碳纤维表面的磁性涂层包覆及其吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国内外对于纳米吸波剂的研究特别是在纳米复合吸波材料的选取和制备方法上取得巨大的进展。尤其纳米薄膜复合吸波材料是将薄膜技术与纳米技术结合起来,与其他的吸波材料相比具有厚度薄,质量小,吸波性能强等优点而逐渐成为研究的热点,有望成为一种很有前途的新型吸波材料。本论文中我们对碳纤维进行表面改性,通过化学镀在其表面涂覆一层磁性薄膜来改善其电磁特性,从而获得性能较好的吸波材料。
     (1)我们对Izaki的方法进行改进,将敏化-活化处理过的碳纤维放入含有10 mM的[Fe(NO3)3·9H2O]和30 mM的DMAB的水溶液中,在合适的温度和时间的条件下制备了Fe3O4/CFs复合材料。得出了如下结论:
     a本实验的最佳反应条件为:镀液成分和浓度分别为10 mM的[Fe-(NO3)3·9H2O]和30 mM的DMAB,反应温度为90℃,反应时间为1 h。
     b采用VSM在室温条件下测试发现碳纤维没有任何磁性,但是Fe3O4/CFs复合材料表现出良好的铁磁性能。
     c 50%质量分数的Fe3O4/CFs复合材料在电磁波频率在0-18 GHz范围内表现宽频和较强的电吸收性能。
     d在电磁波频率为6.37 GHz时,复合材料的反射率达到了最强的-35 dB(对应的吸收率大于99.99%),对应的厚度为4.41 m。当反射率小于-20 dB(吸收率为99%)时,电磁波频率覆盖了5.49-7.75 GHz之间的所有范围,基本上满足中频段的强吸收要求。
     (2)我们采用电化学的方法分别在ITO导电玻璃表面和碳纤维表面镀一层FeCo合金薄膜。通过对其结构的分析及性能的测试,得出以下结论:
     a通过调节电镀液的成分我们发现当溶液中Co2+/Fe2+的比例,从0.50/0.50变化到0.90/0.10时,薄膜中Co的成分即X从40%上升到85%,薄膜中铁的成分从60%下降到15%。当薄膜中Co的含量发生变化时,我们发现随着X的增加,材料的Ms先增大后减小。Hc随着X的增加,先减小后增大。这说明FeCo合金薄膜的磁性和电镀液成分有着密切的关系。
     b通过固定电镀液成分。改变在此镀液成分下的pH值,我们发现随着pH值的增加,FeCo薄膜的饱和磁化强度先增加后减小,而矫顽力呈现出先减小后增大的趋势。
     c我们找到本实验条件下FeCo合金磁性最强时的最合适的镀液成分与pH值,还是采用电化学的方法在此电镀液的成分及pH值条件下在碳纤维表面电镀一层FeCo合金薄膜。我们发现FeCo/CFs复合材料表现出良好的铁磁性能。
     d 50%质量分数的FeCo/CFs复合材料在电磁波频率为2-18 GHz之间表现出了一定的吸波性能。
     e在频率为2.0 GHz时,材料的反射率达到了-14.7 dB,对应的厚度为3.3mm。当FeCo/CFs复合材料的反射率小于-10 dB(吸收率为90%),电磁波频率覆盖了1.6-2.1 GHz之间的所有频率
The selection and preparation of absorption materials were made a great progress in recently years. In particular, nano-thin films composites absorbing materials combine with nanotechnology have caused a hot research. It can be used promising new absorbing materials due to their small quality, thinner, absorbing properties and other advantages. Many treatments have been used to enhance the absorbing property of carbon fibers, including changing the cross-section shape and size of carbon fibers, modifying the carbon fiber surfaces such as coating the surface with a layer of metal or other oxide. So we coated magnetic films by chemical method to improve its electromagnetism properties. The excellent magnetic and microwave absorption properties of nano-absorbing composites were obtained.
