BiFeO_3薄膜的老化与漏电抑制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BiFeO_3由于其具有良好的铁电和压电性,沉积温度较低(低于600℃),在数据存储和做电子机械系统应用上有很大发展前景。
     众所周知,BiFeO_3具有高居里点温度(Tc=850℃),所以在薄膜沉积和快速退火过程中不可避免要发生老化现象。BiFeO_3薄膜中的老化现象已经被证明与受主缺陷(A2+Fe3+)'和氧空位(Vo2)''g形成缺陷对(A2+Fe3+)—(VO2-)''有关。缺陷对所形成的局部电场阻碍了铁电畴的翻转,从而导致了在老化的BiFeO_3薄膜中压电和介电常数、电荷保持能力、剩余极化等部将被降低。另一方面,BiFeO_3薄膜同时遭受严重的漏电问题,这使加在薄膜上的有效电压大大降低了。因此,薄膜很容易被击穿,对薄膜的电学测试影响很大,很难测得好的性能。很明显,老化和漏电部与(V_(o~(2-)))''有关,所以消除(V_(o~(2-)))''是同时解决这两个问题的有效途径。从缺陷化学的角度上来分析,采用高价离子掺杂是一种消除(V_(o~(2-)))''含量的有效方法。本论文采用金属有机分解法,通过层层退火工艺制备了掺W6+以及Cu2+和w6+共掺的BiFeO_3薄膜,研究了其结构和电学性能(尤其压电性)。主要研究内容如下
     本论文所选用的主要电极材料为LaNi()3,其与BiFeO_3均为钙钛矿结构且晶格常数相近,非常有利于BiFeO_3薄膜的生长。在si衬底上研究了不同的聚乙二醇含量,预处理温度和退火温度对LaNi()3薄膜表面形貌的影响,选择出来最佳的工艺条件分别为O.36g,425℃,650℃。用此工艺制备了厚度为150nm的f100)取向的kiNi()3薄膜,结晶度非常好,并且没有杂峰的产生,电阻率为5×10-4~1×10-3Ω·cm,非常适合作电极材料。随后在LaNi()3(100)/si衬底上制备了(100)取向的Bifeo_3外延膜。薄膜中的(100)和(200)衍亍射峰均很强并且没有任何其他衍射峰产生。
     在LaNi()3(100)/si衬底上制备了掺杂高价离子W6+的BiFeO_3的外延膜,研究了不同W6+掺量(O~2%)对BF0薄膜的结构、漏电、铁电及压电性的影响。结果发现随着W6+掺量的增加(<2%),BiFeO_3薄膜的性质有所改善,比如漏电降低,矫顽场变小并且对称性变好,剩余压电系数变大,最大可达132pm/v。这是由于w6+掺杂有效的减少了(VO2-)''含量从而达到了同时降低漏电和去老化的作用。Bife_(0.995)w_(0.005)O_3薄膜和:BiFe_(0.99)w_(0.01)O_3薄膜中的铁电畴均可被完全翻转,但由于两薄膜中非180。畴含量的不同,所以后者的压电系数比前者大。当掺量增加到2%摩尔时,所制备的(100)~取向的BiFe_(0.98)w_(0.02)O_3外延膜中有少数做弱杂峰的出现并且铁电性和压电性开始减弱。这是由于W6+掺量过高限制了晶粒的生长,从而产生了更多缺陷,使W6+掺杂抑制BiFeO_3薄膜老化的作用下降。
     在LaNi()3(100)/si衬底上制备了不同退火温度的BiFe_(0.995)w_(0.005)O_3薄膜,研究了退火温度对BiFe_(0.995)w_(0.005)O_3薄膜的结构,压电性能的影响。研究发现薄膜在450℃退火温度下就能结晶并且晶化程度很好。在.450℃、475℃、500℃的退火温度下BiFe_(0.995)w_(0.005)O_3薄膜的铁电畴均可以被极化翻转。但是压电响应的大小、均匀性和信噪比有所差别,475℃退火的BiFe_(0.995)w_(0.005)O_3薄膜剩余压电系数最大,可达134pm/v。但是它的压电响应均匀性和信噪比不如450℃和500℃退火制备的BiFe_(0.995)w_(0.005)O_3薄膜的好。这主要由于前者主要是非180。畴和180。畴的共存,后两者分别主要含有非180。畴和180。畴。
     在IT0/glass和kLNi()3(100)/si衬底分别制备了BiFe_(0.995)cu_(0.005)O_3,BiFe_(0.995)w_(0.005)O_3,Fe_(0.99)cu_(0.005)w_(0.005)O_3薄膜,研究了这两个系列薄膜的结构和压电性能的区别。结果发现在IT0/glass衬底上制备的多晶膜中,很多铁电畴没有被翻转,性能部比较差,共掺的薄膜漏电较低,所以极化相对最好。在LaNi()3(100)/si衬底上制备的外延膜中均具有很强的(100)和(200)衍射峰。其中,BiFe_(0.995)cu_(0.005)O_3薄膜中由于老化严重,所以薄膜的压电性最差。BiFe_(0.99)cu_(0.005)w_(0.005)O_3和BiFe_(0.995)w_(0.005)O_3薄膜由于W6+的掺杂抑制了老化,铁电畴均可被完全翻转,前者的压电响应均匀性和信噪比均比后者好,但由于cu2+的掺量选择过高,所以前者中的非180。畴的畴壁运动受到缺陷对形成的局部电场的限制,所以压电系数不如后者的大。
     总之,本论文通过高价离子W6+的掺杂解决了薄膜的漏电和老化问题,这将使BiFeO_3薄膜在做电子器件尤其高温压电器件应用上具有更广阔的发展前景。
Superior ferroelectric,piezoelectric properties and low deposition temperature(<600~C)of BiFeO_3 make it promising in the applications of data storage andmicroelectromechanical systems
