基于虚拟现实的机器人灵巧手遥操作平台的设计和实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类绝大多数的劳动是靠一双手来完成的。机器人手臂已经在工业界取得了令人瞩目的成就,如果能配上一双灵巧的“手”,那么离开真正的机器人操作就为期不远了。从目前国内外研究出的机器人灵巧手来看,它们已具有很高的灵活性。通过手指间的协调控制、对空间位置的把握、目标形状与手形的匹配,可以完成一些模拟人手精细的操作。因而灵巧手作为机器人的末端执行装置,具有被广泛应用在核能、太空和深海等危险环境的前景。
     在危险的环境下工作似乎是机器人与生俱来的“职责”,然而机器人尚未“成年”。在目前的技术成熟度情况下,与其让它在复杂的工作环境中困难地独立自主地执行任务,还不如选择人-机合作更为现实。所谓人-机合作,即利用人的智能,以遥操作的方式参与机器人灵巧手的编程规划。也就是本地的操作者利用遥操作设备实现对远端的灵巧手系统的遥操作,使其完成各种各样的任务。
     虚拟现实技术作为一种可视化工具有助于改善遥操作系统中的人机接口。将虚拟现实技术与遥控技术和机器人灵巧手技术结合起来,形成一个虚拟现实机器人灵巧手遥操作平台。特别是应用虚拟现实技术研究开发具有“临场感”的虚拟操作界面,即人机交互接口系统,使操作人员可以更精确的操作远端的目标物,对提高遥操作机器人灵巧手的抓取效率和可靠性都具有重要意义。
     本研究以基于虚拟现实技术的机器人灵巧手操作平台的设计和实现为目标。基于虚拟现实技术的机器人灵巧手操作平台从控制角度来看,是一种主从式的遥控机器人系统,由三大部分组成,即主手、从手和机器人灵巧手操作平台,本研究特点是:尝试将虚拟手作为主动手,实际灵巧手作为从动手。操作人员使用鼠标点击操作平台中的控制面板,直接操控虚拟环境里的三维图形虚拟手,从而同步带动实际灵巧手完成各种各样的操作。希望用这种方法来减少控制环节,降低系统的硬件和软件成本。
     本系统具有以下控制方式和相关功能:
     ●采用直接控制的方式:操作人员使用鼠标点击操作平台中的控制面板,直接操控虚拟环境里的三维图形虚拟手,从而同步带动实际灵巧手完成各种各样的操作。实现操作人员对实际灵巧手的直接遥操作。
     ●采用示教再现的方式:首先由操作人员“教”灵巧手完成某一抓取任务,然后由灵巧手自动完成同类的任务。实现示教再现灵巧手遥操作。
     ●采用自动的方式:使虚拟灵巧手根据被抓物体的几何特征与位姿,自动产生抓取方案,进行抓取过程的预演。实现虚拟灵巧手自动生成抓取规划。
     本论文首先在灵巧手运动学分析的基础上,采用OpenGL和VC的开发工具在计算机中构造出一个虚拟作业场景,使操作者更加有效地直观地了解机器人灵巧手在操作过程中的位姿,碰撞等信息。其次,从理论上讨论了机器人灵巧手抓取操作规划的方法。在分析了灵巧手抓取操作任务后,拟定了手掌的运动规划和手的抓取规划。然后针对灵巧手抓取方式选择的问题,提出了平行抓取、聚中抓取和捏式抓取这三种最典型的抓取方式,并采用模糊控制的方法对机器人灵巧手的抓取方式进行智能选择。再次,根据对AABB和OBB两种碰撞检测算法的分析对比,设计出了一套在机器人灵巧手操作平台中可行的、有效的和精确的碰撞检测算法。最后对本论文涉及的实验作系统地阐述。
     实验证明,基于虚拟现实技术的机器人灵巧手操作平台的设计理念是切实可行。这不仅为机器人灵巧手的控制探索了一条途径,而且为机器人灵巧手运动学和动力学的研究建立了一个实验平台。
The most of labor for human is completed by hands. The achievement on application of robot arm has been focused people's attention upon in industry. If a dexterous "hand" had been fitted up a robot arm, maybe it would have not been further to a time of real robot operation. Surveyed the dexterous hand from the nation to abroad, they have a high dexterity. From the reports, the dexterous hand can imitate human being to accomplish some refined manipulations through corresponding the fingers and holding the positions in space and fitting the shapes between a hand and an object. So the dexterous hand, as an end manipulator, has a prospect for the applications working in some hazardous environment, such as nuclear energy, out space and blue water.
