虚拟注塑成型系统开发关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文概述了经济活动全球化对制造业的影响以及产品虚拟开发的主要支撑技术,系统总结注塑产品虚拟设计和虚拟制造需要解决的关键问题和研究现状。根据在产品全生命周期设计不同阶段对产品信息需求深度的不同,本文创新性地提出基于虚拟现实的虚拟注塑成型开发的思路,明确定义了本文研究工作的虚拟环境,为详细的算法研究奠定了基础。
     本文在详细分析注塑成型工艺、虚拟现实、虚拟样机的发展现状及其发展趋势的基础上,通过集成基于虚拟现实的CAD几何建模技术、基于虚拟现实的虚拟模型物理建模和行为属性建模技术、基于虚拟现实的碰撞检测技术,开发了虚拟注塑成型原型系统。
     本文针对虚拟注塑成型系统中的三维建模,首先,提出了由工程语义层、精确描述层和显示交互层三个层次组成的新的几何实体数据表示模型,描述了各个层次之间的映射关系,解决了在虚拟注塑成型系统中实体建模的模型表示。提出了整合集成和直接在线集成三维建模两种方法,实现了在虚拟注塑成型系统中创建、编辑三维几何模型。针对虚拟注塑成型系统中被操作的对象只能是三角面片,重建了STL三角网格模型和四面体网格模型的拓扑信息,简化了三角网格模型和四面体网格模型。STL格式文件的拓扑重建是通过依次读取三角形,查找并去除重复的顶点,建立一个包含所有不重复顶点的顶点表和包含所有三角形的单元表,建立相互间的拓扑信息,通过有效的算法完成对边的查询。对于四面体网格模型,则采用邻接图来表达四面体网格邻接关系。利用深度优先遍历邻接图,产生四面体生成树串,通过共享的面索引和额外的顶点索引,就可以定义出下一个邻接单元。通过对网格模型的简化和拓扑关系的重建,解决了如模型太大、载入时间长、模型工程语义信息丢失等问题。
     本文根据虚拟注塑成型的环境特点,提出了虚拟注塑成型层次信息模型,精确表达了虚拟对象(虚拟注塑部件、虚拟注塑设备)、虚拟注塑单元(生产线)、虚拟注塑车间环境之间的拓扑关系,模型包含的信息完整,满足构建虚拟注塑成型加工环境的要求;讨论了在虚拟注塑成型系统中的物理属性建模问题,推导出了建立物理量的基本公式。从运动学、动力学角度出发,将虚拟对象划分为核心对象和非核心对象。对非核心对象建立了连接关系,对核心对象赋予其基本物理量,在计算机图形学现有成果的基础上,表现了虚拟注塑成型系统中物理属性的要求;提出了多Agent的虚拟注塑成型行为建模方法,将虚拟注塑成型划分为两种基本成分:Agent和它们之间的关系。给出了各个虚拟对象Agent的表示模型,以面向对象Petri网的状态变迁机制作为Agent的行为推理模式,以实体的几何状态、物理状态及运动状态等属性变迁的计算作为Agent行为计算方法,以Agent间相互消息传递关系来描述系统行为逻辑,给出了虚拟注塑成型的系统行为推理、行为计算、消息处理的算法,在计算机上精确表达了注塑成型过程中各个零部件协同动作,实现了虚拟注塑成型的行为过程。
     在虚拟注塑成型系统中,碰撞是触发虚拟对象发生行为的主要因素。本文提出了一种新的连续碰撞检测算法。该算法在每个时间区间上实时处理,把单个时间区间划分成若干个子时间区间,使用连续OBB包围盒相交检测方法,计算出在子时间区间内的潜在碰撞集,并结合三角面片之间的碰撞检测和回退技术,计算出碰撞位置和初始碰撞时间。提出了改进的碰撞检测算法,在每个虚拟对象的数据结构里添加Cache字段,记录每个虚拟对象上次发生碰撞的三角形基本的几何信息,根据局部性定理,碰撞再次发生时,通过比较与更新Cache字段中的三角形的碰撞情况,改善了碰撞检测速度。基于虚拟对象物理属性和行为属性的基础上,提出了采用Tailor级数的计算已知物理和行为属性的虚拟对象的碰撞初始时间,减少其碰撞检测的回退次数,提高了碰撞检测的速度。
     基于上述总体框架和关键技术的研究,本文实现了一个虚拟注塑成型原型系统,通过对注塑产品实例的虚拟注塑成型过程的实现,检验了本文提出的虚拟注塑成型原型系统结构和各个功能模型的有效性。
Design of injection products is a complex process. It is very necessary for reducing the production cycle, improving the quality and winning the competition that must be considered about the product design, injection mould design, numerical simulation of injection molding, injection mould processing, and the process of injection molding. In this article, the impact of global economic activities on manufacturing industry and the main supporting technologies of product innovation engineering are summarized. The problem that should be resolved to realized real-time collaboration for virtual design and virtual manufacturing about the injection product under virtual reality are analyzed and summarized systematically. According to the different requirements for product information during different stages of collaboration in whole-product-life-cycle, the idea to realize virtual development of injection product based on virtual reality technique is presented for the first time, and the virtual injection molding environment for research work in this article is established clearly and definitely, which provides basis for the following detailed algorithm research.