     It is well known that BiFeO_3 possesses a high Curie temperature(Tc=850~C),which leads to aging that will inevitably occur during the deposition process or thepost annealing treatment The aging has been demonstrated to be due to the formation of defect complexes between the acceptors[(A2+fe3+]and oxygenvacancies[(V_(o~(2-)))"]The local fields associated with defect complexes can provide a driving force for domain backswitching,which in turn leads to degradation of the piezoelectric coefficient,dielectric constant,charge retention and remanent polarization in the agedBiFeO_3 thin films On the other hmad,BiFeO_3 films also suffer from a severe leakage problem,which can decrease the effective voltage used for the electrical measurement Therefore,the films can break down easily,which leads to that the electrical properties of BiFeO_3 thin films are not measured Obviously,both the aging and leakage problems are related to(V02-)",SO the elimination of(V_(o~(2-)))"is an effective route to resolve these two problems simultaneously From the defect chemistry point of viev~,high-valence ion substitution should be an efficient method to eliminate(V_(o~(2-)))"In the paper,W6+doped BiFeO_3 films,as well as Cu2+and w6+codoped BiFeO_3 films were prepared using a metal organic decomposition process combined with layer-by-layer annealing technique The structures and electric properties(especially piezoelectricity)are studied in all these films
     The bottom electrode materials that have been used in the paper are LaNiO_3,which are benefit for the epitaxial growth of BiFeO_3 films This is because they have the same type of perovskite structure as that of BiFeO_3 with the close lattice constant The effects of the polyethylene glycol content,pretreatment temperature and annealing temperature on the morphology images of LaNiO_3 films are studied,and then the best technological conditions are found out to be O.36g,425℃and 650℃,respectively Highly crystallized(100)-oriented LaNiO_3 film with 100nm thickness is fabricated on Si substrate,the resistivity of which at room temperature is 5~10-4~1×10-3Ω·cm Therefore,LaNiO_3 is a promising candidate for the electrode The epitaxial(100)-oriented BiFeO_3 film is fabricated on LaNiO_3(100)/Si substrate The film show-s strong diffraction peaks of(100)and(200),without any other peaks.
