天然产物(+)-Conagenin和(+)-Furanomycin的全合成及铜(Ⅰ)催化的串联反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要讨论了天然产物(+)-Conagenin和(+)-Furanomycin的不对称合成及铜(Ⅰ)催化的2-亚甲基吡咯环及2-亚甲基二氢呋喃环的合成。
     第一章天然产物(+)-Conagenin的不对称合成
     介绍了(+)-Conagenin及其类似物全合成研究进展。结合本实验室在合成α-氨基酸方面的经验,我们将手性摸板三环亚胺内酯应用到天然产物(+)-Conagenin的不对称全合成之中,提出了一条简便可行,目前路线最短的方案,从三环亚胺内酯出发经4步高选择性,高产率的合成了所需的(S)-甲基-丝氨酸甲酯。
     第二章天然产物(+)-Furanomycin的不对称合成
     介绍了(+)-Furanomycin及其类似物全合成研究进展。完成了天然产物(+)-Conagenin及其类似物全合成之后,我们尝试合成另一个天然产物小分子(+)-Furanomycin,利用我们的手性摸板三环亚胺内酯与醛的反应规律,设计了一条简便合理的路线。目前以Z/E比值为44∶1得到了所需顺式α,β-不饱和醛,并且高选择性的得到aldol产物,为完成(+)-Furanomycin奠定了基础。
     第三章铜(Ⅰ)催化的2-亚甲基吡咯环衍生物的合成。
     介绍了吡咯环衍生物合成研究进展,并对该类反应进行了扩展研究。我们利用碱和铜(Ⅰ)共同催化的曼尼希、氢氨化串联反应,发展了一条有效合成2-亚甲基吡咯环的方法。此外,我们对反应历程进行了更深入的研究,提出了合理的机理。
     第四章铜(Ⅰ)催化的2-亚甲基二氢呋喃环衍生物的合成。
     在本组利用碱和铜(Ⅰ)共同催化的曼尼希、氢氨化串联反应合成2-亚甲基吡咯环的基础上,我们又成功的完成了2-亚甲基二氢呋喃环的合成。由于该方法是在室温下通过分子内炔基烷氧化反应而完成的,因此该反应的区域选择性非常好,反应速率很快,而且催化剂用量小。
The thesis aims at the studies on Asymmetric synthesis of (+)-Conagenin and(+)-Furanomycin and Copper(I)-catalyzed cascade reactions for the direct synthesis of2-methylenepyrrolidines
     PartⅠAsymmetric synthesis of natural product (+)-Conagenin
     Introduced the progress in the total synthesis of natural product (+)-Conagenin andisomers. Taking most advantage of successful methods of synthesizing or-amino acids,we applied tricyclic iminolactones into the total synthesis of natural product(+)-Conagenin and designed a short practicable route that the methyl (S)-methylserinewas synthesized starting from them for 4 steps with high diastereoslective and highyield.
     PartⅡAsymmetric synthesis of natural product (+)-Furanomycin
     Introduced the progress in the total synthesis of natural product (+)-Conagenin andisomers. After finishing the total synthesis of natural product (+)-Conagenin, we triedto synthesis the other natural product (+)-Furanomycin. A reasonable route wasdesigned to finish it by exploiting the rule of tricyclic iminolactones and aromatic oraliphatie aldehyde. Now, we have prepared theα,β-unsaturated aldehyde(Z/E=44:1)and the aldol product in high selectivity.
     PartⅢCopper(I)-catalyzed cascade reactions for the direct synthesis of2-methylenepyrrolidines
     Introduced the progress in the synthesis of pyrrolidine derivatives and extended tostudy on the reaction. We have developed an efficient method for the synthesis of2-methylenepyrrolidines through base and copper(I)-catalyzed Mannich、hydroamination cascade reaction. What's more, a rational mechanism has beenproposed by deeply studies the reaction process.
     PartⅣCopper(I)-catalyzed reactions for the direct synthesis of 2-methylene-dihydrofurans
     Taking most advantage of successful methods for the synthesis of2-methylenepyrrolidines through base and copper(I)-catalyzed Mannich、hydroamination cascade reaction, we have also developed an efficient approach forthe synthesis of 2-methylene-dihydrofurans. The reaction is believed to have a goodregioselectivity and rate with small amount of catalyst.
引文
(1) Fungal metabolites. A potent immunosuppressive activity found in Isaria sinclairii metabolite. Fujita, T.; Inoue, K.; Yamamoto, S.; Ikumoto, T.; Sasaki, S.; Toyama,R.; Chiba, K.; Hoshino, Y.; Okumoto, T. J. Antibiot. 1994, 47, 208-215.
    
    (2) Fungal metabolites. Part 12. Potent immunosuppressant, 14-deoxomyriocin,(2S,3R,4R)-(E)-2-amino-3,4- dihydroxy-2-hydroxymethyleicos-6-enoic acid and structure-activity relationships of myriocin derivatives. Fujita, T.; Inoue, K.; Yamamoto, S.; Ikumoto, T.; Sasaki, S.; Toyama, R.; Yoneta, M.; Chiba, K.;Hoshino, Y; Okumoto, T. J. Antibiot. 1994, 47,216-224.
    
    (3) Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. Omura, S.; Fujimoto, T.; Otoguro, K.; Matsuzaki, K.;Moriguchi, R.; Tanaka, H.; Sasaki, Y. J. Antibiot. 1991, 44, 113-116.
    
    (4) Structure of lactacystin, a new microbial metabolite which induces differentiation of neuroblastoma cells. Omura, S.; Matsuzaki, K.; Fujimoto, T.; Kosuge, K.;Furuya, T.; Fujita, S.; Nakagawa, A. J. Antibiot. 1991,44, 117-118.
    
    (5) Conagenin, a low molecular weight immunomodulator produced by Streptomyces roseosporus [2]. Yamashita, T.; Iijima, M.; Nakamura, H.; Isshiki, K.; Naganawa,H.; Hattori, S.; Hamada, M.; Takeuchi, T.; Iitaka, Y. J. Antibiot. 1991, 44,557-559.
    
    (6) Improvement of efficacy of antitumor agents by conagenin. Kawatsu, M.;Yamashita, T.; Ishizuka, M.; Takeuchi, T. J. Antibiot. 1995, 48, 222-225.
    
    (7) (a) Williams, R. M. Synthesis of Optically Active α-Amino Acids; Pergamon Press:Oxford, 1989. (b) Recent developments in the stereoselective synthesis of α-amino acids. Duthaler, R. O. Tetrahedron 1994, 50, 1539-1650. (c) Efficient Syntheses of the Four Enantiomers and Diastereomers of .alpha.-Methylthreonine and Both Enantiomers of .alpha.-Methylserine. Moon, S.-H.; Ohfune, Y. J. Am.Chem. Soc. 1994, 116, 7405-7406. (d) Enantiomerically Enriched .alpha.-Methyl Amino Acids. Use of an Acyclic, Chiral Alanine-Derived Dianion with a High Diastereofacial Bias. Berkowitz, D. B.; Smith, M. K. J. Org. Chem. 1995, 60, 1233-1238.