     It is seem that robot has an inherent "responsibility" to work in dangerous environment. However, the robot is not an "adult". In the condition of present maturity of robot, the human-machine cooperation would rather be a more realizable selection than the robot performs a task independently and difficaltly in a complicated environment. That is human participates in programming the plan of robot hand with telemanipulation, using human's intelligence. That means a local operator uses a telemanipulation device to realize the remote for robot hand, helping robot to accomplish various tasks.
     The virtual reality technology, as one kind of visual tool, is helping to improve the interface of remote control system. The robot dexterous hand technology and the remote technology are integrated with the virtual reality technology, in order to build a remote control platform of a virtual reality robot dexterous hand. Particularly the virtual reality technology has been applied to research and develop a " presence " virtual operation interface that is a human-machine interactive system, so as to control the remote object more accurately. It is significance for improving the grasp efficiency and reliability for telemanipulations of robot dexterous hand.
     The project is to research the design and implement of a robot dexterous hand teleomanipulation platform based on virtual reality technology, using a lab robot dexterous hand. From the view of control, it is a master- slaver remote robot system and consists of 3 parts - master hand, slave hand and robot dexterous hand operation platform. The characteristic is that the virtual hand acts as a master hand and real hand acts a slave hand. An operation personnel manipulates the 3D-virtual hand directly in a virtual enviroment by clicking a control penal via mouse, then driving a real dexterous hand synchronously to complete all kinds of operations. It is expected that the costs of the system will be cut down due to reduce the control taches.
     There are some control modes and functions as follows in the system.
     ·Adopting direct control mode: An operation personnel manipulates the 3D-virtual hand directly in a virtual enviroment by clicking a control penal via mouse, then drives a robot dexterous hand synchronously to complete all kinds of grasp tasks. It is realized that human can telemanipulate the robot hand directly.
     ·Adopting T/P mode: At first an operation personnel show robot dexterous hand how to implement a grasp task, and then robot dexterous hand will fulfill automatically the similar tasks itself. The T/P for the remote dexterous hand can be realized.
     ·Adopting automatic mode: The virtual hand makes grasp modes automatically as per the object characteristics (geometry and position and gesture of object), previewing the grasp process. It is realized that the virtual hand can create a grasp plan automatically.
     At first the thesis is on the basis of kinematics analysis of robot dexterous hand to construct a virtual operate scene in computer through the Development Tool of OpenGL and VC++, and the operation personnel know more directly and effectively the position and gesture of robot dexterous hand and collision information. Secondly, it is discussed in theory the ways to grasp object by robot dexterous hand. After analyzing the grasping tasks of robot dexterous hand, the palm movement plan and hand grasp plan are studying out. Then with reference to the issue of select which kind of grasp modes, 3 typical grasp ways - Parallel Grasp, Center Grasp and Nipper Grasp are presented, and the fuzzy logic is adopted for intelligent selection of grasp modes. Thirdly, after analyze and comparison AABB and OBB's collision detection algorithmics, a set of collision detection algorithmic is designed, and it is feasible and effective and precise for the operation platform of robot dexterous hand. In the end, the experiments for the thesis will be expatiated systemically.
     Testifying as experiment, it is feasible about the design conception of operation platform for robot dexterous hand based on virtual reality technology. It not only explores a way to control robot dexterous hand, but also builds a lab platform for further research of kinematics and kinetic of robot dexterous hand.