     (1)Therefore, by modifying Izaki's method, a convenient way was presented in this paper, the pretreated CFs were immersed into aqueous solution at best temperature and time. The conclusions were found as follows:
     a. The best reaction condition is queous solution containing 10 mM iron nitrate 9-hydrate [Fe (NO3)3·9H2O] and 30 mM dimethylamin borane complex (DMAB) [(CH3)3NHBH3] treated at 90℃forl h.
     b. The magnetic properties of the Fe3O4/CFs composites were measured with VSM at room temperature. We found that the carbon fibers exhibited paramagnetism. But the Fe3O4/CFs composites exhibited ferromagnetism.
     c. The electromagnetic parameter of 50 wt.% Fe3O4/CFs composites is measured by the coaxial line method at 0-18 GHz.
     d. The lowest reflectivity of the Fe3O4/CFs composites is-35 dB at 6.37 GHz for a layer of 4.41 mm in thickness. The result shows that the strong absorption (RL<-20 dB) is broadened from the 5.49 to 7.75 GHz with the thickness varying from 5.12 to 2.90 mm.
     (2) Fe-Co films were prepared by the electroplating method. ITO glass and carbon fibers were used as the substrates, respectively. In this study, the structure and magnetic property of electrodeposited Fe-Co films were investigated. The conclusions were found as follows:
     a. By changing the molar ratio of Co2+/Fe2+ in the reaction electrolyte from 0.50/0.50 to 0.90/0.10, the Co content x in the films ranges from 40% to 85%. Mean- while, the Fe content in the films decreases from 60% to 15%. It can be seen that Ms increases with the Co content x increasing from 0.40 to 0.70, reaches a maximum value at x= 0.70, and then decreases with further increasing of x. Meanwhile, He decreases with the Co content x increasing from 0.40 to 0.70, reaches a minimum value at x= 0.7, and then increases with the further increasing of x. The change of the magnetic properties of the Fe-Co films can be attributed to the increase of Co content in the deposited films.
     b. The fixed electrolyte were fasted at room temperature as the pH values varying from 2.1 to 4.3. Ms increases with the pH values increasing from 2.1 to 2.9, reaches a maximum values at pH=2.9, and then decreases with further increasing of pH values. Meanwhile, Hc decreases with the pH values increasing from 2.1 to 2.9, reaches a minimum values at pH=2.9, and then increases with the pH values increasing from 3.9 to 3.7, reaches a maximum values at pH=3.7, and then decreasing with further increase of pH values.
     c. The magnetic performance of the FeCo films shows the best composition and pH values. We coated FeCo films on carbon fibers by electroplating method. We found the FeCo/CFs composites exhibited ferromagnetism.
     d. The electromagnetic parameter of 50 wt.% FeCo/CFs composites is measured by the coaxial line method at 2-18 GHz.
     e. The lowest reflectivity of the FeCo/CFs composites is-14.7 dB at 2.0 GHz for a layer of 3.3 mm in thickness. The results show that the reflectivity is less than-10 dB the reflection loss of microwave absorption materials achieves 90%. The reflectivity of Fe3O4/CFs composites is less than-10 dB over the range of 1.6-2.1 GHz.
引文
[1]Eric W. Wong, paul E. Sheehan, Charless M. Lieber, nanobeam mechanics:elasticity, strength, and toughness of nanorods and nanotubes, science 277 (1997) 1971-1975.
    [2]吴红焕,王晓燕,张玲,朱冬梅,周万城,碳纤维吸波材料的研究进展,材料导报,21(2007)115-117.
    [3]靳武刚,碳纤维在电磁屏蔽材料中的应用研究,高科技纤维与应用,28(2003)9-13.
    [4]应琴,钟良,刘传慧,碳纤维的应用前景,中国投资,3(2002)84-85.
    [5]林志勇,杜慷慨,叶葳,碳纤维表面氧化还原研究,华侨大学学报,20(1999)354-357.
    [6]康勇,项素云,梁培亮,沥青基碳纤维表面处理的研究,功能高分子学报,12(1999)450-452.
    [7]张乾,谢发勤,碳纤维的表面改性研究进展,金属热处理,26(2001)1-4.
    [8]J.L. Figueiredo, Ph. Serp, B. Nysten, J.P.Issi, Surface treatments of vapor-grown carbon fibers produced on a substrate:Part Ⅱ: Atomic force microscopy, carbon,36 (1998) 1791-1799.
    [9]Y.Q. Wang, F.Q. Zhang, peter M.A.Sherwood, X-ray photoelectron spectroscopic study of carbon fibers.23.interfacial interfacial interactions between polyvinyl alcohol and carbon fibers electrochemically oxidized in nitric acid solution, chemistry of materials,11 (1999) 2573-2583.