    (e) A new synthesis of α-methylserine by nucleophilic ring-opening of N-sulfonyl aziridines. Wipf, P.; Venkatraman, S.; Miller, C. P. Tetrahedron Lett. 1995, 36, 3639-3642.
    (f) Lewis acid- and cationic lithium-mediated diastereoselective aldol-type reaction based on a double chiral recognition manner for the asymmetric synthesis of α-substituted serines. Sano, S.; Liu, X. -K.; Takebayashi, M.; Kobayashi, Y.; Tabata, K.; Shiro, M.; Nagao, Y. Tetrahedron Lett. 1995, 36, 4101-4104.
    (g) Self-Regeneration of Stereocenters (SRS) - Applications, Limitations, and Abandonment of a Synthetic Principle. Seebach, D.; Sting, A. R.; Hoffmann, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2708-2748.
    (h) New Strategies to α-Alkylated α-Amino Acids. Wirth, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 225-227.
    (i) Stereoselective synthesis of quaternary α-amino acids. Part 1: Acyclic compounds. Cativiela, C.; Diaz-de-Villegas, M. D. Tetrahedron: Asymmetry 1998, 9, 3517-3599.
    (j) Stereoselective synthesis of quaternary α-amino acids. Part 2: Cyclic compounds; Cativiela, C.; D(?)az-de-Villegas, M. D. Tetrahedron: Asymmetry 2000, 11, 645-732.
    (k) Asymmetric synthesis of β-hydroxy-α-alkylamino acids by asymmetric aldol reaction of α-isocyanocarboxylateds catalyzed by chiral ferrocenylphosphine-gold(Ⅰ) complexes. O'Donnell, M. J. Tetrahedron 1988, 44, 5253-5262.
    (l) Asymmetric synthesis of novel sterically constrained amino acids. Hruby, V. J.; Soloshonok, V. A. Tetrahedron 2001, 57, ix.
    (m) N-tert-Butanesulfinyl Imines: Versatile Intermediates for the Asymmetric Synthesis of Amines. Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984-995.
    (n) Recent Developments in the Catalytic Asymmetric Synthesis of α- and β-Amino Acids. Ma, J.-A. Angew. Chem., Int. Ed. 2003, 42, 4290-4299.
    (o) The Enantioselective Synthesis of α-Amino Acids by Phase-Transfer Catalysis with Achiral Schiff Base Esters. O'Donnell, N. J. Acc. Chem. Res. 2004, 37, 506-517.
    (8) First synthesis of conagenin diastereoisomers. Kovacs-Kulyassa, A.; Herczegh, P.; Sztaricskai, F. J. Tetrahedron Lett. 1996, 37, 2499-2502.
    (9) Asymmetric Syntheses via heterocyclic intermediates, Ⅺ. - Enantioseletive synthesis of (R)-(-)-α-methylserine. Groth, U.; Chiang Y-c.; Schollkopf, U. Liebigs Ann. Chem. 1982, 1756-1757.
    (10) Synthesis, NMR spectra and function of peptides with α-methylserine attached to the RGD sequence of osteopontin. Mickos, H.; Sundberg, K.; Lunig, B. Acta Chem. Scand. 1992, 46,989-993.
    (11) Total synthesis of (+)-conagenin; Hatakeyama, S.; Fukuyama, H.; Mukugi, Y.; Irie, H.; Tetrahedron Lett. 1996, 37, 4047-4050.
    (12) Synthesis of conagenin analogs modified at 3'-carbon atom. Kovacs-Kulyassa, A.; Herczegh, P.; Sztaricskai, F. J. Tetrahedron 1997, 53, 13883-13896.
    (13) Diastereo- and enantioselective formal synthesis of(+)-conagenin via asymmetric[2,3]-Wittig rearrangement. Enders, D.; Bartsch, M.; Runsink, J. Synthesis 1999, 243-248.
    (14) Chemoenzymatic total synthesis of (+)-conagenin, a low-molecular-weight immunomodulator. Sano, S.; Miwa, T.; Hayashi, K.; Nozaki, K.; Ozaki, Y.; Nagao, Y. Tetrahedron Lett. 2001, 42, 4029-4031.
    (15) Diastereo- and enantioselective synthesis of a conagenin skeletal amide moiety. Rodrigues, J. A. R.; Moran, P. J. S.; Milagre, C. D. F.; Ursini, C. V. Tetrahedron Lett. 2004, 45, 3579-3582.
    (16) Synthesis of (+)-Conagenin. Matsukawa, Y.; Isobe, M.; Kotsuki, H.; Ichikawa, Y. J. Org. Chem. 2005, 70, 5339-5341.
    (17) Enantio- and diastereoselective aldol reactions of achiral ethyl and methyl ketones with aldehydes: The use of enol diisopinocampheylborinates. Paterson, L.; Goodman, G.; J. M.; Lister, M. A.; Schumann, R. C.; Mcclure, C. K.; Norcross, R. D. Tetrahedron 1990, 46, 4663-4684.
    (18)(a) Chiral Tricyclic Iminolactone Derived from (1R)-(+)-Camphor as a Glycine Equivalent for the Asymmetric Synthesis of α-Amino Acids. Xu, P.-F.; Chen, Y.-S.; Lin, S.-I; Lu, T.-J. J. Org. Chem. 2002, 67, 2309-2314.
    (b) Selective Synthesis of Either Enantiomer of α-Amino Acids by Switching the Regiochemistry of the Tricyclic Iminolactones Prepared from a Single Chiral Source. Xu, P.-F; Lu, T.-J. J. Org. Chem. 2003, 68, 658-661.
    (19)(a) D-(k)-glyceraldehyde acetonide. Schmid, C. R.; Bryant, J. D. OrB. Synth. 1995, 72, 6-12.
    (b) Synthesis of 2,3-O-isopropylidene-D-glyceraldehyde in high chemical and optical purity: observations on the development of a practical bulk process. Schmid, C. R.; Bryant, J. D.; Dowlatzedah, M.; Phillips, J. L.; Prather, D. E.; Schantz, R. D.; Seur, N. L.; Vianco, C. S. J. Org. Chem. 1991, 56, 4056-4058.
    (20)(a) Design and Synthesis of Transition State Analogs for Induction of Hydride Transfer Catalytic Antibodies. Schr(o|¨)er, J.; Scanner, M.; Reymond, J. L.; Lerner, R. A. J. Org. Chem. 1997, 62, 3220-3229.
    (b) A simple procedure for the Esterification of carboxylic acid. Chan, T. H.; Brook, M. A. Synthesis, 1983, 201-203.
    (c) A simple procedure for the acetalization of carbonyl compound. Chan, T. H.; Brook, M. A.; Chaly, T. Synthesis, 1983, 203-205.
    (21)(a) Stereoselective reduction of α-methyl-β-hydroxy ketones with zinc borohydride. Nakata, T.; Tani, Y.; Hatozaki, M.; Oishi, T. Chem Pharm. Bull. 1984, 32, 1411-1415.
    (b) Chemistry of carbanions. ⅹⅹⅢ. Use of metal complexes to control the aldol condensation. House, H. O.; Crumrine, D. S.; Teranishi, A. Y.; Olmstead, H. D. J. Am. Chem. Soc. 1973, 95, 3310-3324.
