太赫兹奇异介质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奇异介质是目前电磁材料研究的重点,由于其具备自然界材料不具备的电磁特性,且其性能人为可控,因此被广泛用于太赫兹波段电磁材料的设计和研究之中。本论文对太赫兹奇异介质进行了详细的研究,具体内容包括:
     1,介绍了奇异介质的概念和现况,以及太赫兹奇异介质的相关工作,分析了太赫兹波段开展奇异介质研究的优势、挑战和意义。详细阐述了奇异介质工作的相关原理。用RLC等效电路模型分析了SRR阵列LC谐振和四偶极子谐振,用传输线等效电路模型分析了Fishnet负折射率奇异介质。展示了工作中用来对样品进行测量的太赫兹时域光谱系统,和用于制作样品的传统光刻技术。
     2,研究了方环对太赫兹负折射率奇异介质。工作中,运用自对准光刻技术在Mylar薄膜上制作了方环对奇异介质。利用透射和反射式太赫兹系统对样品进行了测量并反向提取出了奇异介质的等效参数,验证了在0.69 THz处实现了负折射率。最后,用改进的传输线等效电路模型分析了谐振频率与方环几何结构之间的关系,并以不同几何尺寸的样品从实验上验证了模型分析的有效性,为该类奇异介质的研究提供了理论指导。
     3,研究了基于YBCO的温控太赫兹奇异介质。本工作利用CST模拟设计了SRR的尺寸,并用光刻技术在YBCO薄膜上制作了SRR阵列。低温太赫兹系统的测量结果显示,YBCO奇异介质的LC谐振和四偶极子谐振在临界温度以下有明显的加深。我们用超导体的双流模型对这种温度调控现象进行了解释,基于电导率变化的CST模拟也很好的再现了实验结果。
     4,研究了光控太赫兹主动式奇异介质。本工作采用了孔阵列与SRR阵列相结合的复合式单元设计,在SOS衬底上用光刻技术与RIE腐蚀制作出奇异介质样品。用光泵太赫兹探测系统对样品进行了测量,观察到了样品受光强控制的反转开关效应。模拟中,泵光光强的变化通过改变SOS上硅层的电导率来体现,模拟结果与实验符合的很好。不同光泵下电场的分布显示反转开关是由SRR的LC谐振与孔阵列的超透射效应交替完成的。
Recently, metamaterials play an more and more important role in the research of the electromagnetic components. Because this kind of artificial material has many novel pr operties a bsent i n nor mal m aterials, it i s w idely used i n t he de sign a nd research o f t erahertz components. In t his t hesis w e s tudied s everal t erahertz metamaterials in detail. The main content is listed below:
     1, F irst w e r eviewed the co ncept and t he d evelopment o f matematerials. The advantages, challenges and significant of terahertz metamaterial were analyzed, too. We utilized the RLC circuit model and the transmission line model to analyze the SRR array and the Fishnet structure, respectively. Several typical terahertz systems were presented as well as the photolithography process of the sample fabrication.
     2, The first work is the closed-ring pair metamaterial. The sample was fabricated on the Mylar film by a self-aligned photolithography and measured by t ransmission and reflection THz-TDS. The parameters retrieved from the simulation proved the negative refraction index at 0.69 THz. Transmission model was utilized to analyze the influence of t he r ing’s geometry o n t he r esonance, w hich w as a pproved by t he experiments.
     3, The second work is the YBCO superconducting metamaterial. The SRR based metamaterial was designed by CST and fabricated by photolithography followd by an wet etch in acid. The YBCO metamaterial was investigated experimentally by the cryogenic THz-TDS. Much more pronounced LC and quodrupole resonances were observed w hen t he t emperature was d ecreased b elow t he cr itical t emperature of YBCO. Based on the two-fluid model, the simulation was carried on by changing the conductivity of the YBCO to take account of the change of the temperature, which shows results accordant with the experiments very well.