     In this article, based on the techniques of injection molding, virtual design, virtual manufacturing, virtual prototype, the fundamental frame of injection product virtual injection molding development is established through integrating of the technique of CAD based on virtual reality, the technique of Physically-Based Modeling and behavior-based modeling and collision detection technique. This development environment supports the virtual design of the injection product and equipment and simulation of injection molding process.
     When develops VR-CAD technique for geometric modeling, in according with the requirements on geometric information for geometric modeling in virtual environment, geometric information model is firstly presented. This data model not only can be describing in geometric modeling but also can be applied on the simulation and evaluation in the virtual environment. Based on this data model the virtual reality technique and CAD technique are integrated. Because the triangle model is the main subject when the virtual objects act on each other, so, hierarchical product information model is put forward for virtual design or virtual manufacturing. Conquering the fault which the information about geometric model of virtual object is not complete. Aiming at different service goals, product information is presented. Complete and obvious topological information is dispensable basis for subsequent handling of triangular mesh models and tetrahedral mesh models. For triangular mesh models in STL format, an algorithm is applied in rebuilding its topological structure efficiently. For tetrahedral mesh models, adjacent graph is applied in rebuilding the topological relationship of tetrahedral set. Another then, according to topological relationship the memory capacity of triangular mesh and tetrahedral element is reduced through compressing the storage of triangular and tetrahedral element structure.
     In this article, the idea to simulate real injection molding in virtual environment is presented firstly, and called virtual injection molding. Based on this idea the hierarchical injection environment information model is presented. Based on this environment model, physical-based modeling is executed for virtual object in virtual injection environment, and optimized method about physically-modeling is presented. Based on the physical properties of virtual object in virtual injection molding environment, in this article, the behavior modeling method is presented firstly. There are virtual machine agent, virtual mould agent, virtual product agent and virtual hand agent in the virtual injection molding environment modeled with multi-agent system. The fundamental structure of agent in virtual injection molding is presented firstly. In virtual injection molding environment modeled with multi-agent system, the state transition mechanism described by an object-oriented Petri net is used as the agent behavior inference method. The variance computations of geometrical shape, physical properties and movement parameters are employed for the behavior computation pattern of the agents. The message processing mechanism is adopted to describe the system behavior. The algorithms for agent behavior inference are presented, and the algorithms for system behavior inference are presented.
     In virtual injection molding environment, independent virtual objects realize the function of injection molding through activating the messages of collision. To detect the collision between virtual objects accurately and rapidly, a novel continuous collision detection algorithm was presented. The algorithm performed well at each time interval in real-time with the time interval being divided into several sub-intervals. By using continuous overlap detection method for oriented bounding boxes (OBB), a potentially colliding set of sub-intervals was computed. The initial collision times and positions among the virtual objects were calculated by using collision detection method among triangle facets and backtracking method. In order to improve the detection velocity, the method that the field of“Cache”is added on each virtual object to record the information of collision, and compare it with the next collision detection. Based on physics and behavior modeling of virtual objects, in this article, the new method was presented by using the series of Tailor method to calculate the colliding time accurately. To some virtual objects which the property of physics and behavior has been calculated, this method would improve the velocity of collision detection.