    (22) For different approaches to the syn-stereoseletive reduction of β-hydroxy ketones see: (a) Stereoseletive reduction of β-hydroxyketones to 1,3-diols.-Highly selective 1,3-asymmetric induction via boron chelates. Narasaka, K.; Pai, F.-C. Tetrahedron, 1984, 40, 2233.
    (b) Stereoselective reduction of δ-hydroxy-β-ketoest-ers. Kathawala, F. G.; Prager, B.; Prasad, K.; Repic, O.; Shapiro, M. J.; Stabler, R. S.; Widler, L. Helv. Chim. Acta, 1986, 69, 803-805.
    (c) 1,3-syn diastereoselective reduction of β-hydroxyketones with diisobutylaluminum hydride and tributyltin hydride. Kiyooka, S.; Kuroda, H.; Shimasaki, Y.; Tetrahedron Lett. 1986, 27, 3009-3012.
    (d) A novel method for the situ generation of alkoxydialkyboranes and their use in the selective preparation of 1,3-syn diols. Chen, K. M.; Gunderson, K. G.; Hartmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. Chemistry Lett. 1987, 1923-1926.
    (e) Reduction of .beta.-hydroxy ketones with catecholborane. A stereoselective approach to the synthesis of syn-1,3-diols. Evans, D. A.; Hoveyda, A. H. J. Org. Chem. 1990, 55, 5190-5192.
    (f) Stereochemistry of alternating polyol chains: ~(13)C NMR analysis of 1,3-diol acetonides. Rychnovshy, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31, 945-948.
    (g) ~(13)C NMR chemical shift correlations in 1,3-diol acetonides. Implications for the stereochemical assignment of propionate-derived polyols. Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, 31, 7099-7100.
    (23)(a) A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936-3938.
    (b) Efficient oxidation of phenyl groups to carboxylic acids with ruthenium tetraoxide. A simple synthesis of (R)-.gamma.-caprolactone, the pheromone of Trogoderma granarium. Nu-ez, M. T.; Martin, V. s. J. Org. Chem. 1990, 55, 1928-1932.
    (24)Boron mediated one-pot aldol-reduction sequence: Enantio and diastereoselective synthesis of typical polyketide fragments. Bonini, C.; Racioppi, R.; Righi, G.; Rossi, L. Tetrahedron: Asymmetry 1994, 5, 173-176.
    (25)Strategy for the synthesis of large peptides: An application to the total synthesis of human parathyroid hormone[hPTH(1-84)]. Kimura, T.; Takai, M.; Matsui, Y.; Morikawa, T.; Sakakibara, S. Biopolymers 1981, 20, 1823-1832.
    1. A New Antibiotic. Furanomycin, an Isoleucine Antagonist; K. Katagiri, K. Tori, Y. Kimura, T. Yoshida, T. Nagasaki, H. Minato, J. Med. Chem. 1967, 10, 1149-1154.
    2. Nonprotein amino acid furanomycin, unlike isoleucine in chemical structure, is charged to isoleucine tRNA by isoleucyl-tRNA synthetase and incorporated into protein; T. Kohno, D. Kohda, M. Haruki, S. Yokoyama, T. Miyazawa, J. Biol. Chem. 1990, 265, 6931-6935.
    3. (a) The effect of amino acid analogues on growth and protein synthesis in microorganisms; M. H. Richmond, Bacteriol. Rev, 1962, 26, 398-420.
    (b) Editing of errors in selection of amino acids for protein synthesis; H. Jakubowski, E. Goldman, Microbiol. Rev, 1992, 56, 412-429.
    4. The synthesis of dl-Furanomycin, T. Masamune, M. Ono, Chem. Lett. 1975, 625-626.
    5. (a) Total Synthesis and Revised Structural Assignment of (+)-Furanomycin; M. M. Joullie', P. C. Wang,J. E. Semple,J. Am. Chem. Soc. 1980, 102, 887-889;
    (b) Total Synthesis of (+)-Furanomycin and Stereoisomers; J. E. Semple, P. C. Wang, Z. Lysenko, M. M. Joullie', J. Am. Chem .Soc. 1980, 102, 7505-7510.
    6. Investigations of the Biosynthesis of Furanomycin. Unexpected Derivation from Acetate and Propionate; R. J. Parry, H. P. Buu, J. Am. Chem. Soc. 1983, 105, 7446-7447.
    7. Total Synthesis of Two Furanomycin Stereoisomers; S.-Y. Chen, M. M. Joulli(?), J. Org. Chem. 1984, 49, 1769-1772.
    8. The Biosynthesis of Furanomycin: On the Mechanism of Formation of the Ether Linkage; R. J. Parry, R. Turakhia, H. P. Buu, J. Am. Chem. Soc. 1988, 110, 4035-4036.
    9. Total synthesis of (+)-furanomycin; S. H. Kang, S. B. Lee, Chem. Commun. 1998, 761-762.
    10. Synthesis of (+)-Furanomycin: Use of Radical Cyclization; J. H. Zhang, D. L. J. Clive, J. Org. Chem. 1999, 64, 1754-1757.
    11. A Short Total Synthesis of (+)-Furanomycin; M. P. Van Brunt, R. F. Standaert, Org. Lett. 2000, 2, 705-708.
    12. A General Approach to L-(+)-Furanomycin and Some Stereoisomers and Analogues Using Furoisoxazoline Intermediates; Peter Jan Zimmermann, Iva Blanarikova, P. J. Zimmermann, J. Blanarikova, V. J(a|¨)ger, Angew. Chem. Int. Ed. 2000, 39, 910-912.
    13. Straightforward Syntheses of Furanomycin Derivatives and their Biological Evaluation; U. Kazmaier, S. P(a|¨)hler, R. Endermann, D. H(a|¨)bich, H.-P. Kroll, B. Riedl, Bioorg. & Med. Chem. 2002, 10, 3905-3913.
    14. Synthesis of L-Carbafuranomycin, an Unnatural Analogue of the Antibiotic Amino Acid Furanomycin; J. Y. Lee, G. Schiffer, J(a|¨)ger, V., Org. Lett. 2005, 7, 2317-2320.
    15. Synthesis of L-Furanomycin and Its Analogues via Furoisoxazolines; P. J. Zimmermann, J.-Y. Lee, I. Hlobilova (ne(?) Blanarikova), R. Endermann, D. H(a|¨)bich, V. J(a|¨)ger, Eur. J. Org, Chem. 2005, 3450-3460.
    16. Synthesis of Furanomycin Derivatives by Gold-Catalyzed Cycloisomerization of a-Hydroxyallenes; J. Erdsack, N. Krause, Synthesis 2007, 3741-3750.
    17. A short route to N-protected furanomycin, 5'-epi-furanomycin and isofuranomycin derivatives; A. Bandyopadhyay, B. K. Pal, S. K. Chattopadhyay, Tetrahedron: Asymmetry 2008, 19, 1875-1877.
    18. Synthesis of an (R)-Garner-type Aldehyde frpm L-serine: Using Building Block for a (+)-Furanomycin Derivative; G. Bartoli, G. D. Antonio, R. Fiocchi, S. Giuli, E. Marcantoni, M. Marcolini, Synthesis 2009, 951-956.