     4, The last work is the optical controlled active THz metamterial. In this work a unit cell composed by a rectangular hole and SRRs arrounded was designed. The sample was fabricatied on an SOS wafer by phot olithography and RIE etching. By using optical-pump terahertz-probe system, the optical controlled turn over switch effect of the sample was observed. The simulation is in good accordance with the experminetal results, in which the effect of the optical pump was presented by the conductivity of the silicon film on SOS. The distributions of the electrical filed under various o ptical p ump i ndicated t hat t he switch ef fect ar ises f rom t he ex change between the LC resonance of the SRR and extronamal transmission of the hole array.
引文
[1] G. V . V iktor, T he Electrodynamics o f Substances w ith Simultaneously Negative Values ofεandμ, Soviet Physics Uspekhi, 1968, 10(4): 509.
    [2] N. Wongkasem, Computational and Theoretical Investigation of Micro- and Nano-Scale C hiral E lectromagnetic Met amaterials, P h.D., U niversity o f Massachusetts Lowell, 2006.
    [3] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, 2003, 424(6950): 824-830.
    [4] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Channel p lasmon s ubwavelength w aveguide c omponents including interferometers and ring resonators, Nature, 2006, 440(7083): 508-511.
    [5] T. W . E bbesen, H . J . Lezec, H . F. G haemi, T . T hio, and P . A . Wolff, Extraordinary opt ical t ransmission t hrough s ub-wavelength hol e a rrays, Nature, 1998, 391(6668): 667-669.
    [6] S. J ohn, S trong l ocalization of phot ons i n certain d isordered d ielectric superlattices, Physical Review Letters, 1987, 58(23): 2486.
    [7] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, A three-dimensional photonic crystal operating at infrared wavelengths, Nature, 1998, 394(6690): 251-253.
    [8] E. Ya blonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Physical Review Letters, 1987, 58(20): 2059.
    [9] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic band structure: The face-centered-cubic c ase e mploying nons pherical atoms, P hysical R eview Letters, 1991, 67(17): 2295.
    [10]周炳琨,高以智,陈倜嵘, and陈家骅,激光原理,北京:国防工业出版社, 2009.
    [11] C. C aloz a nd T . I toh, E lectromagnetic Met amaterials: T ransmission L ine Theory and Microwave Applications, New Jersey: John Wiley & Sons, 2006.
    [12] J. B . P endry, A . J . Holden, W. J . Stewart, a nd I . Youngs, E xtremely L ow Frequency Plasmons i n Met allic Mesostructures, P hysical R eview L etters, 1996, 76(25): 4773.
    [13] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and e nhanced nonl inear phe nomena, M icrowave T heory a ndTechniques, IEEE Transactions on, 1999, 47(11): 2075-2084.
    [14] R. A. Shelby, D. R. Smith, and S. Schultz, Experimental Verification of a Negative Index of Refraction, Science, 2001, 292(5514): 77-79.
    [15] G. D olling, C . E nkrich, M . Wegener, C . M . S oukoulis, a nd S . L inden, Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial, Science, 2006, 312(5775): 892-894.
    [16] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Three-dimensional optical metamaterial with a negative refractive index, Nature, 2008, 455(7211): 376-379.
    [17] N. K atsarakis, T . K oschny, M . Kafesaki, E . N . E conomou, a nd C . M . Soukoulis, Electric coupling to the magnetic resonance of split ring resonators, Applied Physics Letters, 2004, 84(15): 2943-2945.
    [18] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, Magnetic Response o f Met amaterials a t 1 00 T erahertz, S cience, 2004, 306(5700): 1351-1353.
    [19] C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, On the reinterpretation of resonances in split-ring-resonators at normal incidence, Opt. Express, 2006, 14(19): 8827-8836.
    [20] J. Zhou, T. Koschny, and C. M. Soukoulis, Magnetic and electric excitations in split ring resonators, Opt. Express, 2007, 15(26): 17881-17890.