     According to the theoretical studies stated above, the virtual injection molding prototyping system for injection product is developed based on the system of unix. System structure, development process model and function model proposed in this article are verified by development example.
引文
[1] Radharamanan R. The present and the future of virtual manufacturing[J]. IIE Annual Conference and Exhibition, 2004: 2691-2730
    [2] Wu SH, Fuh YH, Nee YC. Concurrent process planning and scheduling in distributed virtual manufacturing[J]. IIE Transactions (Institute of Industrial Engineers), 2002, 34(1): 77-89
    [3] Sameh M, Baykasoglu A, Gindy NZ. An integrated framework for reconfiguration of cellular manufacturing systems using virtual cells[J]. Production Planning and Control, 2002, 13(4): 381-393
    [4] Poesche J. Agile manufacturing: enabling optimal value chain management through new production technology[J]. TAPPI Journal, 2000, 83(12): 64
    [5] Kirk S, Enrico T. Design of robotic facilities for agile automobile manufacturing[J]. Industrial Robot, 1997, 24(1): 73-77
    [6] Darlington MJ, Culley SJ. Current research in the engineering design requirement[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2002, 216(3): 375-388
    [7] Nagamatu A, Shizuo S, Hiramatu S. Concept and use of virtual product for automobile development[J]. Transaction of the Japan Society of Mechanical Engineers, 2003, 69(2): 356-363
    [8] 周万,李世其,魏发远. 基于虚拟现实的动态设计与仿真[J], 计算机仿真, 2002, 19(1):43-46
    [9] 刘强, 蒋玉明, 杨屹. 虚拟制造技术与模具 CAD/CAE/CAM[J]. 锻压技术, 2001, 6: 45-49
    [10] 潘军, 蒋祖华, 马登哲. 虚拟产品开发关键技术的应用[J]. 上海交通大学学报, 2003, 37(1): 21-25
    [11] 张鄂. 现代设计方法[M]. 西安: 西安交通大学出版社, 1999.
    [12] 王经坤, 艾兴, 张进生. 虚拟产品开发技术的理论体系研究[J]. 计算机工程, 2003, 3(29): 11-13
    [13] 施普尔(德), 克劳舍(德). 虚拟产品开发技术[M]. 北京: 机械工业出版社, 2000
    [14] Echhard F, Rossmann J, Schluse M. Virtual reality for intelligent and interactive operating, training and visualization systems[A]. Proceedings of SPIE-The International Society for Optical Engineering[C], 2000, 4196: 267-278
    [15] Cai M, Kaiser PK, Cotesta L. Planning and design of underground engineerings utilizing common earth model and immersive virtual reality[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1182-1189
    [16] Markus D, Bernhard K. Virtual collaboration environment for aircraft design [A]. Proceedings of the 6th International Conference on Information Visualization [C], 2002
    [17] Burdea G. Virtual Reality systems and Applications [A]. Proceedings of the Electro’ 93International Conference [C], 1993
    [18] 陈定方, 罗亚波. 虚拟设计[M]. 北京: 机械工业出版社, 2002
    [19] Jain VK, Sobek DK. Linking design process to customer satisfaction through virtual design of wxperiments[J]. Research in Engineering Design, 2006, 17(2): 59-71
    [20] Yaoqin Z, Huizhong W, xi C. Research on information management system of virtual prototype of complex product[A]. Proceedings of Asian Simulation Conference; System Simulation and Scientific Computing[C], 2002, 2: 636-639
    [21] Rundang Y, Dianliang W, Hualin, D. Research and implementation of product assembly technology in virtual environment[J]. Computer Integrated Manufacturing Systems, 2004, 10(10): 1220-1224
    [22] Gracanin D, Collura J. Virtual reality based interface for simulation and evaluation of airport APMS[A]. Proceedings of the International Conference on Automated People Movers[C], 2001: 709-716
    [23] Moor PR, Ng HC, Wong CB. Virtual engineering: An integrated approach to agile manufacturing machinery design and control[J]. Mechatronics, 2003, 13(10): 1105-1121