     Epitaxial BiFeO_3 films with high valence ions W6+substitution are deposited on LaNiO_3(100)/Si substrates The effects of W6+doping(O~2%)on the structure,leakage current,ferroelectric and piezoelectric properties of BiFeO_3 thin film areinvestigated The results show that the properties of the BiFeO_3 thin films have been improved with the increase of w6+content(<2%)For instance,the leakage current as well as the value and asymmetry of coercive field decreases;the remanent piezoelectric coefficient increases and reaches a maximum 132 pm/V.This should be because W6+doping can reduce the content of(V_(o~(2-)))"effectively and in turn solve the leakage and aging problems simultaneously The remanent piezoelectric coefficient ofthe BiFe_(0.99_W_(0.01)O_3 film is higher than that for the biFe0.995W0.005O_3 film,although the ferroelectric domains in both films can be fully switched This may be due to the COntribution from the irreversible movement of non 180。domain walls being much higher in the former than in the latter With the W6+doping content increased to 2%.several weak peaks are detectable in diffraction pattern and the ferro/icIiezoelectric properties become worse in(100)-oriented BiFe_(0.98)w_(0.02)O_3 filmcompared to that of BiFe_(0.99_W_(0.01)O_3 film This should be owing to that the increase of the W6+ doping content will not favor the deaging of BiFeO_3 film,which raises the activation energy for epitaxial growth of BiFel-xWxO3 films to some extent,and hencemore charge defects axe formed
     BiFe_(0.995)W_(0.005)O_3 films axe deposited on LaNiO_3(100)/Si substrates The influences ofthe annealing temperature ranging from 425~C to 500℃on the structure and piezoelectric properties of BiFe_(0.995)W_(0.005)O_3 films are investigated The film cancrystallize well even at 450℃low temperature The remanent piezoelectric coefficient. the uniformity of the piezoresponse and the ratio of signal to noise are different,although the domains can be fully switched in all crystallized films The film annealedat 475℃exhibits the maximum value of the remanent piezoelectric coefficient (134pm/V),while the uniformity ofthe piezoresponse and the ratio of signal to noise in which are worse than that ofthe films annealed at 450℃and 500℃This should be due to that non 180。domains and 180。domains coexist in the former,non 180。domains and 180。domains exist in the latter two respectively
     BiFe0.995Cuo.005O_3,BiFe_(0.995)W_(0.005)O_3 and BFe0.99Cu0.005Wo.005O_3 films are deposited on ITO/glass and LaNiO_3(100)/Si substrates The different of the structureand piezoelectric properties in these two series films are studied The properties in the polycrystalline films deposited on ITO/glass are poor compared to that on LaNiO_3(100)/Si This is because that more defects in the former make the domains switch hard Relatively speaking,the piezoelectric properties ofthe codoped one in all the films deposited on ITO/glass substrate are best due to the lowest leakage current The films deposited on LaNiO_3(100)/Si substrate all show-epitaxial structure with strong diffraction peaks of(100)and(200)The piezoelectric properties of theBiFe0.995Cuo.005O_3 film is worst in all the films deposited on LaNiO_3(100)/Si substrate due to the most serious aging behavior The ferroelectric domains in both BiFe_(0.995)W_(0.005)O_3 and BFe0.99Cu0.005Wo.005O_3 films can be fully switched owing to theefficient deaging effect of W6+substitution The uniformity of the piezoresponse and the ratio of signal to noise in the former are better than that in the latter.However,the remanent piezoelectric coefficient ofthe former is lower than that ofthe latter This isdue to that the content of Cu2+ion in BiFe_(0.99_Cu_(0.005)W_(0.005)O_3 films is a bit high,SO the local fields associated with defect complexes limit the irreversible movement of non 180。domain walls
     In a word,the leakage and aging problems of BiFeO_3 films can be solved simultaneously though the substitution ofthe high.valence ion W6+which will makes BiFeO_3 films more promising for the microelectronic devices applications especially in high-temperature piezoelectric devices
引文
[1]. Hill N A. Why are so few magnetic ferroelectrics[J]. Journal of Physical Chemistry B, 2000, 104(29): 6694-6709.