    [21] W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, E lectrically resonant terahertz m etamaterials: T heoretical an d experimental investigations, Physical Review B, 2007, 75(4): 041102.
    [22] S. Ranjan and et al., Random terahertz metamaterials, Journal of Optics, 12(1): 015101.
    [23] R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, The impact of nearest neighbor i nteraction on the r esonances i n terahertz m etamaterials, A pplied Physics Letters, 2009, 94(2): 3.
    [24] R. Singh, A. K. Azad, J. F. O'Hara, A. J. Taylor, and W. L. Zhang, Effect of metal permittivity on resonant properties of terahertz metamaterials, Optics Letters, 2008, 33(13): 1506-1508.
    [25] R. Singh, E. Smirnova, A. J. Taylor, J. F. O'Hara, and W. Zhang, Optically thin terahertz metamaterials, Opt. Express, 2008, 16(9): 6537-6543.
    [26] R. S ingh, Z . Tian, J . G. H an, C . Rockstuhl, J. Q . G u, a nd W. L . Zhang, Cryogenic t emperatures as a p ath t oward h igh-Q te rahertz m etamaterials, Applied Physics Letters, 96(7): 3.
    [27] D. Schurig, J. J. Mock, and D. R. Smith, Electric-field-coupled resonators for negative p ermittivity m etamaterials, A pplied P hysics L etters, 2 006, 8 8(4): 041109.
    [28] J. B. Pendry, A Chiral Route to Negative Refraction, Science, 2004, 306(5700):1353-1355.
    [29] S. Z hang, Y.-S. P ark, J . L i, X . Lu, W. Z hang, a nd X . Z hang, N egative Refractive I ndex i n C hiral Me tamaterials, P hysical R eview L etters, 2 009, 102(2): 023901.
    [30] E. Plum, V. A. Fedotov, and N. I. Zheludev, Optical activity in extrinsically chiral metamaterial, Applied Physics Letters, 2008, 93(19): 191911-191913.
    [31] E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Z heludev, M etamaterial w ith n egative in dex d ue to c hirality, P hysical Review B, 2009, 79(3): 035407.
    [32] R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W . Z hang, a nd N . I . Zheludev, Terahertz metamaterial w ith asymmetric transmission, Physical Review B, 2009, 80(15): 153104.
    [33] S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, Plasmon-Induced Transparency i n M etamaterials, Physical R eview L etters, 2008, 101( 4): 047401.
    [34] J. B . P endry, N egative R efraction Mak es a P erfect L ens, P hysical R eview Letters, 2000, 85(18): 3966.
    [35] N. F ang, H . L ee, C . S un, a nd X . Z hang, S ub-Diffraction-Limited O ptical Imaging with a Silver Superlens, Science, 2005, 308(5721): 534-537.
    [36] J. B. Pendry, D. Schurig, and D. R. Smith, Controlling Electromagnetic Fields, Science, 2006: 1125907.
    [37] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D . R . S mith, M etamaterial E lectromagnetic C loak a t M icrowave Frequencies, Science, 2006, 314(5801): 977-980.
    [38] J. Li and J. B. Pendry, Hiding under the Carpet: A New Strategy for Cloaking, Physical Review Letters, 2008, 101(20): 203901.
    [39] T. E rgin, N. S tenger, P . B renner, J . B . Pendry, a nd M . Wegener, Three-Dimensional In visibility C loak a t O ptical W avelengths, Science, 328(5976): 337-339.
    [40] R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Broadband Ground-Plane Cloak, Science, 2009, 323(5912): 366-369.
    [41] A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, Optical Manifestations of Planar Chirality, Physical Review Letters, 2003, 90(10): 107404.
    [42] N. P apasimakis, V . A . F edotov, N. I . Z heludev, a nd S. L . P rosvirnin, Metamaterial Analog of Electromagnetically Induced Transparency, Physical Review Letters, 2008, 101(25): 253903.