    19. Antibacterial Natural Products in Medicinal Chemistry - Exodus or Revival; F. Von Nussbaum, M. Brands, B. Hinzen, S. Weingand, D. Habich, Angew. Chem. Int. Ed. 2006, 45, 5072-5129.
    20. (a) Chiral Tricyclic Iminolactone Derived from (1R)-(+)-Camphor as a Glycine Equivalent for the Asymmetric Synthesis of α-Amino Acids; P.-F. Xu, Y.-S. Chen, S.-I. Lin, T.-J. Lu, J. Org. Chem. 2002, 67, 2309-2314.
    (b) Selective Synthesis of Either Enantiomer of α-Amino Acids by Switching the Regiochemistry of the Tricyclic Iminolactones Prepared from a Single Chiral Source; P.-F. Xu, T.-J. Lu, J. Org. Chem. 2003, 68, 658-661.
    1. (a) The Organic Chemistry of Palladium; Maitlis, P. M. Academic Press: New York, 1971; Vols. 1 and 2.
    (b) Organic Synthesis with Palladium Compounds; Tsuji, J. Springer-Verlag: New York, 1980.
    (c) Palladium Reagents in Organic Synthesis; Heck, R. F. Academic Press: New York 1985.
    (d) In Advances in Metal-Organic Chemistry; Larock, R. C. Liebeskind, L. S., Ed.; JAI Press: London, 1994; Vol. V, Chapter 3.
    (e) Palladium Reagents and Catalysts: Innovations in Organic Synthesis; Tsuji, J. Wiley and Sons: New York, 1995.
    (f) Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E. Wiley and Sons: New York, 2002; Vols. 1 and 2.
    (g) Palladium in Heterocyclic Chemistry; Li, J. J.; Gribble, G. W. Pergamon: New York, 2000.
    2. (a) The Heck Reaction as a Sharpening Stone of Palladium Catalysis. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009-3066.
    (b) Anionic Pd(0) and Pd(Ⅱ) Intermediates in Palladium-Catalyzed Heck and Cross-Coupling Reactions. Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314-321.
    (c) Palladium Catalysis in the Construction of the Benzo[b]furan and Furan Rings from Alkynes and Organic Halides or Triflates. Cacchi, S.; Fabrizi, G.; Goggiomani, A. Heterocycles 2002, 56, 613-632.
    (d) Palladium-Catalyzed Reactions of Allenes. Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067-3126.
    (e) Synthesis and Reactions of Allylic, Allenic, Vinylic, and Arylmetal Reagents from Halides and Esters via Transient Organopalladium Intermediates. Marshall, J. A. Chem. Rev. 2000, 100, 3163-3186.
    (f) Special Issue-"30 Years of the Cross-coupling Reaction". J. Organomet. Chem. 2002, 653, 1-303.
    (g) Palladium-Assisted Routes to Nucleosides. Agrofoglio, L. A.; Gillaizeau, I.; Saito, Y. Chem. Rev. 2003, 103, 1875-1916.
    (h) Palladium-Catalyzed Alkynylation. Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979-2018.
    (i) Y. Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis. Nakamura, I.; Yamamoto, Chem. Rev. 2004, 104, 2127-2198.
    (j) Zeni, G.; Larock, R. C. Synthesis of Heterocycles via Palladium π-Olefin and π-Alkyne Chemistry. Chem. Rev. 2004, 104, 2285-2309.
    (k) Transition-Metal-Catalyzed Addition of Heteroatom-Hydrogen Bonds to Alkynes .Alonso, F.; Beletskaya, I. P.; Yus, Miguel. Chem. Rev. 2004, 104, 3079-3159.
    (l) Synthesis and Functionalization of Indoles Through Palladium-catalyzed Reactions. Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873-2920.
    (m) The Virtue of Palladium-Catalyzed Domino Reactions-Diverse Oligocyclizations of Acyclic 2-Bromoenynes and 2-Bromoenediynes. Meijere, A. D.; Zezschwitz, P. V.; Br(a|¨)se, S. Acc. Chem. Res. 2005, 38, 413-422.
    (n) Synthesis of Heterocycles via Palladium-Catalyzed Oxidative Addition. Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644-4680.
    (o) Diazonium Salts as Substrates in Palladium-Catalyzed Cross-Coupling Reactions. Roglans, A.; Pla-Quintana, A.; Moreno-Ma(?)as, M. Chem. Rev. 2006, 106, 4622-4643.
    (p) Carbon-Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133-173.
    3. For general reviews, see: (a) In Comprehensive Organic Synthesis; Larock, R. C.; Leong, W. W. Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 4, p 269.
    (b) Minami, T.; Ozawa, F. Kagaku (Kyoto) 1997, 52, 66; Chem. Abstr. 1997, 126, 334967.
    (c) Palladium catalysed pronucleophile addition to unactivated carbon-carbon multiple bonds; Yamamoto, Y.; Radhakrishnan, U. Chem. Soc. Rev. 1999, 28, 199-207.
    (d) Catalytic Heterofunctionalization; Togni, A., Gr(u|¨) tzmacher, H., Eds.; Wiley-VCH: Weinheim, 2001.
    4. For reviews on metal-catalyzed hydroamination of alkenes and alkynes, see: (a) Tetrahedron report number 144 : Amination of alkenes; Gasc, M. B.; Lattes, A.; Perie, J. J. Tetrahedron 1983, 39, 703-731.
    (b) Brunet, J. J.; Neibecker, D.; Niedercorn, F. J. Mol. Catal. 1989, 49, 235.
    (c) In Applied Homogeneous Catalysis with Organometallic Compounds; Taube, R. Cornils, B., Herrmann, W. A., Eds.; VCH: Weinheim, 1996; Vol. 1, pp 507-520.
    (d) In Transition Metals for Organic Synthesis; M(u|¨) ller, T. E.; Belier, M. Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 2, pp 316-330.
    (e) Metal-Initiated Amination of Alkenes and Alkynes; Mu(a|¨)ller, T. E.; Belier, M. Chem. Rev. 1998, 98, 675-704.
    (f) Katalytische Hydroaminierung von Alkenen und Alkinen; Haak, E.; Doye, S. Chem. unserer Zeit 1999, 33, 297-303.
    (g) Reference le, Chapter 4.
    (h) Modern Amination Methods; Ricci, A. Wiley-VCH: Weinheim, 2000.
    (i) Recent Developments in Transition Metal Catalyzed Intermolecular Hydroamination Reactions - A Breakthrough; Nobis, M.; Driessen-H(o|¨) lscher, B. Angew. Chem., Int. Ed. 2001, 40, 3983-3985.
    (j) Tropos or Atropos? That is the Question!; Beller, M.; Breindl, C.; Eichberger, M.; Hartung, C. G.; Seayad, J.; Thiel, O. R.; Tillack, A.; Trauthwein, H. Synlett 2002, 1561-1578.
    (k) In Encyclopedia of Catalysis; M(u|¨) ller, T. E. Horva' th, I. T., Ed.; Wiley: New York, 2002. We are very grateful to Prof. T. E. M(u|¨) ller for providing us a copy of the manuscript.
