的吸收,提高光能量的利用率,是合适的窗口层材料。同时,AZO在等离子体中稳定性好,制备技术简单,原料便宜易得,无毒,在性能上与ITO可比拟,这些特点使其成为ITO的替代品。
     随着透明导电薄膜的应用发展,AZO溅射靶材及薄膜沉积技术成为研究热点。影响薄膜性能的主要因素包括靶材的使用性能和薄膜沉积工艺。目前,AZO薄膜的沉积技术较为成熟,但AZO靶材热压过程中孔隙率、气孔演化、显微结构变化及其对薄膜性能的影响研究很少。因此,研究AZO靶材的热压致密化过程,对AZO靶材的产业化发展和薄膜太阳能产业来说都具有重要的意义。
     首先,本文以ZnO和Al2O3粉体为原料,采用热压烧结制备AZO靶材,升温速率为20℃/min。通过阿基米德法、压汞仪、SEM、XRD、四探针电阻率测试仪分析AZO靶材的性能,研究热压工艺条件对AZO靶材致密化的影响。结果如下:AZO靶材的热压致密化过程随热压温度的上升可以分为两个阶段。850℃-1100℃,随着温度的升高,连通孔洞发生了合并收缩,孔径逐渐集中化分布,闭孔率在1050℃-1100℃具有最低值。特征是致密化速率快,孔洞大部分连通。当温度升至1100℃之后,随着传质的继续,气孔逐渐缩小和变形,直到全部转变成孤立的闭合气孔。特征是闭孔率迅速上升,致密化速率较慢。在保温时间对致密化过程的影响研究中发现:当温度为1150℃时,随着保温时间的延长,由于闭合气孔率的升高和连通孔洞的生长,靶材存在反致密化现象。在压力对致密化过程的影响研究中发现:较大的外加压力在促进烧结致密化的同时导致闭孔率的升高。
     通过在升温过程中施加压力能促进靶材的烧结致密化,降低靶材的连通孔隙率和闭合孔隙率。根据致密化过程分析结果,高密度靶材的制备工艺为1050℃保温60min,1150℃保温60min,制备所得AZO靶材相对密度大于98%。
     其次,本文在对原料成分,靶材的成分和结构分析测试中发现:Al2O3含量为2wt%的原料粉体系中,部分Al元素扩散进入了ZnO的晶格中,另一部分由于固溶度的限制而形成了ZnAl2O4尖晶石。在热压过程中由于ZnAl2O4化合物分布在ZnO晶界处,导致Al元素局域含量差异,造成靶材中成分分布不均匀的缺陷。
     最后,本文将所制备的靶材作为溅射源,进行射频磁控镀膜测试。采用台阶仪,紫外分光光度计,四探针电阻图谱仪,XRD等分析测试仪测试薄膜的性能。结果表明,在相同的溅射条件下,靶材孔隙率越低,沉积速率越快,所得薄膜电阻率越低,但溅射功率较高时薄膜透光率明显减小。平均孔径较小且孔径分布集中的靶材,溅射所得薄膜电阻率较低。在溅射功率密度为3.9W/cm2下,相对密度高于80%的AZO靶材,靶材寿命大于150 W·h。相对密度为94.79%的靶材在溅射功率30W下沉积20min得到薄膜的电阻率为3.14×10-4Ω·cm,平均透过率大于85%,具有(002)择优取向,满足薄膜太阳能对透明导电薄膜性能的要求。
Transparent conductive film with high visible light transmittance and low resistivity can be used as flat panel displays and solar plane electrode materials. It can also be used in energy efficiency such as construction glass and automotive glass surfaces. The band gap of AZO transparent conductive film is 3.4 ev and its intrinsic absorption limit is 360 nm. It can reduce the absorption of light at P, N-type doping and improve the utilization of light energy. Therefore, AZO transparent conductive film is the appropriate window layer material. At the same time, AZO has lots of advantages such as good stability in plasma, simple preparation technology, easy to get, cheap raw materials, non-toxic which can be compared with ITO and make it a substitute for ITO.