    [2]. Schmid H. Multi-ferroic magnetoelectrics[J]. Ferroelectrics, 1994, 162(1): 317-338.
    [3].路晓艳,刘玉岚,王彪.多重铁性材料的研究进展[J].材料导报, 2007, 21(3): 17-20.
    [4]. Foner S, Hanabusa M. Magnetoelectric effects in Cr2O_3 and (Cr2O_3)0.8-(Al2O_3)0.2[J]. Journal of Applied Physics, 1963, 34(4): 1246-1247.
    [5].田莳.材料物理性能[M].北京:北京航空航天大学出版社,2004.
    [6].钟维烈.铁电物理学(第一版)[M].北京:科学出版社, 1998.
    [7]. Taekjib C, Young S K, Cheol W Y. Electrical properties of Bi_(3.25)La_(0.75)Ti_3O_(12) thin films on Si for a metal-ferroelectric-insulator-semiconductor structure[J]. Applied Physics Letters, 2001, 79 (10): 1516-1518.
    [8]. Takayuki W, Hiroshi F. Effect of cosubstitution of La and V in Bi_4Ti_3O_(12) thin films on the low-temperature deposition[J]. Applied Physics Letters, 2002, 80(1): 100-102.
    [9].肖定全,王民.晶体物理学[M].成都:四川大学出版社, 1989.
    [10]. Kubel F, Schmid H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO_3[J]. Acta Crystallographica Section B-Structural Science, 1990, 46: 698-702.
    [11]. Michel C, Moreau J M, Achenbach G D, et al. The atomic structure of BiFeO_3[J]. Solid State Communications, 1969, 7(10): 701-704.
    [12]. Bucci J D, Robertson B K, James W J. The precision determination of the lattice parameters and the coefficients of thermal expansion of BiFeO_3[J]. Journal of Applied Crystallography, 1972, 5(3): 187-191.
    [13]. Fischer P, Polomska M, Sosnowska I, et al, Temperature dependence of the crystal and magnetic structure of BiFeO_3[J]. Journal of Physics C, 1980, 13(10):1931-1940.
    [14]. Filippetti A, Hill N A. First principles study of structural, electronic and magnetic interplay in ferroelectromagnetic yttrium manganite[J]. Journal of Magnetism and Magnetic Materials, 2001, 236(1-2): 176-189.
    [15]. SmolenskiǐG A, Chupis I E. Ferroelectromagnets. Soviet Physics Uspekhi, 1982. 25 (7): 475-493.
    [16].张琼,苗鸿雁,谈国强. BiFeO_3薄膜的研究进展[J].硅酸盐物理学报, 2007, 26(1): 118-122.
    [17].徐征,倪宏伟.现代功能陶瓷[M].北京:国防工业出版社, 1998.
    [18]. Park B H, Kang B S, Bu S D, et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories[J]. Nature, 1999, 401: 682-684.
    [19]. Dat R, Lee J K, Auciello O, et al. Pulsed laser ablation synthesis and characterization of layered Pt/SrBi2Ta2O9/Pt ferroelectric capacitors with practically no polarization fatigue[J]. Applied Physics Letters, 1995, 67(4): 572-574.
    [20]. Ramesh R, Spaldin Nicola A. Multiferroics: progress and prospects in thin films[J]. Nature Materials, 2007, 6:21-29.
    [21]. Scott J F. Multiferroic memories[J]. Nature Materials, 2007, 6: 256-257.
    [22]. Liu B T, Maki K, Aggarwal S, Nagaraj B, et al. Low-temperature intergration of lead-based ferroelectric capacitors on Si with diffusion barrier layer[J]. Applied Physics Letters, 2002, 80(18): 3599-3601.