    (l) In Handbook of Organopalladium Chemistry for Organic Synthesis; Hosokawa, T. Negishi, E., Ed.; Wiley: Hoboken, 2002; Vol.2, pp 2221-2225.
    (m) In Handbook of Organopalladium Chemistry for Organic Synthesis, Cacchi, S.; Marinelli, F. Negishi, E., Ed.; Wiley: Hoboken, 2002; Vol. 2, pp 2227-2244.
    5. (a)Generation, alkyne cycloaddition, arene carbon-hydrogen activation, nitrogen-hydrogen activation and dative ligand trapping reactions of the first monomeric imidozirconocene (Cp2Zr:NR) complexes; Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 8729-8731.
    (b) Monomeric and dimeric zirconocene imido compounds: synthesis, structure, and reactivity; Walsh, P. J.; Hollander, F. J.; Bergrnan, R.G. Organometallics 1993, 12, 3705-3723.
    (c) Research Article Stoichiometric and catalytic hydroamination of alkynes and allene by zirconium bisamides Cp_2Zr(NHR)_2; Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708-1719.
    (d) Variable regiochemistry in the stoichiometric and catalytic hydroamination of alkynes by imidozirconium complexes caused by an unusual dependence of the rate law on alkyne structure and temperature; Baranger, A. M.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 2753-2763.
    6. Monoalkyl- and monoaryl-amidotitanium complexes; Jekel-Vroegop, C. T.; Teuben, J. H. J. Organomet. Chem. 1985, 286, 309-315.
    7. Intramolecular[2+2]cycloadditions of Group Ⅳ metal-imido complexes. Applications to the synthesis of dihydropyrrole and tetrahydropyridine derivatives; McGrane, P. L.; Jensen, M.; Livinghouse, T. J. Am. Chem. Soc. 1992, 114, 5459-5460.
    8. Scope of the Intramolecular Imidotitanium-Alkyne[2 + 2]Cycloaddition-Azatita-netine Acylation Sequence. An Efficient Procedure for the Synthesis of 2-(2-Keto-1-alkylidene)tetrahydropyrroles and Related Compounds; Fairfax, D.; Stein, M.; Livinghouse, T.; Jensen, M. Organometallics 1997, 16, 1523-1525.
    9. (a) Synthetic applications of Group Ⅳ metal-imido complex - alkyne[2+2]cycloadditions. A concise total synthesis of (.+-.)-monomorine; McGrane, P.L.; Livinghouse, T. J. Org. Chem. 1992, 57, 1323-1324.
    (b) Synthetic applications of imidotitanium-alkyne[2+2]cycloadditions. A concise, stereocontrolled total synthesis of the antifungal agent (+)-preussin; McGrane, P. L.; Livinghouse, T. J. Am. Chem. Soc. 1993, 115, 11485-11489.
    10. (a) The Cp_2TiMe_2-catalyzed intramolecular hydroamination/cyclization of aminoalkynes ; Bytschkov, I.; Doye, S. Tetrahedron Lett. 2002, 43, 3715-3718.
    (b) Ruthenium-catalyzed intramolecular hydroamination of aminoalkynes; See, for instance: Kondo, T.; Okada, T.; Suzuki, T.; Mitsudo, T.-a. J. Organomet. Chem. 2001, 622, 149-154 and references therein.
    11. A Three-Component Coupling Process Based on Vicarious Nucleophilic Substitution (VNS_(AR))-Alkylation Reactions: An Approach to Indoprofen and Derivatives; Haak, E.; Bytschkov, I.; Doye, S. Eur. J. Org. Chem. 2002, 67, 457-464.
    12. A Highly Reactive Titanium Precatalyst for Intramolecular Hydroamination Reactions; Ackermann, L.; Bergman, R. G. Org. Lett. 2002, 4, 1475-1478.
    13. (a) For a thematic issue on lanthanide chemistry, see: Kagan, H. B., Ed. Frontiers in Lanthanide Chemistry. Chem Rev. 2002, 102, 1805-1806
    (b) Intramolecular Hydroamination/Cyclization of Aminoallenes Catalyzed by Organolanthanide Complexes. Scope and Mechanistic Aspects; Arredondo, V. M.; McDonald, F. E.; Marks, T. J. Organometallies 1999, 18, 1949-1960.
    14. (a) Organolanthanide-Catalyzed Carbon-Heteroatom Bond Formation. Observations on the Facile, Regiospecific Cyclization of Aminoalkynes; Li, Y.; Fu, P.-F.; Marks, T. J. Organometallics 1994, 13, 439-440.
    (b) In Energetics of Organometallic Species; Giardello, M. A.; King, W. A.; Nolan, S. P.; Porchia, M.; Sishta, C.; Marks, T. J. Martino Simoes, J. A., Ed.; Kluwer: Amsterdam, 1992; pp 35-54.
    15. (a) Coupled Organolanthanide-Catalyzed C-N/C-C Bond Formation Processes. Efficient Regiospecific Assembly of Pyrrolizidine and Indolizidine Skeletons in a Single Catalytic Reaction; Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 707-708.
    (b) Organolanthanide-Catalyzed Intra- and Intermolecular Tandem C-N and C-C Bond-Forming Processes of Aminodialkenes, Aminodialkynes, Aminoalkeneynes, and Aminoalkynes. New Regiospecific Approaches to Pyrrolizidine, Indolizidine, Pyrrole, and Pyrazine Skeletons; Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757-1771.
    16. (Aminotroponiminato)yttrium Amides as Catalysts in Alkyne Hydroamination; Burgstein, M. R.; Berberich, H.; Roesky, P. W. Organometallics 1998, 17, 1452-1454.
    17. (a) Tokunaga, M.; Wakatsuki, Y. Yuki Gosei Kagaku Kyokaishi 2000, 58, 587; Chem. Abstr. 2000, 133, 73620.
    (b) Ruthenium-Catalyzed Intermolecular Hydroamination of Terminal Alkynes with Anilines: A Practical Synthesis of Aromatic Ketimines; Tokunaga, M.; Eckert, M.; Wakatsuki, Y. Angew. Chem., Int. Ed. 1999, 38, 3222-3225.
    (c) Tokunaga, M.; Eckert, M.; Wakatsuki, Y. JP Patent 2000, 2000256284; Chem. Abstr. 2000, 133, 237674.
    18. (a) Rhodium complexes containing bidentate imidazolyl ligands: synthesis and structure; Elgafi, S.; Field, L. D.; Messerle, B. A.; Turner, P.; Hambley, T.W.J. Organomet. Chem. 1999, 588, 69-77.
    (b) Hydroamination of Alkynes Catalyzed by a Cationic Rhodium(Ⅰ) Complex; Burling, S.; Field, L. D.; Messerle, B. A. Organometallics 2000, 19, 87-90.
    19. Palladium-catalyzed synthesis of pyrroles; Utimoto, K.; Miwa, H.; Nozaki, H. Tetrahedron Lett. 1981, 22, 4277-4278.
    20. Palladium-catalyzed cycloisomerization of (Z)-(2-en-4-ynyl)amines: a new synthesis of substituted pyrroles; Gabriele, B.; Salerno, G.; Fazio, A.; Bossio, M. R. Tetrahedron Lett. 2001, 42, 1339.