     With the development of transparent conductive thin film, AZO sputtering target and the deposition technology of AZO film become a research hotspot. The main factors of film properties are target performance and film deposition process. Currently, AZO film deposition technology is more mature, but the porosity, pore evolution and microstructure in the hot pressing densification process and the impact on the film properties are rarely studied. Therefore, for the AZO target industrial development and thin-film solar industry, the study of hot pressing densification process of AZO target has an important significance.
     Firstly, AZO targets were prepared by hot-pressing using ZnO and Al2O3 mixture powder as raw materials with heating-rate of 20℃/min. Study about the influence of hot pressing process on target properties was carried on by method listed below:Archimedes method; Mercury intrusion porosimeter; SEM; XRD; Four-point probe meter. Results are as follows:Hot-pressing densification process of AZO target can be divided into two main stages with the rising of temperature.850℃-1100℃, with the rise of temperature, the distribution of pore size become concentrated as a result of merger and shrinkage of the channel pore volume and the content of the isolate volume has the lowest value at 1050℃-1100℃. The feature of this stage is that densification rate is fast and most holes are connected. When the temperature rise to 1100℃, with the continued mass transfer, pore volume is reduced and deformed gradually until all the pores become into isolation. The feature of this stage is that the content of isolate volume increased rapidly and densification rate is slower. According to the study about the influence of preserving time on hot pressing densification, we found that when the temperature is 1150℃, anti-densification phenomenon happens with extension of preserving time due to the increase of content of the isolate volume and the growth of the channel pore. According to the study about the influence of pressure on hot pressing densification, we found that larger pressure will promote the densification process at the same time lead to the increasing of content of the isolate volume.
     The densification process can be promoted by adding pressure in the heating process which can reduce the content volume of channel pore and isolate pore. According to the results of densification, AZO high-density target was prepared by process like this:1050℃, 60min and 1150℃,60min and its relative density is greater than 98%.
     Secondly, According to the study about composition of raw material, composition and structure of target, we found that some of Al element diffuses into the ZnO lattice, and the other part reacts to form ZnAl2O4 spinel because of limited solubility. During the hot pressing process, ZnAl2O4 compounds distributes at the ZnO grain boundary resulting in uneven distribution of composition effect of target due to the uneven distribution of Al elements.
     Finally, The RF magnetron coating test was carried on using the prepared targets as sputtering source. The thickness of the film was measured by Profiler. The transmittance was measured by UV spectrophotometer. The film resistivity was measured by Four-point probe meter and the phase structure was measured by X-ray diffraction. Coating test results are listed below:Under the same sputtering conditions, when the target porosity is lower, deposition rate can be faster and resistivity of film also is lower but the film transmittance was significantly reduced when the sputtering power is higher. The film has lower resistance when the target has smaller average pore size and concentrated pore size. When the power density is 3.9 W/cm2, the target life is less than 150 W·h when the relative density is lower than 80%.The film deposited for 20min under sputtering power 30W by the target which relative density is 94.79%has lower resistivity (3.14×10-4Ω·cm),greater transmittance (85%) and(002) preferred orientation,both which meets needs of transparent conductive oxide film for solar cell application.
引文
[1]殷志刚.太阳能光伏发电材料的发展现状[J].可再生能源,2008,26(5):17-19
    [2]耿新华.中国薄膜太阳能电池的发展[J].第八届光伏会议论文集:23-29
    [3]殷胜东ZnO:Al薄膜的制备及其性质的研究[D].重庆:重庆师范大学,2007
    [4]唐伟忠.薄膜材料制备原理技术及应用[M].北京:冶金工业出版社,2003
    [5]H.H豪斯纳著,北京市粉末冶金研究所译.粉末冶金手册[M].北京:冶金工业出版社,1982
    [6]赵大庆,范锦鹏,吴敏生,等.ZAO陶瓷烧结模型的研究[J].粉末冶金技术,2002,20(5):267-270
    [7]曹茂盛,李大勇,荆天辅.陶瓷材料导论[M].哈尔滨:哈尔滨工程大学出版社,2005
    [8]朱莉,张小东,曹利克,等.ZnO相纤锌矿-闪锌矿相变机制理论[J].西北大学学报(自然科学网络版),2010,8(1):1-5
    [9]KULKARNI A. J., ZHOU M, KANOKAN S., et al. Novel Phase Transformation in ZnO Nanowires under Tensile Loading[J]. Phys. Rev. Lett,2006,97,105502
    [10]OZGUR U., ALIVOV Y. I., LIU C., et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys.,2005,98,041301.