引文
[01] Salisbury et al 1982.Articulated hands:Force control and kinematic issues.International Journal of Robotics Research, 1982, 1 (1): 4-17
    [02] Yoshikawa T, Nagai K.Manipulating and grasping forces in manipulation by multi-fingered hands. Proc IEEE InternationalConference on Robotics and Automation, Raleigh, March; 1987, Vol.3, 1998-2004
    [03] Kerr J, Roth B. Analysis of Multifingered Hands.The International Journal of Robotics Research, 1986, 4(4): 3-17
    [04] Romdhane L, Duffy J. Kinematic Analysis of Multifingered Hands. The International Journal of Robotics Research, 1990, 9(6): 3-18
    [05] Montana D J. The Kinematics of Multifingered Manipulation. IEEE Transactions on Robotics and Automation, 1995, 11 (4): 491-503
    [06] 郭躬良,张启先。<柔性手抓持平面物体的最佳状态分析>。机器人,1990,12(2),25-33
    [07] http://ranier.oact.hq.nasa.gov/telerobotics_page/telerobotics.Shtm美国空间机器人门户网站.
    [08] 彼得·门泽尔(美),费思·阿卢伊西奥(美)著,张帆,钟皓译,《类机器人访谈录》,上海辞书出版社
    [09] http://www.shadow.org.uk/products/newhand.shtml英国公司官方网站
    [10] 郑晓曦,论虚拟现实之意义,武汉交通科技大学学报(社会科学版),第13卷第4期,2000年12月,pp.8~10
    [11] 汪成为,高文,王行仁.灵境(虚拟现实)技术的理论、实现及应用[M].北京:清华大学出版社,1993
    [12] 赵春霞、Y.F.Li、王树国、蔡鹤皋、杨静宇,虚拟现实的发展及在机器人系统中的应用与研究,机器人,第21卷第5期,P395-400,1999年9月。
    [13] 陈雁飞、马建民、高丽,虚拟现实技术综述,机械制造与自动化,第33卷第5期,P5~7,2004年10月。
    [14] 赵会兵,虚拟仪器技术规范与系统集成,清华大学出版社,2003年8月出版。
    [15] 彭列汉,虚拟现实:认识的第三种形式,理论月刊2003年第2期学术论坛,P63~65。
    [16] 杨宝民,朱一宁.分布式虚拟现实技术及其应用[M].北京:科学出版社,2000
    [17] 任挥,论虚拟现实,武汉交通科技大学学报(社会科学版),第13卷,第4期,P1~4,2000年12月。
    [18] 韦有双、王飞、冯允成,虚拟现实与系统仿真,计算机仿真,第16卷第2期,P63~66,1999.4
    [19] 汪成为、高文、王行文,灵境(虚拟现实)技术的理论、实现及应用,清华大学出版社,1996年9月出版
    [21] 杨磊,何克忠,郭木河,张钹.虚拟现实技术在机器人技术中的应用与展望[J].机器人,1998,20(1):76-80
    [22] D. Finkenzeller 1, M. Baas 1, S. Tht~ring 1, S. Yigit 2, A. Schmitt 1, Visum: A VR System for the Interactive and Dynamics Simulation of Mechatronic Systems[J]. Virtual Concept, Vol. 11, No. 7, 2003, pp. 1-7
    [23] 刘伟,汪宏.机器人虚拟环境建模及其遥控操作仿真[J].指挥技术学院学报,2000,11(3):25-29
    [24] 朱广超,王田苗,丑武胜,孟偬,伍军,薛喜梅.基于增强现实的机器人遥操作系统研究[J].系统仿真学报,2004,16(5):943-946
    [25] T. Doersam, T. Fischer, Aspects of controlling a multifingered gripper[J]. Engineering Applications of Artificial Intelligence, 1998, 11, pp.87-96
    [26] Ronan Boulic, Serge Rezzonico, Daniel Thalmann, Multi-Finger Manipulation of Virtual Objects[J]. Autonomous Virtual Humans, 2000, pp. 1-10
    [27] http:/Awvwl.cs.columbia.edu/robotics/home.html, 美国哥伦比亚大学机器人研究所
    [28] Andrew T. Miller, GraspIt!: A Versatile Simulator for Robotic Grasping[M]. COLUMBIA UNIVERSITY, 2001
    [29] J.Butterfass, G.Hirzinger, S.Knoch, H.Liu, DLR's Multisensory Articulated Hand[J]. Processings of the 1998 IEEE, International Conference on Robotics & Automation, Leuven Belgium-May 1998.