    [23]. Teague J R, Gerson R, James W J. Dielectric hysteresis in single crystal BiFeO_3[J]. Solid State Communications, 1970, 8(13): 1073-1075.
    [24]. Palkar V R, John J, Pinto R. Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO_3 thin films[J]. Applied Physics Letters, 2002, 80: 1628-1630.
    [25]. Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO_3 multiferroic thin film heterostructures[J]. Science, 2003, 299(14): 1719-1722.
    [26]. Cheng J R, Cross L E. Effect of La substituent on ferroelectric rhombohedral/tetragonal morphotropic phase boundary in (1-x)(Bi,La)(Ga0.05Fe0.95)O_3-xPbTiO_3 piezoelectric ceramics[J]. Journal of Applied Physics, 2004, 94(8): 5188-5192.
    [27]. Kunar M M, Srinivas A. Suryanarayana S V, Structure property relations in BiFeO_3/BaTiO_3 solid solutions[J]. Journal of Applied Physics, 2004, 87(2): 855-862.
    [28]. Khan M A, Comyn T P, Bell A J. Large remanent polarization in ferroelectric BiFeO_3–PbTiO_3 thin films on Pt/Si substrates[J]. Applied Physics Letters, 2007, 91(3): 032901-1-3.
    [29]. Yun K Y, Noda M, Okuyama M, et al. Structural and multiferroic properties of BiFeO_3 thin films at room temperature[J]. Journal of Applied Physics, 2004, 96(6):3399-3403.
    [30]. Sim?es A Z, Gonzalez A H M. Cavalcante L S, et al. Ferroelectric characteristics of BiFeO_3 thin films prepared via a simple chemical solution depositon[J]. Journal of Applied Physics, 2007, 101(7): 074108-1-6.
    [31]. Li Y W, Sun J L, Chen J, et al. Structural, ferroelectric, dieletric, and magnetic properties of BiFeO_3/Pb(Zr_(0.5),Ti_(0.5))O_3 multilayer films derived by chemical solution deposition[J]. Applied Physics Letters, 2005, 87(18): 182902-1-3.
    [32]. Huang F Z, Lu X M, Lin W W, et al. Multiferroic properties and dielectric relaxation of BiFeO_3/Bi_(3.25)La_(0.75)Ti_3O_(12) double-layered thin films[J]. Applied Physics Letters, 2007, 90(25): 252903-1-3.
    [33]. Qi Y J, Lu C J, Zhang Q F, et al. Improved ferroelectric and leakage properties in sol–gel derived BiFeO_3/Bi_(3.15)Nd_(0.85)Ti_3O_(12) bi-layers deposited on Pt/Ti/SiO_2/Si[J]. Journal of Physics D: Applied Physics, 2008, 41(6): 065407-1-4.
    [34]. Cheng Z X, Wang X L, Kannan C V, et al. Enhanced electrical polarization and ferromagnetic moment in a multiferroic BiFeO_3/Bi_(3.25)Sm_(0.75)Ti_(2.98)V_(0.02)O_(12) double-layered thin film[J]. Applied Physics Letters, 2006, 88(13): 132909-1-3.
    [35]. Das S R, Bhattacharya P, Choudhary R N P, et al. Effect of La substitution on structural and electrical properties of BiFeO_3 thin film[J]. Journal of Applied Physics, 2006, 99(6): 066107-1-3.
    [36]. Uchida H, Ueno R, Funakubo H, et al. Crystal structure and ferroelectric properties of rare-earth substituted BiFeO_3 thin films[J]. Journal of Applied Physics, 2006, 100(1): 014106-1-9.
    [37]. Huang F Z, Liu X M, Lin W W, et al. Effect of Nd dopant on magnetic and electric properties of BiFeO_3 thin films prepared by metal organic deposition method[J]. Applied Physics Letters, 2006, 89(24): 242914-1-3.