    [11]KARZEL H, POTZEL W, KOFFERLEIN M. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures[J]. Phys Rev B,1996,53: 11425
    [12]DESGRENIERS S. High-density phases of ZnO:Structural and compressive parameters [J]. Phys Rev B,1998,58:14102
    [13]刘玉萍AZO(ZnO:Al)透明导电薄膜的PECVD制备及其光电特性的研究[D].湖北:华中科技大学,2007
    [14]何永.脉冲激光沉积ZnO薄膜的工艺及其性能的研究[D].武汉:武汉理工大学,2007
    [15]万齐欣,熊志华,刘国栋.ZnO本征缺陷的第一性原理计算[J].南昌大学学报 (理科版),2008,6
    [16]Oba F, Nishitani S R, Isotani S, et al. Energetics of native defects in ZnO[J]. J. Appl. Phys.,2001,90 (2):824-828
    [17]Look D C, Hemsky J W, Sizelove J R. Residual native shallow donor in ZnO[J]. Phys. Rev. Lett.,1999,82 (12):2552-2555
    [18]张富春.ZnO电子结构与基本属性的第一性原理研究[D].武汉:武汉理工大学,2006
    [19]KOBAYASHI A, SANKEY O F, VOLZ S M, et al. Semiem-pirical tight-binding band structures of wurtzite semiconductors:AlN. CdS, CASe, ZnS, and ZnO[J]. Phys Rev:B,1983,28 (2):935-945
    [20]Cohan A F, Ceder G, Morgen D, et al. First principles study of native point defects in ZnO [J]. Phys Rev:B,2000,61(22):15019-15027
    [21]YAMAMOTO T, YOSHIBA H K. Physics and control of valence states in ZnO by codoping method [J]. Physca:B,2001,302/303:155-162
    [22]毕艳军,郭志友,孙慧卿,等.Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究[J].物理学报,2008,12
    [23]赵慧芳,曹全喜,李建涛,等.N,Ga共掺杂实现p型ZnO的第一性原理研究[J].物理学报,2008(9):5828-5832
    [24]杨伟方,付恩刚,庄大明,张弓.ZAO薄膜的光电特性与应用前景[J].真空,2007,44(5):36-44
    [25]范锦鹏,赵大庆,吴敏生,等.用纳米Al2O3制备超高致密度ZAO靶材[J].粉末冶金技术,2005,23(1):45-47
    [26]郭小龙,陈沙鸥,等.纳米陶瓷粉末分散的微观过程和机理[J].青岛大学学报,2002,15(1):78-87
    [27]李先红,李国栋.干态纳米分散技术及其机理研究[J].材料导报,2007,21(7):90-100
    [28]俞康泰,田高,等.对包裹型镉硒红釉的组成和呈色机理的研究[J].陶瓷,1999,(4):25
    [29]Hamaker H C. London-der Waals attraction between sphere-cal-pherical [J]. Physica,1997,12(4):26
    [30]李国栋.氧化物超细粉体团聚机理的研究[J].硅酸盐学报,2002,30(5):645
    [31]丁训民,杨新菊,王迅.表面物理与表面分析[M].上海:复旦大学出版社,2004
    [32]吴越.催化化学[M].北京:科学出版社,2000,829
    [33]徐跃萍,郭景坤.无团聚ZrO2-Y2O3陶瓷超细粉的制备及微观结构表征[J].硅酸盐学报,1991,19(3):269
    [34]Epple R A. Zirconia-based colors for ceramic glaze[J]. Am Ce2-ram Soc Bull,1977,56(2):213
    [35]张强,周学东.锆基陶瓷色料的制备及其性能[J].硅酸盐通报,2001,(3):41
    [36]曹春娥,王迎军,等.炻质瓷装饰用无公害镉硒大红釉的研究[J].硅酸盐学报,2004,32(3):264
    [37]王登其Cd(Sx Se1-x)ZrSiO4色料在陶瓷釉中的应用.山东陶瓷[J].2004,27(2):28
