掺杂氧化锌的制备与吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类物质文化生活水平的不断提高,电子信息科学技术的发展,电子设备在人类生活环境中的应用越来越广泛,正因如此电磁波污染也相应变得日益严重,直接威胁到人类的健康,如何解决电磁波的污染成为了改善环境的又一新课题。另外随着军事领域和信息安全领域技术的飞速发展,微波吸收材料军事领域的应用受到亲睐,其研究日益受到各国重视。特别是氧化锌材料吸波性能特性较好、制备工艺简单,获得诸多学者的广泛关注与研究。
     本论文通过在乙酸锌溶液中添加锰、镍、钴、锰+镍以及锰+钴等过渡金属的乙酸盐,并结合利用水浴法制备亚微米级的棒状掺杂氧化锌粉末。采用X-射线衍射仪、能谱仪、扫描电子显微镜对氧化锌样品的结构、成分及形貌进行表征分析。利用振动样品磁强计和矢量网络分析仪测试其静态磁性及电磁特性,同时对样品的微波反射率进行模拟,详细研究掺杂过渡金属对氧化锌的微波吸收性能的影响。
     实验结果表明利用掺杂氧化锌作为吸收剂,环氧树脂为基体制备的微波吸收复合材料是一种很好的微波吸收材料。主要结果如下:(1)锰、镍、钻、二元(锰+镍,锰+钴)等掺杂对氧化锌样品的形貌影响不大,少量的掺杂不会改变氧化锌的晶体结构。(2)静态磁性分析发现掺杂氧化锌样品磁性微弱,说明掺杂不能增加氧化锌磁损耗这一吸波机制。(3)电磁参数的测试结果显示掺杂可以有效的改善氧化锌的介电性质。(4)根据样品的介电常数进行模拟,结果发现,过渡金属掺杂能够显著地改善氧化锌样品的微波吸收性能,掺杂元素种类及浓度均能够对氧化锌样品的微波吸收性能产生明显影响。掺锰、镍和钴的氧化锌其最大微波吸收峰值分别可以达到80dB、72.5dB和65.4dB;吸收频率分别位于9.9GHz、11.6GHz和10GHz;分别在相对中频、高频和低频区域表现出较大的吸收能力。研究还发现,吸波效果随着掺杂浓度变化存在最佳值,高于或者低于该掺杂浓度时吸波效果会相对较差。
Nowadays, with the development of electronic industry, people's living standards keep enhancing, and various electronic devices are emerging. Subsequently electromagnetic wave pollution is also increasing day by day, greatly threatening people's health. Besides, along with military and information security technology's fast development, applications of microwave absorbing material has become more and more, therefore, and research of such materials is gaining more and more attention. ZnO receives much extensive research due to its good characteristic and easy fabrication.
     In this paper, transition metals are doped into the zinc oxide by the decomposition of acetate solid solutions, to fabricate doped zinc oxide with sub-micron rod structure, for investigating the doped material's application perspective in microwave absorption. Five sub-micron rod structure materials are made through water-bath method: Mn, Ni, Co, Mn/Ni and Mn/Co doped ZnO. XRD, EDS, SEM are used to analyze their constitution and profile, and VSM is used to test its static magnetism, and vector network analyzer for electromagnetic characteristics using co-axial method. Relations between electromagnetic characteristics and doping concentrations are analyzed and compared. The obtained characteristics are applied to simulate the microwave reflectivity with material respectively. Relations between reflectivities of doped ZnO are also analyzed.
     The results indicate that microwave absorbing composite which uses doped zinc oxide as absorbent and uses paraffin as base shows an excellent performance in microwave absorbing. Main results of experiment are as follow:(1) Mn, Ni, Co, Mn/Ni, Mn/Co doped ZnO does not have difference morphology to normal ZnO. A small amount of doping will not change the crystal structure of ZnO. (2) Static magnetism analysis of doped ZnO shows very weak magnetism, which means doping does not bring in magnetic loss as a microwave absorbing mechanism. (3) The results of electromagnetic parameters test show that doping can effectively improve the dielectric properties of zinc oxide. (4) Simulation results based on sample's permittivity show that transition matel doping can effectively improve the microwave absorbing of ZnO. Elements and concentration of doping both have important influence of
     ZnO's microwave absorbing properties. The max absorbing peak of Mn doped, Ni doped and Co doped ZnO reaches 80 dB(f=9.9 GHz),72.5 dB(f=11.6 GHz) and 65.4 dB(f=10 GHz) respectively. They act in relatively low, medium and high frequency zone respectively. It was found that the absorption reaches peak value at certain concentration, and higher or lower concentration does not yield better results.
引文
[1]康青.新型微波吸收材料[M].北京:科学出版社,2006.
    [2]刑丽英等.隐身材料[M].北京:化学工业出版社,2000.
    [3]夏新仁,邓发升.隐身技术发展现状与趋势[J].电子对抗,2002,(1):22-28.