    [43] P. Tassin, L . Z hang, T. K oschny, E. N . Economou, a nd C. M . S oukoulis, Low-Loss Met amaterials B ased o n C lassical E lectromagnetically I nduced Transparency, Physical Review Letters, 2009, 102(5): 053901.
    [44] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Perfect Metamaterial Absorber, Physical Review Letters, 2008, 100(20): 207402.
    [45] A. K. Azad, R. P. Prasankumar, D. Talbayev, A. J. Taylor, R. D. Averitt, J. M. O. Zide, H. Lu, A. C. Gossard, and J. F. O'Hara, Carrier dynamics in InGaAs with e mbedded E rAs n anoislands, A pplied P hysics L etters, 2008, 93 (12): 121108.
    [46] D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. H egmann, T ransient t erahertz c onductivity i n phot oexcited si licon nanocrystal films, Physical Review B, 2006, 73(19): 193311.
    [47] J. K itagawa a nd e t a l., T erahertz conductivity of l ocalized phot oinduced carriers in a Mott insulator YTiO3 at low excitation density, contrasted with the metallic nature in a b and semiconductor Si, Journal of Physics: Condensed Matter, 2007, 19(40): 406224.
    [48] Y. Shi, Q.-l. Zhou, C. Zhang, and B. Jin, Ultrafast high-field carrier transport in G aAs measured b y f emtosecond pu mp-terahertz p robe sp ectroscopy, Applied Physics Letters, 2008, 93(12): 121115.
    [49] M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner, Integrated THz technology for label-free genetic diagnostics, Applied Physics Letters, 2002, 80(1): 154-156.
    [50] T. Dekorsy, H. Auer, C. Waschke, H. J. Bakker, H. G. Roskos, H. Kurz, V. Wagner, and P. Grosse, Emission of Submillimeter Electromagnetic Waves by Coherent Phonons, Physical Review Letters, 1995, 74(5): 738.
    [51] J. M. Holloway, R. A. Dahlgren, B. Hansen, and W. H. Casey, Contribution of bedrock nitrogen to high nitrate concentrations in stream water, Nature, 1998, 395(6704): 785-788.
    [52]王宏飞,改变未来世界的十大技术之一——太赫兹技术,科技大视野, 2005, 4: 60-64.
    [53] C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, The Impact of Reflections From Stratified Building Materials on the Wave Propagation in Future Indoor Terahertz Communication Systems, Antennas and Propagation, IEEE Transactions on, 2008, 56(5): 1413-1419.
    [54] R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kurner, Performance Analysis o f F uture Multigigabit Wireless C ommunication Systems a t T Hz Frequencies With Highly Directive Antennas in Realistic Indoor Environments, Selected T opics i n Q uantum E lectronics, I EEE J ournal of , 2008, 14( 2): 421-430.
    [55] R. Piesiewicz, C. Jansen, D. Mittleman, T. Kleine-Ostmann, M. Koch, and T. Kurner, Scattering Analysis for the Modeling of THz Communication Systems, Antennas and Propagation, IEEE Transactions on, 2007, 55(11): 3002-3009.
    [56] D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M.Koch, Recent advances in terahertz imaging, Applied Physics B: Lasers and Optics, 1999, 68(6): 1085-1094.
    [57] Q. Wu, T. D. Hewitt, and X.-C. Zhang, Two-dimensional electro-optic imaging of THz beams, Applied Physics Letters, 1996, 69(8): 1026-1028.
    [58] M. Usami and et al., Development of a T Hz spectroscopic imaging system, Physics in Medicine and Biology, 2002, 47(21): 3749.
    [59] Z. H ua, X . J ingzhou, X. X u, Y. Tao, R . R eightler, E . M adaras, and Z . Xi-Cheng, N ondestructive de fect i dentification w ith te rahertz t ime-of-flight tomography, Sensors Journal, IEEE, 2005, 5(2): 203-208.
    [60] D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, T-ray tomography, Opt. Lett., 1997, 22(12): 904-906.
    [61] X. C . Z hang, T hree-dimensional t erahertz wave i maging, P hilosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2004, 362(1815): 283-298.