    [38]K.Niihar, N.Unal, A.Nakahira. Mechanical properties of (Y-TZP)-alumina-silicon carbide nanocomposites and the phase stability of Y-TZP particles in it[J]. Joutnal of Materials Science,1994, (29):164-168
    [39]Junhong Zhao, Laura C, Martin P.Harmer, Helen M.Chan, Gary A.Miller. Mechanical behavior of Alumina-Silicon Carbide "Nanocomposites" [J]. J. Am. Ceram. Soc.,1993,76(2):503-10
    [40]张宗涛,方敏,杨晓玲,胡黎明.纳米ZrO2-Al2O3复合粉末注浆成型与烧结行为研究[J].硅酸盐通报,1996,(3):4-9
    [41]Martin Sternitzke, Brian Derby, Richard J. Brook. Alumina/Silicon carbide nanocomposites by hybrid polymer/powder processing:microstructures and mechanical properties [J]. J. Am. Ceram. Soc.,1999,81(7):41-48
    [42]邓斌,叶丽娟,侯耀永,等.几种分散剂对亚微米ZnO系粉体在水中分散的影响[J].郴州师范高等专科学校学报,2002,23(2):37-39
    [43]果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998
    [44]李达,陈沙鸥,等.先进陶瓷材料固相烧结理论研究进展[J].材料导报,2007,21(9):6-10
    [45]贾磊,谢辉,等.Mo粉末烧结现象与烧结机制研究[J].铸造技术,2008,29(3):10-13
    [46]杨峥,陈大明,等.ZrO2纳米级分体烧结初期致密化过程[J].航空学报,1996,17(6):715-718
    [47]施剑林.高性能陶瓷与先进陶瓷固相烧结理论研究进展[J].世界科技研究与进展,20(5):125-128
    [48]施剑林.固相烧结-Ⅰ气孔显微结构模型及其热力学稳定性,致密化方程[J].硅酸盐学报,1997,25(5):499-512
    [49]施剑林.固相烧结-Ⅱ粗化与致密化关系及物质传输途径[J].硅酸盐学报,1997,25(6):657-666
    [50]施剑林.固相烧结-Ⅲ超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为[J].硅酸盐学报,1998,26(1):1-12
    [51]张玉龙,马建平.实用陶瓷材料手册[M].北京:化学工业出版社,2006
    [52]葛荣德.粉末热压模型研究[J].硅酸盐学报,1994,22(3):253-257
    [53]赵佩琛.促进烧结固相反应的条件和措施[J].烧结球团,1994,1:15
    [54]赵大庆,范锦鹏,吴敏生,等.ZAO陶瓷烧结模型的研究[J].粉末冶金技术,2002,20(5):267-270
    [55]范锦鹏,赵大庆,董民超.ZAO靶材烧结机理与特征的研究[A].2001年”面向21世纪的生产工程”学术会议暨企业生产工程与产品创新专题研讨会论文集[C].中国机械工程学会生产工程分会,2001
    [56]肖华,王华,任鸣放,等.烧结工艺ZAO靶材微观结构和性能的研究[J].功能材料,2006,增刊(37):36-39
    [57]刘心宇,李海麒,江民红.常压固相烧结法制备ZAO靶材及其性能的研究[J].湖南科技大学学报,2008,23(1):27-30
    [58]吴智华,蒋丹宇,张骋.陶瓷溅射靶材的发展与应用[J].陶瓷科学与艺术, 2004,38(1):43-47
    [59]陈宝清.离子镀及溅射技术[M].北京:国防工业出版社,1990
    [60]沈延山,陈伟荣,贾工普,等.离子镀技术与设备[M].大连:大连海事大学出版社,1995
    [61]C. Guille'n, J. Herrero*. High conductivity and transparent ZnO:Al films prepared at low temperature by DC and MF magnetron sputtering[J]. thin solid films,2006, N515:640-643
    [62]W.W.Wang, X.G. Diao, Z.Wanga, M. Yang, et al. Preparation and characterization of high-performance direct currentmagnetron sputtered ZnO:Al films [J]. thin Solid Films,2005, N491:54-60