    [4]王丽熙,张其土.微波吸收剂的研究现状与发展趋势[J].材料导报,2005,19(9):26-40.
    [5]吴晓光.微波吸收剂性能评价方法[R].长沙:国防科技大学论文报告资料,1991.
    [6]葛副鼎,朱静,陈利民.吸收剂颗粒形状对吸波材料性能的影响[J].宇航材料工艺,1996,(5):42-48.
    [7]梁海波,李忠权,邓宇等.微波热效应陶瓷的研制[J].陶瓷工程,1998,32(3):12-14,21.
    [8]王晨,顾家琳,康飞宇.吸波材料理论设计的研究进展[J].材料导报,2009,3(23):5-8.
    [9]阳开新,铁氧体吸波材料及其应用[J].磁性材料及器件,1996,27(3):19-23.
    [10]林海燕,朱红,郭洪范等.Fe填充碳纳米管微波吸收材料的研究[J].北京交通大学学报,2007,6(3):97-99,104.
    [11]刘归.纳米Fe3O4及其复合体系的微波吸收特性研究[J].湖南工业大学学报,2008,11(6):20-23.
    [12]段玉平,张听,冀志江等.纳米二氧化锰散射截面对炭黑电磁性能的影响[J].材料科学与工艺,2008,12(6):741-744.
    [13]曹茂盛,高正娟,朱静CNTs/Polyester复合材料的微波吸收特性研究[J].材料工程,2003,(2):34-36.
    [14]孙晓刚.碳纳米管吸波性能研究[J].人工晶体学报,2005,34(1):174-177.
    [15]Rencao Che,Lian-Mao Pen. Microwave absorption enhancement and complex permittivity and permeability of Fe encasulated within carbon nanotube[J]. Advanced Materials,2004,16(5):400-405.
    [16]郭岚,傅敏恭,万益群等.四针状氧化锌晶须的制备及其吸波性能的研究[J].无机化学学报,2007,7(7):1251-1254.
    [17]Mao-Sheng Cao,Xiao-Ling Shi, Xiao-Yong Fang,et al. Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites[J]. Applied Physics Letters,2007,91(20):203110-203110-3.
    [18]Yang Y,Zhang B S,Xu W D,et al. Preparation and electromagnetic characteristics of a novel iron-coated carbon fiber [J]. Journal of Alloys and Compounds,2004,365(1-2):300-302.
    [19]余洪斌,赵振声,聂彦等.一种多晶铁纤维的表面改性方法[J].表面技术,2002,2(31):45-47.
    [20]葛副鼎,朱静,陈利民.手性吸波材料——理论及设计[J].目标特征信号控制技术,1999,13(1):24-36.
    [21]Y.L.Yang,M.C.Gupta,K.L.Dudley,et al. Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding[J].Nano Letters,2005, 5(11):2131-2134.
    [22]Deng Longjiang, Han Mangui. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability [J]. Applied Physics Letters,2007,91(2):023119-023119-3.
    [23]J.H.Wu and L.B.Kong.High microwave permittivity of multiwalled carbon nanotube composites[J].Applied Physics Letters,2004,84(24):4956-4958.
    [24]廖宇涛,张兴华.多壁碳纳米管电磁参数的研究和吸波性能模拟[J].材料导报,2006,20(3):138-140.
    [25]Y.J.Chen,M.S.Cao,T.H.Wang, et al. Microwave absorption properties of the ZnO nanowire-polyester composites[J]. Applied Physics Letters,2004,84(17):3367-3369.
    [26]Zuowan Zhou, Shikai Liu, Longsheng Chu, et al. Fractal analysis of worn surfaces of ZnO whisker/natural rubber-styrene butadiene rubber-butyl rubber composites[J]. Journal of Applied Polymer Science,2003,90(3):667-670.
    [27]M.S.Cao,W.Zhou,X.L.Shi, et al. Dynamic response and reinforcement mechanism of composites embedded with tetraneedlelike ZnO nano whiskers[J]. Applied Physics Letters,2007,91(2):021912-021912-3.
    [28]M.S.Cao,X.L.Shi,X.Y.Fang, et al. Microwave absorption properties and mechanism of cagelike ZnO/SiO2nanocomposites[J].Applied Physics Letters,2007,91(20): 203110-203110-3.
    [29]Zuowan Zhou, Longsheng Chu, Shuchun Hu. Microwave absorption behaviors of tetra-needle-like ZnO whiskers[J]. Materials Science and EngineeringB,2006, 126(1):93-96.
    [30]Huifeng Li, Yunhua Huang, Genban Sun. Directed Growth and Microwave Absorption Property of Crossed ZnO Netlike Micro-/Nanostructures[J]. Journal of Physical Chemistry C,2010,114(22):10088-10091.
    [31]R. F. Zhuo, H. T. Feng, J. T. Chen. Multistep Synthesis, Growth Mechanism, Optical, and Microwave Absorption Properties of ZnO Dendritic Nanostructures[J]. Journal of Physical Chemistry C,2008,112(31):11767-11775.