    [24] Bullinger HJ, Richter M, Seidel KA. Virtual assembly planning[J]. Human Factors and Ergonomics In Manufacturing, 2000, 10(3): 331-341
    [25] Zhenyu L, Jianrong T. Research on process oriented assembly modeling in virtual environment[J]. Jixie Gongcheng Xuebao/Chine Journal of Mechanical Engineering, 2004, 40(3): 93-99
    [26] Feng T, Cheng C, Youdi C. Virtual assembly toolkit: A 3D interaction platform of virtual assembly[J]. Journal of Computer-Aided Design and Computer Graphics, 2002, 14(3): 193-198
    [27] Xiaojun S. A Mobile-Agent-Based Platform for Collaborative Virtual Environments [D]. Ottawa-Carleton Institue of Electrical and Computer Engineering School of Information Technology and Engineering University of Ottawa, 2003
    [28] Britton G, Beng TS, Wang Y. Virtual concurrent product development of plastic injection moulds[A]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacturing[C], 2000, 214(2): 165-168
    [29] 李祥. 基于敏捷模式的注塑产品协同设计系统关键技术研究[D].上海: 上海交通大学, 2001
    [30] Yaoqin Z, Huizhong W, xi C. Research on information management system of virtual prototype of complex product[A]. Proceedings of Asian Simulation Conference; System Simulation and Scientific Computing[C], 2002, 2: 636-639
    [31] 来可伟, 殷国富. 并行设计[M]. 北京: 机械工业出版社, 2003
    [32] Lihui W, Weiming S, Helen X, Joseph N, Ajit P. Collaborative conceptual design-state of the art and future trends [J]. Computer-Aided Design, 2002, 34(13): 981-996
    [33] 邱浩波. 动态联盟下基于 Internet 的协同产品开发及其关键技术研究[D]. 上海: 上海交通大学, 2003
    [34] Choi I, Kang Y, Bae S. A virtual reality system for product configuration and analysis based on web, VRML, and COEBA. International Journal of Industrial Engineering: Theory Applications and Practice, 2001, 8(2): 105-114
    [35] Sung WT, Shihching, O. Using virtual reality technologies for manufacturing applications. International Journal of Computer Applications in Technology, 2003, 17(4): 213-219
    [36] Ren B, Jiang Q, Lijun L. The integration of GIS and virtual reality for visualization of battlefield spatial information. Proceedings of SPIE-The International Society for Optical Engineering, 2005, 5985: 300-305
    [37] Freund E, Rossrmanu J, Schluse M. Projective Virtual Reality in space applications: A telerobotic ground station for a space mission. Proceedings of SPIE- The International Society for Optical Engineering, 2000, 4196: 279-290
    [38] 魏海燕, 王先逵. 面向虚拟产品开发的机床动态设计系统研究[J]. 机床与液压, 2003, 6(4):97-98.
    [39] 李伯虎, 柴旭东, 熊光楞. 复杂产品虚拟样机工程的研究与初步实践[J]. 系统仿真学报, 2002, 14(3):336-340.
    [40] 黄斌, 严隽琪. 虚拟产品开发技术及其建模方法的研究[J]. 计算机集成制造系统 CIMS, 2002, 6(4):259-262.
    [41] 邹湘军, 孙健, 何汉武. 高速贴标机三维动态仿真模型研究[J]. 系统仿真学报, 2003, 15(增刊): 455-457.
    [42] Echhard F, Rossmann J, Schluse M. Virtual reality for intelligent and interactive operating, training and visualization systems[J]. Proceeding of SPIE- The International Society for Optical Engineering, 2000, 4196: 267-278
    [43] 陈小安, 梁锡昌. 网络化计算机辅助产品设计的模式[A]. 先进制造技术及齿轮学术会议论文集[C]. 重庆大学, 1997
    [44] Ping F, Albert CK, Lizhong T. VADS: A virtual design and assembly system in a virtual reality environment[J]. Assembly Automation, 2002, 22(4): 337-342
    [45] Albert CK, Prasanthi G. Production design enhancement by integration of virtual design and assembly analysis tools[J]. Assembly Automation, 2000, 20(4): 283-290
    [46] 肖田元. 虚拟制造研究进展与展望[J]. 系统仿真学报, 2004, 16(9): 1879-1883
    [47] 潘军, 马登哲, 蒋祖华. 虚拟产品开发及其仿真模型的研究与应用[J]. 计算机集成制造系统-CIMS[J], 2002, 8(9): 684-689
    [48] 宁汝新, 姚珺. 面向产品全生命周期的虚拟产品开发技术[M]. 中国机械工程, 2000, 11(2):130-132.