    [30] http://www.space.mech.tohoku.ac.jp/index.html, 日本空间机械实验室
    [31] 刘伟军,朱枫,董再励.虚拟现实辅助机器人遥操作技术研究[J].机器人,2001,23(5):385-390
    [32] 朱广超,王田苗,丑武胜,孟偬,伍军,薛喜梅.面向遥操作的机器人臂/手集成系统图形仿真[J].高技术通讯,2001,6(1):59-62
    [33] 朱广超,游松,刘毅敏,王田苗,张玉茹,张启先.机器人臂/手集成系统的图形仿真及其在遥控操作中的应用[J].系统仿真学报,12(6):671-674,2000。
    [34] 胡海鹰、李家炜、王滨、王捷、刘宏,虚拟现实技术在机器人臂/灵巧手遥操作中的应用,系统仿真学报,第16卷第10期,P.2305~2308,2004年。
    [35] 李继婷、张玉茹、张启先,人手抓持识别与灵巧手的抓持规划,机器人,第24卷第6期,P.530-534,2002年。
    [36] 朱方文、龚振邦、韦穗,虚拟遥操作系统中灵巧手动作控制研究,高技术通讯,第13卷第5期,P.55-59.2003。
    [37] Jefferson Coelhol, Justus Piater, Roderic Grupen, Developing haptic and visual perceptual categories for reaching and grasping with a humanoid robot[J]. Robotics and Autonomous Systems, 37(2001), pp.195-218
    [38] 龚振邦、陈振华、钱晋武,机器人机械设计[M],北京:电子工业出版社,1995
    [39] 王洪瑞,吕应权,宋维公.BH-1灵巧手运动学和动力学建模研究[J].系统仿真学报,1997,9(3):44-50
    [40] 孙迪生、王炎,机器人控制技术,机械工业出版社,1997年
    [41] 李少康,控制工程基础,西北工业大学出版社,2005年
    [42] 李家炜、刘宏、蔡鹤皋,多指机器人手协调控制研究进展,机器人,第22卷第4期,2000,E319~328。
    [43] Nakano E, Ozaki S, Ishida T, Kato I, Cooperational Control of the Anthropomorphous Manipulator 'MELARM', Proc. 4th Int. Syrup. Industrial Robots, 1974, 251~260
    [44] Arimoto S, Miyazaki F, Kawamura S, Cooperative Motion Control of Multiple Robot Arms or Fingers. IEEE International Conference on Robotics and Automation, 1987, 1407~1412
    [45] Luch J Y S, Zheng Y F, Constrained Relations Between Two Coordinated Industrial Robots for Control, The International Journal of Robotics Research, 1987, 6(3): 60~70
    [46] Zheng Y F, Luch J Y S, Optimal Lord Distribution for Two Industrial Robots Handling a Single Object. Trans ASME Journal of Dynamic Systems, Measurement and Control, 1989, 111: 232~237
    [47] Mason M T, Salisbury J K, Robot Hands and the Mechanics of Manipulation. MIT. Press, Cambridge, MA, 1985
    [48] oshikawa T, Nagai K, Manipulating and Grasping Forces in Manipulation by Multifingered Robot Hands, IEEE Transactions on Robotics and Automation. 1991, 7(1): 67~77
    [49] Park Y, Starr G, Finger Force Computation for Manipulation of an Object by a Multifingered Robot Hand, Proc. IEEE International Conference on Robotics and Automation, 1989, 930~935
    [50] Cheng F, Orin D, Efficient Algorithm for Optimal Force Distribution the Compact Dual LP Method, IEEE Transaction on Robotics and Automation, 1990, 6(2): 178~187
    [51] Nguyen T N, Stephanou H E, A Topological Algorithm for Continuous Grasp Planning. Proc. IEEE International Conference on Robotics and Automation, 1990, 570~575