    21. Palladium-Catalyzed Cyclization Reactions of Acetylene-Containing Amino Acids; Wolf, L. B.; Tjen, K. C. M. F.; ten Brink, H. T.; Blaauw, R. H.; Hiemstra, H.; Schoemaker, H. E.; Rutjes, R. H. Adv. Synth. Catal. 2002, 344
    22. (a) A Novel Cu-Assisted Cycloisomerization of Alkynyl Imines: Efficient Synthesis of Pyrroles and Pyrrole-Containing Heterocycles; Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074-2075.
    (b)Double Cycloisomerization as a Novel and Expeditious Route to Tricyclic Heteroaromatic Compounds: Short and Highly Diastereoselective Synthesis of (±)-Tetraponerine T6; Kim, J. T.; Gevorgyan, V. Org. Lett. 2002, 4, 4697-4699.
    23. (a) Sequential Ru-Pd Catalysis: A Two-Catalyst One-Pot Protocol for the Synthesis of N- and O-Heterocycles; B. M. Trost, M. R. Machacek, and B. D. Faulk, J. Am. Chem. Soc. 2006, 128, 6745-6754;
    (b) Palladium(Ⅱ)-Catalyzed Oxidative Transformation of Allylic Alcohols and Vinyl Ethers into 2-Alkoxytetrahydrofurans: Catechol as an Activator of Catalyst; Minami, Y. Kawamura, K. Koga, and T. Hosokawa, Org. Lett. 2005, 7, 5689-5692.
    24. (a) Ruthenium-Catalyzed Cycloisomerizations of Diynols; B. M. Trost, M. T. Rudd, J. Am. Chem. Soc. 2005, 127, 4763-4776;
    (b) Selective Lewis Acid Catalyzed Transformation (γ-Butyrolactone versus Cyclopropane) of 2-Methoxy-4-benzyltetrahydrofuran Derivatives. Efficient Synthesis of Lignan Lactones; L. Ferrie, D. Bouyssi, G. Balme, Org. Lett. 2005, 7, 3143-3146;
    (c) An Effective One-Pot Synthesis of 3-Benzylfurans and Their Potential Utility as Versatile Precursors of 3,4-Dibenzyltetrahydrofuran Lignans. Formal Synthesis of (±)-Burseran; S. Garcon, S. Vassiliou, M. Cavicchioli, B. Hartmann, N. Monteiro, G. Balme, J. Org. Chem. 2001, 66, 4069-4073.
    (d) The Logic of Chemical Synthesis; E. J. Corey, X.-M. Cheng, Wiley, 1989;
    (e) Total Synthesis of (+)-Amphidinolide K; D. R. Williams, K. G. Meyer, J. Am. Chem. Soc. 2001, 123, 765-766.
    25. (a)Tandem oxa-Michael addition-S_N2' substitution of 4-chlorobut-2-yn-1-ol with nitroalkenes: a total allylic 1,3-strain-controlled diastereoselective synthesis of 3-vinylidenetetrahydrofurans; J-P. DulcJre, E. Dumez, Chem. Commun. 1997, 971-972.
    (b) Studies towards a new one-pot heterocyclization: Bu~tOK-promoted oxa- and aza-Michael addition-intramolecular carbocyclization of prop-2-ynyl alcohols and amines with α,β-disubstituted nitroalkenes; E. Dumez, J. Rodriguez, J-P. DulcJre, Chem. Commun. 1997, 1831-1832.
    26. (a) Twenty-five years of dimethylsulfoxonium ethylide (corey's reagent); M. Cavicchioli, X. Marat, N. Monteiro, B. Hartmann, G. Balme, Tetrahedron Lett. 2002, 43, 2609-2651.
    (b) A one pot synthesis of various pyrrolidines via a tandem Michael addition-transition metal-eatalysed cyclisation reaction; B. Clique, N. Monteiro, G. Balme, Tetrahedron Lett. 1999, 40, 1301-1304.
    27. Integrated Transition Metal Catalysed Reactions: Synthesis of Polysubstituted 4-(Phenoxymethyl)-3-pyrrolines and Their Isomers by One-Pot Coupling of Propargylamines, Vinyl Sulfones (or Nitroalkenes) and Phenols; B. Clique, S. Vassiliou, N. Monteiro, G. Balme, Eur. J. Org. Chem. 2002, 1493-1499.
    28. (a) S. Yamazaki, M. Yamamoto, A. Sumi, Tetrahedron 2007, 63, 2320;
    (b) Lewis Acid Promoted[2 + 1]Cycloaddition Reactions of 1-Seleno-2-silylethene with Tricarbonyl-Substituted Olefins; S. Yamazaki, H. Kumagai, T. Takada, S. Yamabe, J. Org. Chem. 1997, 62, 2968-2974;
    (c) Lewis Acid Promoted Cyclization of Enyne Triesters and Diesters; S. Yamazaki, K. Yamada, S. Yamabe, K. Yamamoto, J. Org. Chem. 2002, 67, 2889-2901;
    (d) A Lewis acid-promoted cyclization of ethenetricarboxylate derivative aromatic compounds. Novel syntheses of oxindoles and benzofuranones via Friedel-Crafts intramolecular Michael addition; S. Yamazaki, S. Morikawa, Y. Iwata, M. Yamamoto, K. Kuramoto, Org. Biomol. Chem. 2004, 2, 3134-3138.
    29. Zinc- and Indium-Promoted Conjugate Addition-Cyclization Reactions of Ethenetricarboxylates with Propargylamines and Alcohol: Novel Methylenepyrrolidine and Methylenetetrahydrofuran Syntheses; S. Morikawa, S. Yamazaki, Y. Furusaki, N. Amano, K. Zenke, K. Kakiuchi, J. Org. Chem. 2006, 71, 3540-3544.
    30. A New Entry in Catalytic Alkynylation of Aldehydes and Ketones: Dual Activation of Soft Nucleophiles and Hard Electrophiles by an Indium(Ⅲ) Catalyst; R. Takita, Y. Fukuta, R. Tsuji, T. Ohshima, M. Shibasaki, Org. Lett. 2005, 7, 1363-1366.
    31. (a) Synthesis of Pyrrole Derivatives by Palladium-Catalyzed Cyclization ofγ,δ-Unsaturated Ketone O-Pentafluorobenzoyloximes. Tsutsui, H.; Kitamura, M.; Narasaka, K. Bull Chem. Soc. Jpn. 2002, 75, 1451.
    (b) Palladium-Catalyzed Synthesis of 1-Azaazulenes from Cycloheptatrienylmethyl Ketone O-Pentafluorobenzoyl Oximes. Kitamura, M.; Chiba, S.; Saku, O.; Narasaka, K. Chem. Lett. 2002, 606.
    32. Palladium-promoted cyclization reactions of aminoalkenes. Pugin, B.; Venanzi, L. M.J. Organomet. Chem. 1981, 214, 125-133.