    [49] 李海梅, 高峰, 申长雨. 注射成型工艺对制品质量德影响[J]. 工程塑料应用, 2003, 31(5): 51-55
    [50] Yong K, Olivier DW, William N. Innovative modern engineering design and rapid prototype course: A rewarding CAD/CAE/CAM experience for undergraduates[A]. ASEE Conference Proceeding, ASEE 2004 Annual Conference and Exposition[C], 2004: 7405-7416
    [51] Lee HS, Chang SL. Development of a CAD/CAE/CAM system for a robot manipulator[J]. Journal of Materials Processing Technology, 2003, 3(140): 100-104
    [52] Godden P. New hardware and software Make CAD/CAM More Accessible and Flexible[J]. Modern Plastics International, 1999(12):51-54
    [53] 周华民, 李德群. 集成环境下的智能化塑料注射成型 CAE 分析[J]. 华中科技大学学报, 2002, 30(3): 37-39
    [54] 石艳, 黄亚纯, 黄文权. 注塑模具德 CAD/CAM[J]. 重庆工学院学报, 2005, 19(11): 31-34
    [55] Gotsky VW. Computer and Plastics[J]. Plastics Engineering, 1998: 123-125
    [56] Chun DH. Cavity filling analyses of injection molding simulation:bubble and weld line formation[J]. Journal of Materials Processing Technology, 1999:177-181
    [57] Youmin H, Hsiangyao L. CAD/CAE/CAM integration for increasing the accuracy of mask rapid prototyping system[J]. Computer in industry, 2005, 56(5): 442-456
    [58] Yang DY, Ahn DG, Kim TJ. Integration of CAD/CAM/CAE/RP for the development of metal forming process[J]. Journal of Meterials Processing Technology, 2002, 125: 26-34
    [59] 万传芜, 周华民, 李德群. 三维真实感注塑流动模拟技术[J]. 电加工与模具, 2000, 1: 26-28
    [60] Holm EJ, Langtangen HP. A unified finite element model for the injection molding process[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 178: 413-429
    [61] Jonghoon C, Kunwoo L. A framework of collaborative design environment for injection molding[J]. Computers in Industry, 2002, 47: 319-337
    [62] 周华民, 李德群. 基于 Web 的远程塑料注射成型 CAE 系统[J]. 机械科学与技术, 2002, 21(5): 829-832
    [63] 李祥, 周雄辉, 阮雪榆. 注塑模协同制造系统的应用[J]. 上海交通大学学报, 2000, 34(10): 1391-1394
    [64] 李海梅, 申长雨, 王亚明. 应用模糊综合评判研究成型条件对注塑模流动平衡的影响[J]. 机械设计与制造, 2000, 5: 42-44
    [65] 张君, 董定福, 张远斌. 注塑成型流动过程 CAE 技术的应用[J]. 合肥工业大学学报, 2002, 25(5): 736-738
    [1] H. 瑞斯. 模具工程[M]. 北京:化学工业出版社, 1999
    [2] 曹宏深, 赵仲治. 塑料成型工艺与模具设计[M]. 北京: 机械工业出版社, 1993
    [3] Huamin Z, Yisheng Z, Dequn L. A Remote Injection Molding Simulation System Based on the Internet and the Web[J]. International Journal of Advanced Manufacture Technology, 2002, 19: 722-726
    [4] 汪瀚. 注塑成型协同设计关键技术研究与实现[D]. 上海: 上海交通大学, 2000
    [5] 张克惠. 注塑模设计[M]. 西安: 西北工业大学出版社, 1995
    [6] Peijun W, Robert BJ, Domien M. Development of a web-based customer-oriented interactive virtual environment for mobile phone design[A]. Proceedings of ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference[C], USA, 2003
    [7] Markus D, Bernhard K. Virtual collaboration environment for aircraft design[A]. Proceedings of the 6th Int. Conference on Information Visualization[C], 2002
    [1] Kan HY, Duffy VG, Su CJ. An internet virtual reality collaborative environment for effective product design[J]. Computer in Industry, 2002, 45(2): 197-213
    [2] Weyrich M, Drews P. An interactive environment for virtual manufacturing: the virtual workbench[J]. Computer in Industry, 1999, 38: 5-15
    [3] 万华根, 高曙明, 彭群生. VDVAS: 一个集成的虚拟设计与虚拟装配系统[J]. 中国图像图形学报, 2002, 7 (1): 27-35
    [4] 陈小武, 隋爱娜, 王巍, 黄迎春, 许楠. VEADAM: 一个异地协同虚拟设计和虚拟制造系统[J]. 系统仿真学报, 2005, 17(2): 371-374
    [5] Dani T, Gadh R. Creation of concept shape designs via a virtual reality interface[J]. Computer-Aided Design, 1997, 29(8): 555-563.