    [38]. Hu G D, Cheng X, Wu W B, et al. Effects of Gd substitution on structure and ferroelectric properties of BiFeO_3 thin films prepared using metal organic decomposition[J]. Applied Physics Letters, 2007, 91(23): 232909-1-3.
    [39]. Yu B, Li M, Hu Z, et al. Enhanced multiferroic properties of the high-valence Pr doped BiFeO_3 thin film[J]. Applied Physics Letters, 2008, 93(18): 182909-1-3.
    [40]. Kim J K, Kim S S, Kim W J, et al. Enhanced ferroelectric properties of Cr-doped BiFeO_3 thin films grown by chemical solution deposition[J]. Applied Physics Letters, 2006, 88 (13): 132901-1-3.
    [41]. Singh S K, Ishiwara H, Sato K, et al. Microstructure and frequency dependent electrical properties of Mn-substituted BiFeO_3 thin films[J]. Journal of Applied Physics, 2007, 102(9): 094109-1-3.
    [42]. Chung C F, Lin J P, Wu J M. Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO_3 films[J]. Applied Physics Letters, 2006, 88(24): 242909-1-3.
    [43]. Qi X, Dho J, Tomov R, et al. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO_3[J]. Applied Physics Letters, 2005, 86(6): 062903-1-3.
    [44]. Kawae T, Tsuda H, Morimoto A. Reduced leakage current and ferroelectric properties in Nd and Mn codoped BiFeO_3 thin films[J]. Applied Phyics Express, 2008, 1, 051601-1-3.
    [45]. Kawae T, Terauchi Y, Tsuda H. Improved leakage and ferroelectric properties of Mn and Ti codoped BiFeO_3 thin films copy[J]. Applied Physics Letters, 94(11): 112904-1-3.
    [46]. Singh S K, Maruyama K. Ishiwara H. Reduced leakage current in La and Ni codoped BiFeO_3 thin films[J]. Applied Physics Letters, 2006, 91(11): 112913-1-3.
    [47]. Wu J, Wang J. Effects of SrRuO_3 buffer layer thickness on multiferroic (Bi_(0.90)La_(0.10)(Fe_(0.95)Mn_(0.05))O_3 thin films[J]. Journal of Applied Physics, 2009, 106(5): 054115-1-5.
    [48]. Hu G D, Fan S H, Yang C H, et al. Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO_3 thin film[J]. 2006, Applied Physics Letters, 92(19): 192905-1-3.
    [49]. Zhang L X, Ren X. In situ observation of reversible domain switching in aged Mn-doped BaTiO_3 single crystals[J]. Physical Review B, 2005, 71(17): 174108-1-8.
    [50]. Yuan G L, Yang Y, Or S W. Aging-induced double ferroelectric hysteresis loops in BiFeO_3 multiferroic Ceramic[J]. Applied Physics Letters, 2007, 91(12): 122907-1-3.
    [51]. Kambe K. Hysteresis loops of ceramic barium titanate at higher frequencies. Part II[J]. Journal of the Physical Society of Japan, 1953, 8(1), 15-20.
    [52]. Postnikov V S, Pavlov V S, Gridnev S A. Interaction between 90 domain walls and point defects of the crystal lattice in ferroelectric ceramics[J]. Soviet Physics Solid State, 1968, 10 (6):1267-1270.
    [53]. Jonker G H. Nature of aging in ferroelectric ceramics[J]. Journal of the American Ceramic Society, 1972, 55(1): 57-58.
    [54]. Postnikov V S, Pavlov V S, Turkov S K. Internal friction ferroelectrics due to interaction of domain boundaries and point defects[J]. Joural Physics Chemistry of Solids, 1970, 31(8):1785-1791.
    [55]. Keve E T, Bye K L, Whipps P W, et al. Structural inhibition of ferroelectric switching in triglycine sulfate[J]. Ferroelectrics, 1971, 3, 39-48.