    [62] W. Withayachumnankul, G. M. Png, Y. Xiaoxia, S. Atakaramians, I. Jones, L. Hungyen, U . S eam Yu, J. B alakrishnan, B . W. H . N g, B . F erguson, S. P. Mickan, B . M . F ischer, a nd D . A bbott, T -Ray S ensing a nd I maging, Proceedings of the IEEE, 2007, 95(8): 1528-1558.
    [63] I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper, a nd M . M issous, C ontinuous-wave t erahertz sy stem w ith a 6 0 d B dynamic range, Applied Physics Letters, 2005, 86(20): 204104.
    [64] K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, Continuous-wave all-optoelectronic terahertz imaging, Applied Physics Letters, 2002, 80(16): 3003-3005.
    [65] S. Ariyoshi, C. Otani, A. Dobroiu, H. Sato, K. Kawase, H. M. Shimizu, T. Taino, a nd H. M atsuo, Terahertz i maging w ith a d irect detector b ased on superconducting t unnel j unctions, Applied P hysics L etters, 2006, 88( 20): 203503.
    [66] A. D obroiu, M . Yamashita, Y. N . O hshima, Y. M orita, C. O tani, a nd K . Kawase, Terahertz Imaging System Based on a B ackward-Wave Oscillator, Appl. Opt., 2004, 43(30): 5637-5646.
    [67] B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, Real-time i maging us ing a 2.8 T Hz qua ntum c ascade l aser a nd u ncooled infrared microbolometer camera, Opt. Lett., 2008, 33(5): 440-442.
    [68] A. W. Lee and Q. Hu, Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array, Opt. Lett., 2005, 30(19): 2563-2565.
    [69] A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Real-time terahertz imaging over a standoff distance (> 25 meters), Applied Physics Letters, 2006, 89(14): 141125.
    [70] J. E. Boyd, A. Briskman, C. M. Sayes, D. Mittleman, and V. Colvin, TerahertzVibrational Modes of Inverse Micelles, The Journal of Physical Chemistry B, 2002, 106(24): 6346-6353.
    [71] D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, Gas sensing using terahertz time-domain spectroscopy, Applied Physics B: Lasers and Optics, 1998, 67(3): 379-390.
    [72] R. D. Averitt and A. J. Taylor, Ultrafast optical and far-infrared quasiparticle dynamics i n c orrelated el ectron m aterials, Jo urnal o f P hysics: C ondensed Matter, 2002, 14(50): R1357.
    [73] M. C . B eard, G . M . T urner, and C . A . S chmuttenmaer, T ransient photoconductivity in G aAs a s m easured by t ime-resolved t erahertz spectroscopy, Physical Review B, 2000, 62(23): 15764.
    [74] M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, Subpicosecond carrier dynamics i n l ow-temperature g rown G aAs as measured b y t ime-resolved terahertz spectroscopy, Journal of Applied Physics, 2001, 90(12): 5915-5923.
    [75] F. A. Hegmann and K. P. Lui. Optical pump-terahertz probe investigation of carrier relaxation in radiation-damaged silicon-on-sapphire. 2002: SPIE.
    [76] E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, Charge Transport and Carrier Dynamics in Liquids Probed by T Hz Time-Domain Spectroscopy, Physical Review Letters, 2001, 86(2): 340.
    [77] K. P . H . L ui a nd F . A . H egmann, U ltrafast c arrier r elaxation i n radiation-damaged s ilicon on s apphire s tudied b y optical-pump--terahertz-probe e xperiments, A pplied P hysics L etters, 2001, 78(22): 3478-3480.
    [78] R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, and A. C. Gossard, Carrier dynamics in self-assembled ErAs nanoislands embedded in GaAs measured by optical-pump terahertz-probe spectroscopy, Applied Physics Letters, 2005, 86(20): 201107.