    [6] Rabatje R. Integration of basic CAD functions into a VR environment[A]. Proceedings of Computer Graphics international[C], 1998:1-4
    [7] Whyte JN, Bouchlaghem AT, McCaffer R. From CAD to virtual reality: modeling approaches, data exchange and interactive 3D building design tools[J]. Autom Construct, 2000, 10: 43-55
    [8] Weiyin M, Yongmin Z, Shiu-Kit T, Tianxiang Z. A hierarchically structured and constraint-based data model for intuitive and precise solid modeling in a virtual reality environment[J]. Computer-Aided Design, 2004, 36: 903-928
    [9] 武晓波, 王世新, 肖春生. Delaunay 三角网的生成算法[J]. 测绘学报, 1999, 28(1): 28-35
    [10] 周杰韩, 杜润生, 吴波. 用 OpenGL 开发虚拟制造环境[J]. 计算机应用, 1999, 19(7): 21-23
    [11] 李德群. 现代模具设计方法[M]. 北京:机械工业出版社, 2001
    [12] 张必强. 基于三角网格模型实现分布式协同设计中三维实时交互的关键技术研究[D]. 上海: 上海交通大学, 2004
    [13] 任乃飞, 万俊, 胡汝霞. 基于拓扑关系的 STL 文件格式研究[J]. 农业机械学报, 2005, 11(30): 143-145
    [14] 王坚, 周来水, 张维中. 基于三角片拼合的 STL 网格模型重建算法. 计算机辅助设计与图形学报, 2006, 11(18): 1758-1764
    [15] 周华民. 塑料注射成型三维真实感流动保压过程模拟及实验研究[D]. 武汉: 华中科技大学, 2002
    [16] Hieber CA, Shen SF. A Finite Element/Finite Difference Simulation of Injection Molding Filling Process[J]. Non-Newtonian Fluid Mesh, 1980, 7:1-5
    [17] 耿铁, 李德群, 周华民. 三维注射成型流动模拟的研究[J]. 中国塑料, 2003, 17(7): 78-81
    [18] Ueng Sk, Sikorski K, Ma KL. Out-of-Core Streamline Visualization on Large Unstructured Meshes[J]. IEEE Transactions on visualization and Computer Graphics, 1997, 3(4): 100-108
    [19] Shyh-Kuang U, Sikorski K. An Out-of-core Method for Computing Connectivities of Large Unstructured Meshes[J]. Fourth Eurographics Workshop on parallel Graphics and Visualization, 2002: 97-103
    [1] 杨克俭, 刘舒燕, 陈定方. 虚拟现实中的建模方法. 武汉工业大学学报[J], 2001, 23 (6): 47-50
    [2] 刘金鹏. 虚拟现实系统中的物理建模和行为属性问题研究[D]. 武汉: 武汉理工大学博士学位论文, 2004
    [3] 张伟, 张为涵, 林亨. 协同式虚拟产品外形设计与快速试制系统研究[J]. 系统仿真学报, 2004, (9): 1974-1977
    [4] 李德群. 塑料成型工艺及模具设计[M]. 北京: 机械工业出版社, 1994
    [5] Reyes A, Kelleher G, Lioyd S. Integrating Petri Nets and Hybrid Heuristic Search for the Scheduling of FMS[J]. Computers in Industry, 2002, (47): 123-138
    [6] Physically-Based Modeling and Real-Time Simulation of Fluids [EB/OL]. www.dart.ist.ucf.edu/groups/deg/these/chen.html
    [7] Fuhua L, Douglas H. Schema-based conversation modeling for agent-oriented manufacturing systems[J]. Computers in Industry, 2001, (46): 259-274