    33. (a) Formamide as a superior nitrogen nucleophile in palladium(Ⅱ) mediated synthesis of imidazolidines. Van Benthem, R. A. T. M.; Hiemstra, H.; Longarela, G. R.; Speckamp, W. N. Tetrahedron Lett. 1994, 35, 9281-9284.
    (b) Urea as the most reactive and versatile nitrogen nucleophile for the palladium(Ⅱ)-catalyzed cyclization of unsaturated amines. Tamaru, Y.; Hojo, M.; Higashimura, H.; Yoshida, Z.-I. J. Am. Chem. Soc. 1988, 110, 3994-4002.
    34. Palladium-catalyzed cyclization of .omega.-olefinic tosamides. Synthesis of nonaromatic nitrogen heterocycles. Hegedus, L. S.; McKearin, J. M. J. Am. Chem. Soc. 1982, 104, 2444-2451.
    35. (a) Palladium-catalyzed intramolecular 1,2-oxidation of allenes. Jonasson, C.; B(a|¨)ckvall, J.-E. Tetrahedron Lett. 1998, 39, 3601-3604.
    (b) Intramolecular Palladium(Ⅱ)-Catalyzed 1,2-Addition to Allenes. Jonasson, C.; Horvath, A.; B(a|¨)ckvall, J.-E. J. Am. Chem. Soc. 2000, 122, 9600-9609.
    36. Metal Ion-Mediated Heteroatom Cyclisations. Application of Aryl/Alkenyl Palladium(Ⅱ)-Based Electrophilic Triggers. Davies, I. W.; Scopes, D. I. C.; Gallagher, T. Synlett 1993, 85-87.
    37. Pd(O)-Catalyzed Three-Component Tandem Double-Addition-Cyclization Reaction: Stereoselective Synthesis of cis-Pyrrolidine Derivatives. Ma, S.; Jiao, N. Angew. Chem., Int. Ed. 2002, 41, 4737-4740.
    38. Enantioselective domino Heck-allylic amination reactions. Flubacher, D.; Helmchen, G. Tetrahedron Lett. 1999, 40, 3867-3868.
    1. (a) Natural sesquiterpenoids; B. M. Fraga, Nat. Prod. Rep. 1992, 9, 217-241.
    (b) Clerodane diterpenoids; A. T. Merrit, S. V. Ley, Nat. Prod. Rep. 1992, 9, 243-287.
    (c) A new analogue of rocaglamide by an oxidative dihydrofuran synthesis; A. Schoop, H. Greiving, A. Gohrt, Tetrahedron Lett. 2000, 41, 1913-1916.
    (d) Palladium-catalyzed cyclization of silyl-substituted bis(homo)propargylic alcohols to 2,3-dihydro- furans; S. Schubert, E. Schaumann, Eur. J. Org. Chem. 1998, 1873-1878.
    (e) A new synthetic route to 2,5-dihydrofurans; J. P. Dulere, N. Baret, J. Rodriguez, J. Chem. Soc., Chem. Commun. 1994, 303-304.
    2. Stereoselective synthesis of 2'-deoxy-β-D-threo-pentofuranosyl nucleosides by the NBSpromoted coupling reaction of thioglycosides with silylated heterocyclicbases; H. Sugimura, K. Osumi, Y. Kodaka, et al. J. Org. Chem. 1994, 59, 7653-7660.
    3. (a) The Logic of Chemical Synthesis; E. J. Corey, X.-M. Cheng, J. Wiley: New York, 1989.
    (b) Classics in Total Synthesis; K. C. Nicolaou, E. J. Sorensen, VCH: Weinheim, Germany, 1996.
    4. (a) In Comprehensive Heterocyclic Chemistry Ⅱ; R. Benassi, A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Eds.; Pergamon: Oxford, UK, 1996, Vol. 2, pp 259-295.
    (b) In Comprehensive Heterocyclic Chemistry Ⅱ; H. Heaney, J. S. Ahn, A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Eds.; Pergamon: Oxford, UK, 1996, Vol. 2, pp 297-357.
    (c) In Comprehensive Heterocyclic Chemistry Ⅱ; W. Friedrichsen, A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Eds.; Pergamon: Oxford, UK, 1996, Vol. 2, pp 351-393.
    (d) In Comprehensive Heterocyclic Chemistry Ⅱ; Keay, B. A.; Dibble, P. W. A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Eds.; Pergamon: Oxford, UK, 1996, Vol. 2, pp 395-436.
    (e) Comprehensive Organic Synthesis; B. M. Trost, I. Fleming, Eds.; Pergamon: Oxford, UK, 1991.
    5. Recent reviews: (a) In Progress in Heterocyclic Chemistry; X. L. Hou, Z. Yang, H. N. C. Wong, G. W. Gribble, T. L. Gilchrist, Eds.; Pergamon Press: Oxford, UK, 2002, Vol. 14, pp 139-179. (b) Heterocycles via cyclization of alkynes promoted by organopalladium complexes; S. Cacchi, J. Organomet. Chem. 1999,576, 42-64. (c) Regioselective syntheses of substituted furans; X. L. Hou, H. Y.Cheung, P. L. Kwan, et al. Tetrahedron 1998,54,1955- 2020.
    
    6. A new synthesis of 2,3-dihydrofurans: cycloisomerization of alkynyl alcohols to endocyclic enol ethers; F. E. McDonald, C. B. Connolly, M. M. Gleason, T. B.Towne, K. D. Treiber, J. Org. Chem. 1993, 58,6952-6953.
    
    7. (a) Mechanism of Molybdenum Pentacarbonyl-Catalyzed Cyclizations of Alkynols and Epoxyalkynes; F. E. McDonald, C. C. Schultz, J. Am. Chem. Soc. 1994, 116,9363-9364. (b) Asymmetric Syntheses of Stavudine (d4T) and Cordycepin by Cycloisomerization of Alkynyl Alcohols to Endocyclic Enol Ethers; F. E.McDonald, M. M. Gleason, Angew. Chem., Int. Ed. Engl. 1995, 34, 350-352. (c)Asymmetric Synthesis of Nucleosides via Molybdenum-Catalyzed Alkynol Cycloisomerization Coupled with Stereoselective Glycosylations of Deoxyfuranose Glycals and 3-Amidofuranose Glycals; F. E. McDonald, M. M. Gleason, J. Am.Chem. Soc. 1996,118, 6648-6659.
    
    8. (a) Novel ruthenium-catalysed synthesis of furan derivatives via intramolecular cyclization of hydroxy enynes; B. Sieller, C. Bruneau, P. H. Dixneuf, J. Chem.Soc, Chem. Commun. 1994, 493-494. (b) Synthesis of furans by cyclization of 2-En-4-yn-1-ols in the presence of ruthenium and palladium catalysts; B. Sieller,C. Bruneau, P. H. Dixneuf, Tetrahedron 1995, 57, 13089-13102.
    
    9. A Novel Propargylation/Cycloisomerization Tandem Process Catalyzed by a Ruthenium(II)/Trifluoroacetic Acid System: One-Pot Entry to Fully Substituted Furans from Readily Available Secondary Propargylic Alcohols and 1,3-Dicarbonyl Compounds; V. Cadierno, J. Gimeno, N. Nebra, Adv. Synth. Catal.2007, 349, 382-394.