    [56]. Carl K, Haerdtl K H. Electric after-effects in Pb(Ti,Zr)O_3[J]. Ferroelectrics, 1978, 17(3-4): 473-76.
    [57]. Lambeck P V, Jonker G H. The nature of domain stabilization in ferroelectric perovskite[J]. Journal Physics Chemistry Solids, 1986, 41(5), 453-461.
    [58]. Robels U, Arlt G. Domain wall clamping in ferroelectrics by orientation of defects[J]. Journal of Applied Physics, 1993, 73(7): 3454-3461.
    [59]. Zhang L X, Ren X. Aging behavior in single-domain Mn doped BaTiO_3: implication for a unified microscopic explanation of ferroelectric aging[J]. Physical Review B, 2006, 73(9): 094121-1-6.
    [60]. Cui S G, Hu G D, Wu W B, et al. Aging-induced double ferroelectric hysteresis loops and asymmetric coercivity in as-deposited BiFe0.95Zn0.05O_3 thin film[J]. Journal of the American Ceramic Society, 2009, 92(7): 1610-1612.
    [61]. Scott J F. Ferroelectric Memories[M]. Berlin: Springer-Verlag, 2000. [译]朱劲松,吕笑梅,朱旻.铁电存储器[M].北京:清华大学出版社, 2004.
    [62]. Li J, Wang J, Wuttig M, et al. Dramatically enhanced polarization in (001), (101), and (111) BiFeO_3 thin films due to eptiaxial-induced transitions[J]. Applied Physics Letters, 2004, 84(25): 5261-5263.
    [63]. Dho J, Qi X D, Kim H, et al. Large electric polarization and exchange bias in multiferroic BiFeO_3[J]. Advanced Materials, 2006, 18: 1445-1448.
    [64].訾玉宝,焦兴利,王海峰等. Mn掺杂对多铁性BiFeO_3薄膜铁电性能以及漏电流的影响[J].低温物理学报, 2009, 31(4): 280-285.
    [65]. Lee Y H, Liang C S, Wu J M. Crystal growth and characterizations of highly oriented BiFeO_3 thin films[J]. Electrochemical and Solid State Letters, 2005, 8(11): F55-F57.
    [66]. Das R R, Kim D M, Baek S H, et al. Synthesis and ferroelectric properties of epitaxial BiFeO_3 thin films grown by sputtering[J]. Applied Physics Letters, 2006, 88(24): 242904-1-3.
    [67]. Zheng R Y, Gao Z H, Wang J. Multiferroic BiFeO_3 thin films deposited on SrRuO_3 buffer layer by rf sputtering[J]. Journal of Applied Physics, 2007, 101(5) : 054104-1-5.
    [68]. Yang S Y, Zavaliche F, Ardaili L M, et al. Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO_3 films for memory application[J]. Applied Physics Letters, 2005, 87(10): 102903-1-3.
    [69]. Huang F, Liu X M, Lin W W, et al. Thickness-dependent structural and magnetic properties of BiFeO_3 films prepared by metal organic decomposition method[J]. Applied Physics Letters, 2010, 97(22): 222901-1-3.
    [70].周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社, 1998.
    [71].王国强,王安福,刘红日.底电极对BiFeO_3薄膜电性质的影响[J].武汉理工大学学报, 2008, 30(11): 45-49.
    [72]. Pabst G W, Martin L W, Chu Y H, et al. Leakage mechanisms in BiFeO_3 thin films[J]. Applied Physics Letters, 2007, 90(7) :072902-1-3.
    [73]. Chen M S, Wu T B, W J M. Effect of textured LaNiO_3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O_3 thin films[J]. Applied Physics Letters, 1996, 68(10) :1430-1-3.
    [74]. Eom C B, Eom C B, Van Dover R B, et al. Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO_3) isotropic metallic oxide electrodes[J]. Applied Physics Letters, 1993, 63(18): 2570-2572.