    [8] 刘晓红, 陈定方. 面向 Agent 的时间 Petri 网及其在虚拟概念设计行为建模中的应用[J]. 机械设计, 2003, (20): 40-43
    [1] Cohen J, Lin M, Manocha D. I-Collide: An interactive and exact collision detection sstem for large-scale[A]. Proceedings Symosium on Interactive 3D Graphics [C], 1995, 189-196
    [2] Redon S, Kheddar A, Coquillart S. CONTRACT: arbitrary in-between motions for continuous collision detection [A]. Proceedings of IEEE ROMAN’.[S.1.]:IEEE [C], 2001, 106-111
    [3] Redon S, Kheddar A, Coquillart S. Fast continuous collision detection between rigid bodies [J]. Computer Graphics Forum, 2002, 21(3): 279-287
    [4] Hernan J. Haverkort, Mark de Berg, Joachim Gudmundsson. Box-trees for collision checking in industrial installations [J]. Computational Geometry, 2004, 28: 113-135
    [5] 黄通浪, 唐敏, 董金祥. 一种快速精确的连续碰撞检测算法[J]. 浙江大学学报, 2006, 6(40): 1051-1055
    [6] 泥宗涛. VR 技术中三维立体汉字、体绘制算法及碰撞检测的研究[D]. 华南理工大学博士论文, 2000, 4
    [7] Govindaraju N, Redon S, Lin M. Interactive collision detection between complex models in large environments using graphics hardware[C]. Proceedings of ACM SIGGRAPH/ Eurographics Workshop on Graphics Hardware: ACM, 2003: 25-32
    [8] Gottschal KS, Lin M, Manocha D. BB-Tree: A hierarchical st ructure for rapid interference detection [A]. Proceedings of ACM SIGGRAPH’96 [C]. New Orle2ans, Louisiana: ACM, 1996, 171-180
    [9] Julien B, Jeff E, Leonidas JG, John H, Li Zhang. Kinetic collision detection between two simple polygons[J]. Computational Geometry, 2004, 27: 211-235
    [10] 何大华, 陈传波. 两个三角形不相交的充要条件[J]. 应用数学, 2002, 15(增): 28-30
    [11] M?ller T. A fast triangle-triangle intersection test [J]. Journal of Graphics Tools, 1997, 2(2): 25-30
    [12] 郝爱民, 赵沁平. 基于观察者的碰撞检测技术在虚拟环境漫游中的应用[J]. 计算机应用, 2002, 11(22): 23-26
    [1] 尚文利, 王成恩, 张士杰. 基于 IDEF 与 UML 的系统建模方法[J]. 计算机集成制造系统-CIMS. 2004, 10(3): 252-275
    [2] 蒋天超, 多润智. IDEF 方法在 CIMS 设计中的应用[J]. 计算机辅助工程, 2002, 4: 75-78
    [3] 唐秋华, 陈定方, 孔建益. 虚拟现实工具包 WTK 接口开发技术[J]. 武汉理工大学学报, 2001, 23(10): 38-41
    [4] 宿红毅, 战守义, 陈谊. 面向仿真的虚拟现实开发平台的设计[J]. 北京理工大学学报, 2001, 21(1): 83-86
    [5] 吴晓, 丁国富, 王金渃. 基于 WTK 的虚拟环境建模方法与应用研究[J]. 计算机应用研究, 2001, 2: 23-25
    [6] 商俊敏. 基于虚拟现实的汽车平顺性研究[M]. 杭州: 浙江大学硕士学位论文, 2005
    [7] 荆其诚, 焦书兰, 纪桂平. 人类的视觉[M]. 科学出版社, 1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700