    [10]Z.R. Yue, W. Jiang, L. Wang, S.D. Gardner, C.U. Pittman Jr, surface characterization of electrochemically oxidized carbon fibers, carbon 37 (1999) 1785-1796.
    [11]Y.D. Xu, L.F. Cheng, L.T. Zhang, carbon/silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration, carbon 37 (1999) 1179-1187.
    [12]G.Z. Shen, M. Xu, Z. Xu, double-layer microwave absorber based on ferrite and short carbon fiber composites, materials chemistry and physics 105 (2007) 268-272.
    [13]J. Xu, H.B. Yang, W.Y. Fu, Y.M. Sui, H.Y. Zhu, M.H. Li, G.T. Zou, preparation and characterization of carbon fibers coated by Fe3O4 nanoparticles, materials science and engineering B 132 (2006) 307-310.
    [14]田军,薛群基,周兆福,提高中强碳纤维表面活性的γ射线处理方法,北京航空航天大学学报,02(1999)03.
    [15]张复盛,吴瑜,庄严,双丙酮丙烯酰胺在碳纤维表面的电聚合研究,北京航空航天大学学报,24(1998)129-132.
    [16]曾庆冰,溶胶凝胶法TiO2涂层碳纤维增强铝基复合材料处理的研究,功能高分子学报, 12(1999)450-452.
    [17]谢征芳,肖加余,陈朝辉,用溶胶凝胶法制备碳纤维三维编织物增强氧化铝基复合材料的研究,国防科技大学学报,20(1998)14-18.
    [18]于春田,崔建中,王磊,金属基复合材料,北京:冶金工业出版社,1995.
    [19]Diefendorf R J, Tokarsky E, high performance carbon fibers, Polymer Engineering and Science,15 (1975) 150-159.
    [20]宛德福,马兴隆,磁性物理学,北京:电子工业出版社,1999.
    [21]姜寿亭,李卫,凝聚态磁性物理,北京:科学出版社,2006.
    [22]宛德福,罗世华,磁性物理,北京:电子工业出版社,1987.
    [23]刘顺华,刘军民,董星龙,北京:化学工业出版社,2007.
    [24]张玉萍,造福人类的电磁屏蔽和吸波材料,物理与工程,13(2003)25-28.
    [25]李艳,邹黎明,王依民,隐形材料的研究现状与发展趋势,合成纤维,17(2003)56-58.
    [26]高焕方,陈一农,张捷,希波涂料的研究现状,表面技术,32(2003)1-3.
    [27]莫高美,国外隐身材料的研制和发展状况,材料工程,5(1991)46-49.
    [28]孟建华,杨桂琴,严乐美,王秀宇,吸波材料研究进展,磁性材料及器件,35(2004)11-14.
    [29]T K. Zhao, Y N. Liu, X L. Song, et al, chinese journal of light scattering,17 (2005) 76-78.
    [30]李东英,安黛宗,刘衍,均匀沉淀法制备纳米氧化锌和片状氧化锌粉体,云南化工,30(2003)151-153.
    [31]田周玲,娇庆泽,水热法制备氢氧化镍纳米线,无机化学学报,20(2004)1449-1452.
    [32]K.H. Wu, W.C. Huang, C.C. Yhang, J.S. Su, sol-gel auto-combustion synthesis of Nio.5Zn0.5Fe204/(Si02)x (x=10,20,30wt.%)nanocomposites and their characterizations, Mater. Research Bulletin 40 (2005) 239-248.
    [33]Z.X. Yue, J. Zhou, L.T. Li, H.G Zhang, Z.L. Gui, synthesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method, J. Magn. Magn. Mater.208 (2000) 55-60.
    [34]肖军,潘晶,刘新才,高能球磨法及其在纳米晶磁性材料制备中的应用,磁性材料及器件,36(2005)6-10.
    [35]J. Zeng, J.C. Xu, J. Alloys Compd.493 (2010) 39.
    [36]J. Zeng, J.C. Xu, P. Tao, W. Hua, J. Alloy compd.487 (2009) 304.
    [37]R. Sharma, R. C. Agarwala, V. Agarwala, Development of radar absorbing nano-crystals by microwave irradiation, Mater. Lett.62 (2008) 2233-2236.