    [75]. Aggarwal S, Dhote A M, Ramesh R, et al. Hysteresis relaxation in (Pb,La)(Zr,Ti)O_3 thin film capacitors with (La,Sr )CoO_3 electrodes[J]. Applied Physics Letters, 1996, 69(17): 2540-2542.
    [76]. Lee J, Johnson L, Safari A, et al. Effects of crystalline quality and electrode material on fatigue in Pb( Zr,T i) O_3 thin film capacitors[J]. Applied Physics Letters, 1993, 63(1): 27-29.
    [77]. Zheng L, Zhu J, Zhang Y, et al. Characterization of bicrystalline eptaxial LaNiO_3 films fabricated on MgO(100) substrates by pulsed laser deposition[J]. Applied Surface Science, 2006, 252(10): 3609-3615.
    [78]. Lee H Y, Wu T B, Lee J F, et al. X-ray absorption spectroscopic studies of sputter-deposited LaNiO_3 thin films on Si substrate[J]. Journal of Applied Physics, 1996, 80(4): 2175-2180.
    [79].李亚巍,孟祥建,于剑等.化学溶液分解法制备LaNiO_3薄膜的研究[J].红外与毫米波学报. 2003, 22(4) : 269-272.
    [80]. Li A D, Ge C Z, Lv P, et al. Preparation of perovskite conduction LaNiO_3 films by metalorganic decomposition[J]. Applied Physics Letters, 1996, 68(10): 1347-1349.
    [81].蔡洪涛,李幸福,张新安等. (100)取向镍酸镧导电薄膜的制备及性能研究[J].天中学刊,2006, 21(2):25-27.
    [82]. Meng X J, Sun J L, Yu J, et al. Preparation of highly (100)-oriented metallic LaNiO_3 films on Si substrates by a modified metalorganic decomposition technique[J]. Applied Surface Science, 2001, 171(1-2): 68-70.
    [83]. Yuan G L, Yang Y, Or S W. Aging-Induced double ferroelectric hysteresis loops in BiFeO_3 multiferroic ceramic[J]. Applied Physics Letters, 2007, 91(12): 122907-1-3.
    [84]. Sim?es A Z, Pianno R F, Aguiar E C, et al. Effect of niobium dopant on fatigue characteristics of BiFeO_3 thin films grown on Pt electrodes[J]. Journal of Alloys and Compounds, 2009, 479: 274-279.
    [85]. Damjanovic D, Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics[J]. Journal of Applied Physics, 1997, 82(4): 1788-1797.
    [86]. Morioka1 H, Saito K, Nakaki H, et al. Impact of 90°-domain wall motion in Pb(Zr0.43Ti0.57)O_3 film on the ferroelectricity induced by an applied electric field[J]. Applied Phyics Express, 2009, 2, 041401-1-3.
    [87]. Fujino S, Murakami M, Anbusathaiah V, et al. Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite[J]. Applied PhysicsLetters, 2008, 92(20): 202904-1-3.
    [88]. Chen X M, Hu G D, Wu W B, et al. Large piezoelectric coefficient in Tb-doped BiFeO_3 films[J]. Journal of the American Ceramic Society, 2009, 93(4): 948-950.
    [89]. Wang J, Zheng H, Ma Z, et al. Epitaxial BiFeO_3 thin films on Si[J]. Applied Physics Letters, 2004, 85(13): 2574-2576.
    [90]. M J Haun, E Furman, S J Jang, et al. Thermodynamic theory of the lead zirconate-titanate solid system. V: Theoretical calculations[J]. Ferroelectrics, 1986, 99: 63-86.
    [91]. Huang J Z, Wang Y, Lin Y H, et al. Effect of Mn doping on electric and magnetic properties of BiFeO_3 thin films by chemical solution deposition[J]. Journal of Applied Physics, 2009, 106(6): 063911-1-5.
    [92]. You L, Chua N T, Yao K, et al. Influence of oxygen pressure on the ferroelectric properties of epitaxial BiFeO_3 thin films by pulsed laser deposition[J]. Physical Review B, 2009, 80(2): 024105-1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700