    [52] Stanfield S A, Knowledge-based Robotics Grasping. Proc. IEEE International Conference on Robotics and Automation, 1990, 1270~1275
    [53] Stanfietd S A, A Haptic System for a Multifingered Hand. Proc. IEEE Intemational Conference on Robotics and Automation, 1991, 658~4564
    [54] 卢江舟,熊有伦,赵东波.多指手抓取操作的仿真[J].系统仿真学报,1997,9(2):76-82
    [55] 乔桂秀,肖田元,韩向利,王树国.虚拟生产环境中的实时碰撞检验技术[J].高技术通讯,2001,8:73-78
    [56] 王志强,洪嘉振,杨辉.碰撞检测问题研究综述[J].软件学报,1999,10(5):
    [57] MaruyamaK. A procedure to determine intersection between polyhedralobjects. International Journal of Computer and Information Science, 1972, 1 (2): 219~242
    [58] Boyse J W. Interference detection among solids and surfaces. Communications of the ACM, 1979, 22(1): 3~9
    [59] Ganter M A, Isarankura B P. Dynamic collision detection using space partitioning. Journal of Mechanical Design, Transactions of the ASME, 1993, 115(1): 150~155
    [60] Hahn J K. Realistic animation of rigid bodies. Computer Graphics, 22(4): 299~308, 1988
    [61] Moore M, Wilhelms J. Collision detection and response for computer animation. Computer Graphics, 22(4): 289~298, 1988
    [62] Tomas Akenine-Moller, Eric Haines,普建涛.实时计算机图形学(第2版).北京大学出版社,2004年7月。
    [63] 魏迎梅,王涌,吴泉源,石教英.碰撞检测中的层次包围盒方法.计算机应用,第20卷增刊:2000年8月,241~243.
    [64] 李焱,卢晓军,贺汉根.USSCD:一个基于均匀空间分割的快速碰撞检测算法.中国图形图像学报,第8卷(A版)第12期:2003年12月,1444~1449,
    [65] 魏迎梅,吴泉源,石教英.虚拟环境中的碰撞检测方法[J].计算机工程与科学,2001,23(2):44-47
    [66] S. Gottschalk M. C. Lin_ D. Manocha. OBBTree: A Hierarchical Structure for Rapid Interference Detection[J]. Proceedings of SIGGRAPH' 96[C], pp. 171~180.
    [67] Huan LIU, Thea Iberall, George Bekey A, The Multi-dimensional Quality of Task Requirements for Dexterous Hand Control. Proceeding of the IEEE Conference on Robotics and Automation, 1989, pp.452~457,
    [68] Stanfield S A, Robotic Grasping of Unkown Objects:A Knowledge-based Approach, The Int. J of Robotics Research, 10(4), 1991, pp. 314~326
    [69] 王从庆、燕力欣、原魁等,一种模糊学习控制方法及其在多指手爪位置伺服系统中的应用,机器人,第17卷、第2期,1995年3月,pp.75~81
    [70] 何永强,朱广超,张启先.多指灵巧手双闭环模糊控制[J].高技术通讯,2004,7:69~73
    [71] 李庆中,顾伟康,叶秀清,项志字.移动机器人模糊控制方法研究[J].仪器仪表学报,23(5):2002.480-483
    [72] 丛爽.神经网络、模糊系统及其在运动控制中的应用[M].合肥:中国科学技术
    [73] 吴玉光,钱晋武.多指灵巧手抓取规划方法综述[J].中国机械工程,15(3),2004:277~281
    [74] 温素芳,朱齐丹,张小仿.基于模糊控制器的移动机器人路径规划仿真[J].应用科技,2005,32(4):31~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700