    [63]R.J.Hong, X.Jiang, B.Szyszka,V.Sittinger, A.pflug. Studies on ZnO:Al thin films deposited by in-line reactive nid-frequency magnetron sputtering [J]. Surface Science,2003, N207:341-350
    [64]PEI Zhiliang, SUN Chao, TAN Minghui, GUAN Dehui, et al. Study on ZnO:Al(ZAO)films by DC reaction magnetron sputtering[J]. progress in natural, 2001, V11(6):440-446
    [65]薛建设,林承武,梁珂.透明导电薄膜制备所用的靶材及导电薄膜和电极制造方法[P].中国专利:200710065344.0,2008-10-15
    [66]陆峰,徐成海,闻立时.ZAO薄膜的研究现状及发展趋势[J].真空与低温,2001,7(3):125-129
    [67]余俊,赵青南,赵修建.A1203掺量及氧气分压对直流磁控溅射法制备铝掺杂氧化锌薄膜性能的影响[J].硅酸盐学报,2004,32(10):1241-1245
    [68]韩鑫,于今ZnO:Al(ZAO)透明导电薄膜国内的研究现状[J].江苏冶金,2006,34(5):4-7
    [69]Igasaki.Y, Ishkawa.M, Shimaoko.G. Some properties of Al-doped ZnO transparent conducting films prepared by rf reactive sputtering [J]. Appl Sur Science,1988,33/34: 926-933
    [70]杨发强,屈飞,古宏伟,李弢,王磊Cu(In,Ga)Se2太阳能电池窗口层ZnO: Al薄膜的研究[J].稀有金属,2010,34(3):383-387
    [71]陈振华,陈鼎.机械合金化与固液反应球磨[M].北京:化学工业出版社,2006-2-1
    [72]王天国.机械合金化与热压烧结制备TiAl基合金的研究[D].武汉:武汉理工大学,2006.4
    [73]黄培云,金展鹏,陈振华.粉末冶金基础理论与新技术[M].长沙:中南工业大学出版社,1995
    [74]王听,田进涛.先进陶瓷制备工艺[M].北京:化学工业出版社,2009
    [75]陈其兰,向凌霞,倪焕尧,等ICP-AES剖析陶瓷粉体化学组份均匀性[J].无机材料学报,1994,9(2):253-255
    [76]陈文革,罗启文,任慧.粉体混合均匀性定量评估模型的建立与研究[J].中国粉体技术,2008,14(3):15-19
    [77]李树堂.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990,5
    [78]陈悦,李东旭.压汞法测定材料孔结构的误差分析[J].硅酸盐通报,2006,25(4):198-201
    [79]黄继武MDI Jade使用手册(X射线衍射实验操作指导)[EB/OL].2006.7.8
    [80]付恩明,庄大明,张弓等.基体温度对磁控溅射沉积ZAO薄膜性能的影响[J].真空科学与技术,2003,23(1):12-15
    [81]彭丽萍,孟桂菊,徐凌等.Al掺杂ZnO光学性能的第一性原理研究[J].高等函授学报,2007,21(4):39-42
    [82]张富春,张志勇,张威虎等AZO (ZnO:Al电子结构与光学性质的第一性原理计算[J].光学学报,2009,29(4):1025-1029
    [83]聂登攀,张煜,薛涛等.铝掺杂氧化锌的合成及表征[J].现代机械,2009,(1):82-85
    [84]ROBERT HANSSON, PETER C. HAYES, EVGUENI JAK. Experimental Study of Phase Equilibria in the Al-Fe-Zn-O System in Air[J]. VOLUME2004,35B(8): 633-637
    [85]乔英杰.材料的合成与制备[M].北京:国防工业出版社,2010
    [86]殷胜东,马勇.ZAO透明导电薄膜的制备及性质[J].中国材料科技与设备,2006(1):23-26
    [87]耿茜,汪建华,王升高.ZAO薄膜使用射频溅射法生长之参数的研究[J].应用化工,2006,35(12):910-912
    [88]孙超,陈猛,裴志亮,曹鸿涛,黄荣芳,闻立时.透明导电膜ZnO:Al(ZAO)的组织结构与特性[J].材料研究学报,2002,16(2):113-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700