    [79] C. A. Schmuttenmaer, Exploring Dynamics in the Far-Infrared with Terahertz Spectroscopy, Chemical Reviews, 2004, 104(4): 1759-1780.
    [80] T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Terahertz Magnetic Response from Artificial Materials, Science, 2004, 303(5663): 1494-1496.
    [81] H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, Terahertz Response of a M icrofabricated R od–Split-Ring-Resonator Electromagnetic Metamaterial, Physical Review Letters, 2005, 94(6): 063901.
    [82] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, A metamaterial ab sorber f or t he t erahertz r egime: d esign, f abrication an d characterization, Opt. Express, 2008, 16(10): 7181-7188.
    [83] H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, A ctive t erahertz m etamaterial d evices, N ature, 2 006, 4 44(7119):597-600.
    [84] W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, Dynamical Electric an d Mag netic Met amaterial R esponse at T erahertz F requencies, Physical Review Letters, 2006, 96(10): 107401.
    [85] H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, A metamaterial solid-state terahertz phase modulator, Nat Photon, 2009, 3(3): 148-151.
    [86] M. R icci, N. O rloff, and S . M . A nlage, S uperconducting m etamaterials, Applied Physics Letters, 2005, 87(3): 034102.
    [87] T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide, Applied Physics Letters, 2008, 93(2): 024101.
    [88] T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. K im, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, Memory Metamaterials, Science, 2009, 325(5947): 1518-1521.
    [89] H.-T. C hen, J . F. O 'Hara, A . K . Azad, A . J . Taylor, R . D . Averitt, D . B . Shrekenhamer, and W . J . P adilla, E xperimental demonstration of frequency-agile terahertz metamaterials, Nat Photon, 2008, 2(5): 295-298.
    [90] T. J . C ui, D. R . S mith, a nd R . Liu, M etamaterials: T heory, D esign, a nd Applications, New York: Springer, 2010.
    [91] R. Marques, F. Mesa, J. Martel, and F. Medina, Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and e xperiments, A ntennas a nd P ropagation, IEEE T ransactions on, 2003, 51(10): 2572-2581.
    [92] W. Cai, Optical Metamaterials: Basic Structures and Potential Applicatioins, Ph.D., Purdue University, 2008.
    [93] J. Z hou, E . N . E conomon, T . K oschny, a nd C . M . S oukoulis, U nifying approach to left-handed material design, Opt. Lett., 2006, 31(24): 3620-3622.
    [94] D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials, Physical Review E, 2005, 71(3): 036617.
    [95] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, Robust method t o r etrieve t he c onstitutive effective p arameters o f metamaterials, Physical Review E, 2004, 70(1): 016608.
    [96] Y. H ao an d R . Mi ttra, F DTD Modeling o f Met amaterials: T heory an d Applications, Boston: Artech House, 2009.
    [97] D. H. Auston, K. P. Cheung, and P. R. Smith, Picosecond photoconducting Hertzian dipoles, Applied Physics Letters, 1984, 45(3): 284-286.
    [98] C. F attinger a nd D . G rischkowsky, P oint s ource t erahertz opt ics, A ppliedPhysics Letters, 1988, 53(16): 1480-1482.
    [99] G. Mourou, C. V. Stancampiano, and D. Blumenthal, Picosecond microwave pulse generation, Applied Physics Letters, 1981, 38(6): 470-472.
    [100] P. R. Smith, D. H. Auston, and M. C. Nuss, Subpicosecond photoconducting dipole antennas, Quantum Electronics, IEEE Journal of, 1988, 24(2): 255-260.
    [101] J. Y. S uen, W. L i, Z . D . Taylor, a nd E . R . B rown, C haracterization a nd modeling of a t erahertz phot oconductive s witch, A pplied P hysics L etters, 96(14): 141103-141103.
    [102] A. K. Azad, Resonant Terahertz Transmission of Plasmonic Subwavelength Hole Arrays, Ph.D., Oklahoma State University, 2006.