    [38]Y.Z. Fan, H.B. Yang, X.Z. Liu, H.Y. Zhou, G.T. Zou, J. Alloys Compd.461 (2008) 490.
    [39]S.B. Ni, X.H. Wang, G. Zhou, F. Yang, J.M. Wang, D.Y. He, J. Alloy compd.489 (2010) 252.
    [40]Y. Yang, B.S. Zhang, W.D. Xu, Y.B. Shi, N.S. Zhou, H.X. Lu, J. Alloys Compd. 365 (2004)300.
    [41]Z. Zou, A.G. Xuan, Z.G. Yan, Y.X. Wu, N. Li, Chem. Eng. Sci.65 (2010) 160.
    [42]X. Li, X.J. Han, Y J. Tan, P. X, J. Alloys Compd.464 (2008) 352.
    [1]刑丽英,刘俊能,任淑芳,短碳纤维电磁特性及其在吸波材料中的应用,材料工程,1(1998)19-21.
    [2]Q. Q. Li, S. S. Fan, W. Q. Han, C. Sun, W. Liang, Coating of carbon nanotube with nickel by electroless plating method, Jpn.J.Appl. Phys.36 (1997) 501-503.
    [3]Z. H. Yang, X. H. Li, J. Li, Study on the purifying of carbon nanotubes, J. Central South University Technol.30 (4) (1999) 390-391.
    [4]F. Caturla, F. Molina, S. M. Molina, Electroless plating of graphite with copper and nickel, J. Electrochem. So. C,142 (12) (1995) 4084-4089.
    [5]T. Nakanishi, Y. Masuda, K. Koumoto, J. Cryst. Growth 284 (2005) 176.
    [6]C.W. Qiang, J.C. Xu, et al, magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nannoparticles, J. Alloys Compd,506 (2010) 93-07.
    [7]吴刚,材料结构与表征,北京:化学工业出版社,2001.
    [8]Kung H P, Alexander L E. X-ray diffraction procedures for polycrystalline and amorphous materials, New York:1974.
    [9]李培森,物性测量原理与测试分析方法,兰州大学出版社,1994.
    [1]T. Hommaa, A. Tamaki, H. Nakai, T. Osaka, Molecular orbital study on the reaction process of dimethylamineborane as a reductant for electroless deposition, J. Electroanal. Chem.559 (2003) 131-136.
    [2]D. Chakravorty, M. Pal, P. Brahma, D. Chakravorty, D. Bhattacharyya, H. Maiti, Nanocrystalline nickel-zinc ferrite prepared by the glass-ceramic route, J. Magn. Magn. Mater. 164 (1996) 256-260.
    [3]22. M. Taheri, E. Carpenter, V. Cestone, M. Miller, M. Raphael, M. McHenry, V. Harris, Magnetism and structure of ZnxFe3-xO4 films processed via spin-spray deposition, J. Appl. Phys.91 (2002) 7595-7597.
    [4]C. K. Po, G. L. Dai, S. Sung, H. K. Geun, Low-observable radomes composed of composite sandwich constructions and frequency selective surfaces, Compos. Sci. Technol.68 (2008) 2163-2170.
    [5]S. W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes, Synth. Met.158 (2008) 251-258.
    [1]A. Brenner, Electrodepositin of Alloys, vol.1 and 2, Academic Press, New York and London, 1963.
    [2]H. Dahms, I.M. Croll, J. Electrochem. Soc.112 (1965) 771.
    [3]D. Gangasingh, J.B. Talbot, J. Electrochem. Soc.138 (1991) 3605.
    [4]M. Matlosz, J. Electrochem. Soc.140 (1993) 2272.
    [5]B.V. Tilak, A.S. Gendron, M.A. Mosoiu, J. Electrochem. Soc.7 (1997) 495.
    [6]H.H. Joshi, R.G Kulkarni, J. Meter. Sci.21(1986) 2138.
    [7]M. Alper, H. Kockar, M. Safak, M.C. Baykul, J. Alloys. Compd.453 (2008) 15.
    [8]Hakan Kockar, Mursel Alper, Turgut Sahin, Oznur Karaagac, J. Magn. Magn Mater.322 (2010) 1095.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700