    [32]Y.J.Chen, M.S.Cao, T.H.Wang. Microwave absorption properties of the ZnO nano wire-polyester composites[J]. Applied Physics Letters,2004,84(17):3367-3369.
    [33]Huifeng Li, Jian Wang, Yunhua Huang. Microwave absorption properties of carbon nanotubes and tetrapod-shaped ZnO nanostructures composites[J]. Materials Science and Engineering B,2010,175 (1):81-85.
    [34]Jing Cao, Wuyou Fu, Haibin Yang. Large-Scale Synthesis and Microwave Absorption Enhancement of Actinomorphic Tubular ZnO/CoFe204Nanocomposites[J]. Journal of Physical Chemistry B,2009,113(14): 4642-4647.
    [35]X. G. Liu, D. Y. Geng, H. Meng. Microwave-absorption properties of ZnO-coated iron nanocapsules[J]. Applied Physics Letters,2008,92(17):173117-173117-3.
    [36]Xin Tang, Ke-ao Hu. Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites[J]. Materials Science and Engineering B,2007,139 (2-3):119-123.
    [37]Lili Wu, ZhengguoGao. Synthesis and optical properties of N-In codoped ZnO nanobelts[J]. Journal of Luminescence,2010,130 (2):334-337.
    [38]Kun-Cheng Peng, Jing-Chie Lin. Characterization of the single and double films consisting of Al, Sc-co-doped ZnO/Al-doped ZnO and Al-doped ZnO/Al, Sc-co-doped ZnO[J]. Surface & Coatings Technology,2008,202(22-23): 5425-5430.
    [39]李建军,郝维昌,许怀哲Li, Co共掺杂ZnO纳米颗粒的结构和磁性研究[J].稀有金属,2009,33(6):825-829.
    [40]赵瑞斌,侯登录,叶小娟.溶胶-凝胶法制备Ni掺杂ZnO的结构、光学和磁学性质[J].功能材料,2007,4(5):45-48.
    [41]王百齐,夏春辉,富强.Co掺杂ZnO纳米棒的水热法制备及其光致发光性能[J].物理化学学报,2008,24(7):1165-1168.
    [42]胡志刚,周勋,徐明Fe、Ni共掺杂ZnO薄膜的溶胶-凝胶法制备及性能研究[J].人工晶体学报,2010,39(1):257-261.
    [43]毕艳军,郭志友,林竹.Co和Mn共掺杂ZnO铁磁性的第一性原理[J].发光学报,2008,29(6):1031-1035.
    [44]赵伟,吴起白,曾国勋等.掺锰氧化锌的制备及其吸波性能的研究[J].表面技术,2010,39(5):55-57.
    [45]O'Regan B,Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films[J]. Nature,1991,353(6346):737-740.
    [46]Q Wan, Q H Li, Y J Chen,etal.Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors[J]. Applied Physics Letters,2004,84(18):3654-3656.
    [47]王艳新,张琦锋,孙晖等.ZnO纳米线二极管发光器件制备及特性研究[J].物理学报,2008,57(2):1141-1144.
    [48]步文博,徐洁,丘泰.吸波材料基础理论的探讨及展望[J].江苏陶瓷,2001,34(2):1-4.
    [49]刘耀南,邱昌容.电器绝缘测试技术[M].北京:机械工业出版社,1981.
    [50]郭晋红.微波吸收材料性能评价方法[J].电子材料与电子技术,2007,34(1):10-16.
    [51]石礼伟,李玲,薛成山.磁控溅射和热氧化法制备ZnO纳米颗粒[J].微细加工技术,2004,(3):29-32.
    [52]Carcia P. F., McLean R. S., Reilly M. H., et al. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering [J]. Applied Physics Letters,2003,82(7): 1117-1119.
    [53]葛副鼎,朱静.吸收剂颗粒形状对吸波材料性能的影响[J].宇航材料工艺.1996,(5):42-49.
    [54]N. Tsogbadrakh, Eun-Ae Choi, Woo-Jin Lee, et al. Hole doping effect on ferromagnetism in Mn-doped ZnO nanowires[J]. Current Applied Physics,2011, 11(2):236-240.
    [55]Liu Yanmei, WangTao,SunXia. Structural and photoluminescent properties of Ni doped ZnO nanorod arrays prepared by hydrothermal method[J]. Applied SurfaceScience,2011,257(15):6540-6545.
    [56]Chuanhui Xia, ChenguoHu, YongshuTian. Room-temperature ferromagnetic properties of Ni-doped ZnO rod arrays[J]. Physica E,2010,42(8):2086-2090.
    [57]韦志仁,强勇,彭翔宇.Co掺杂对ZnO晶体中光生电子瞬态过程的影响[J].人工晶体学报,2009,38(5):1073-1077.
    [58]刘清华,刘永利,董自卫.Co掺杂ZnO稀磁半导体的微观结构与磁学性质[J].河北师范大学学报(自然科学版),2010,34(3):292-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700