    [103] G. Gallot and D. Grischkowsky, Electro-optic detection of terahertz radiation, J. Opt. Soc. Am. B, 1999, 16(8): 1204-1212.
    [104] J. B. Khurgin, Optical rectification and terahertz emission in semiconductors excited above the band gap, J. Opt. Soc. Am. B, 1994, 11(12): 2492-2501.
    [105] A. Nahata and T. F. Heinz, Generation of subpicosecond electrical pulses by optical rectification, Opt. Lett., 1998, 23(11): 867-869.
    [106] G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Terahertz waveguides, J. Opt. Soc. Am. B, 2000, 17(5): 851-863.
    [107] X. L u, S tudies o f S urface P lasmos an d L ocalized S urface P lasmons at Terahertz Frequencies, Ph.D., Oklahoma State University, 2009.
    [108]田震, T Hz波段表面等离子体激元极化波的主动控制和传感应用,博士,天津大学, 2010.
    [109] Z. Hao, M. C. Martin, B. Harteneck, S. Cabrini, and E. H. Anderson, Negative index of refraction observed in a single layer of closed ring magnetic dipole resonators, Applied Physics Letters, 2007, 91(25): 253119.
    [110] S. K rishnamurthy, M . T . R eiten, S . A . H armon, a nd R . A . C heville, Characterization o f th in p olymer f ilms u sing te rahertz tim e-domain interferometry, Applied Physics Letters, 2001, 79(6): 875-877.
    [111] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T . Koschny, a nd C . M . S oukoulis, M agnetic M etamaterials a t Telecommunication and Visible Frequencies, Physical Review Letters, 2005, 95(20): 203901.
    [112]张克潜,李德杰,微波与光电子学中的电磁理论,北京:电子工业出版社, 2001.
    [113] J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, A close-ring pair terahertz metamaterial resonating at normal incidence, Opt. Express, 2009, 17(22): 20307-20312.
    [114] V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, a nd N. I . Z heludev, T emperature co ntrol o f F ano r esonances an d transmission i n s uperconducting m etamaterials, O pt. E xpress, 18( 9):9015-9019.
    [115] M. A. Khazan, Time-domain Terahertz Spectroscopy and Its Application to the Study of High-Tc Superconductor T hin F ilms, Ph.D., U niversity H amburg, 2002.
    [116] F. L ondon a nd H . London, T he E lectromagnetic E quations of t he Superconductor, Proceedings of the Royal Sociaty (London), 1935, A149(866): 71.
    [117] R. I. G. Hughes, Theoretical Practice: the Bohm-Pines Quartet, Perspectives on Science, 2007, 14(4): 457-524.
    [118] S. A. Maier, Plasmonics: Fundamentals and Applications: Springer, 2006.
    [119] F. Miyamaru and M. Hangyo, Finite size effect of transmission property for metal hole arrays in subterahertz region, Applied Physics Letters, 2004, 84(15): 2742-2744.
    [120] D. Qu and D. Grischkowsky, Observation of a New Type of THz Resonance of Surface Plasmons Propagating on Metal-Film Hole Arrays, Physical Review Letters, 2004, 93(19): 196804.
    [121] A. K . A zad, Y. Z hao, and W. Z hang, Transmission p roperties o f t erahertz pulses through an ultrathin subwavelength silicon hole array, Applied Physics Letters, 2005, 86(14): 141102.
    [122] C. Janke, J. G. Rivas, oacute, mez, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, Optimization of enhanced terahertz transmission through arrays of subwavelength apertures, Physical Review B, 2004, 69(20): 205314.
    [123] oacute, J. mez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, Enhanced transmission of THz radiation through subwavelength holes, Physical Review B, 2003, 68(20): 201306.
    [124] Z. Tian, A. K. Azad, X. Lu, J. Gu, J. Han, Q. Xing, A. J. Taylor, J. F. O?Hara, and W. Zhang, Large dynamic resonance transition between surface plasmon and localized surface plasmon modes, Opt. Express, 18(12): 12482-12488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700