    
    10. Palladium catalyzed synthesis of heterocycles; K. Utimoto, Pure Appl. Chem.1983,55,1845-1852.
    
    11. (a) The first synthesis of 4-trifluoromethyl-2H-pyrans by palladium-catalyzed cyclization of (E)-3-alkynyl-3-trifluoromethyl allylic alcohols; F.-L. Qing, W.-Z. Gao, Tetrahedron Lett. 2000, 41, 7727-7730.
    (b) B. Gabriele, G. Salerno, F. De Pascali, M. Costa, G. P. Chiusoli, An Efficient and General Synthesis of Furan-2-acetic Esters by Palladium-Catalyzed Oxidative Carbonylation of (Z)-2-En-4-yn-1-ols. J. Org. Chem. 1999, 64, 7693-7699.
    (c) B. Gabriele, G. Salerno, F. De Pascali, M. Costa, G. P. Chiusoli, Palladium-catalyzed synthesis of 2E-[(methoxycarbonyl)-methylene]tetrahydrofurans: oxidative cyclization-metho-xycarbonylation of 4-yn-1-ols versus cycloisomerization-hydromethoxylation. J. Organomet. Chem. 2000, 593, 409-415.
    12 Pd(Ⅱ) Acts Simultaneously as a Lewis Acid and as a Transition-Metal Catalyst: Synthesis of Cyclic Alkenyl Ethers from Acetylenic Aldehydes; N. Asao, T. Nogami, K. Takahashi, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 764-765.
    13 Synthesis of substituted furans by palladium-catalyzed cyclization of acetylenic ketones; Y. Fukuda, H. Shiragami, K. Utimoto, H. Nozaki, J. Org. Chem. 1991, 56, 5816-5819.
    14 Palladium(Ⅱ)-mediated cyclization-carbonylation of 4-yn-1-ones: facile access to 2-cyclopentenone carboxylates; K. Kato, Y. Yamamoto, H. Akita, Tetrahedron Lett. 2002, 43, 4915-4917.
    15. The Palladium-catalysed synthesis of 2,3,5-trisubstituted furans from 2-propargyl-1,3-dicarbonyl compounds and vinylic or aryl triflates or halides: A. Arcadi, S. Cacchi, R.C. Laroek, F. Marinelli, Tetrahedron Lett. 1993, 34, 2813-2816.
    16. Synthesis of 3,5-Disubstituted Furans via Palladium-Catalyzed Annulation of Alkyl 3-Oxo-6-heptynoates; S. Cacchi, G.. Fabrizi, L. Moro, J. Org. Chem. 1997, 62, 5327-5332.
    17. A palladium-catalyzed domino reaction of 3-acetyl-5-hexyn-2-one with aryl iodides under carbon monoxide; A. Arcadi, E. Rossi, Tetrahedron Lett. 1996, 37, 6811-6814.
    18. Silver assisted heterocyclization of acetylenic compounds; P. Pale, J. Chuche, Tetrahedron Lett. 1987, 28, 6447-6448.
    19. Sequential alkylation/transition metal catalysed annulation reactions of 1,3-dicarbonyl compounds with propargyl bromide; A. Arcadi, G.. Cerichelli, M. Chiarini, S. D. Giuseppe and F. Marinelli, Tetrahedron Lett. 2000, 41, 9195-9198.
    20. Mercuric Triflate-Catalyzed Synthesis of 2-Methylfurans from 1-Alkyn-5-ones; H. Imagawa, T. Kurisaki, M. Nishizawa, Org. Lett., 2004, 6, 3679-3681.
    21. Gold catalysis: mild conditions for the transformation of alkynyl epoxides to furans; A. S. K. Hashmi, P. Sinha, Adv. Synth. Catal. 2004, 346, 432-438.
    22. Gold-catalyzed cyclization of (Z)-2-en-4-yn-1-ols: highly efficient synthesis of fully substituted dihydrofurans and furans; Y. Liu, F. Song, B. Yan, et al. Org. Lett. 2005, 7, 5409-5412.
    23. (a) Sequential Ru-Pd Catalysis: A Two-Catalyst One-Pot Protocol for the Synthesis of N- and O-Heterocycles; B. M. Trost, M. R. Machacek, and B. D. Faulk, J. Am. Chem. Soc. 2006, 128, 6745-6754; (b) Palladium(Ⅱ)-Catalyzed Oxidative Transformation of Allylic Alcohols and Vinyl Ethers into 2-Alkoxytetrahydrofurans: Catechol as an Activator of Catalyst; Minami, Y. Kawamura, K. Koga, and T. Hosokawa, Org. Lett. 2005, 7, 5689-5692.
    24. (a)Tandem oxa-Michael addition-S_N2' substitution of 4-chlorobut-2-yn-1-ol with nitroalkenes: a total allylic 1,3-strain-controlled diastereoselective synthesis of 3-vinylidenetetrahydrofurans; J-P. DulcJre, E. Dumez, Chem. Commun. 1997, 971-972.
    (b) Studies towards a new one-pot heterocyclization: Bu~tOK-promoted oxa- and aza-Michael addition-intramolecular carbocyclization of prop-2-ynyl alcohols and amines with α,β-disubstituted nitroalkenes; E. Dumez, J. Rodriguez, J-P. DulcJre, Chem. Commun. 1997, 1831-1832.
    25. (a)Tandem oxa-Michael addition-S_N2' substitution of 4-chlorobut-2-yn-1-ol with nitroalkenes: a total allylic 1,3-strain-controlled diastereoselective synthesis of 3-vinylidenetetrahydrofurans; J-P. DulcJre, E. Dumez, Chem. Commun. 1997, 971-972.
    (b) Studies towards a new one-pot heterocyclization: Bu~tOK-promoted oxa- and aza-Michael addition-intramolecular carbocyclization of prop-2-ynyl alcohols and amines with α,β-disubstituted nitroalkenes; E. Dumez, J. Rodriguez, J-P. DulcJre, Chem. Commun. 1997, 1831 - 1832.
    26. (a) Twenty-five years of dimethylsulfoxonium ethylide (corey's reagent); M. Cavicchioli, X. Marat, N. Monteiro, B. Hartmann, G. Balme, Tetrahedron Lett. 2002, 43, 2609-2651.
    (b) A one pot synthesis of various pyrrolidines via a tandem Michael addition-transition metal-catalysed cyclisation reaction; B. Clique, N. Monteiro, G. Balme, Tetrahedron Lett. 1999, 40, 1301-1304.
    27. Zinc- and Indium-Promoted Conjugate Addition-Cyclization Reactions of Ethenetricarboxylates with Propargylamines and Alcohol: Novel Methylenepyrrolidine and Methylenetetrahydrofuran Syntheses; S. Morikawa, S. Yamazaki, Y. Furusaki, N. Amano, K. Zenke, K. Kakiuchi, J. Org. Chem. 2006, 71, 3540-3544.
    28. A New Entry in Catalytic Alkynylation of Aldehydes and Ketones: Dual Activation of Soft Nucleophiles and Hard Electrophiles by an Indium(Ⅲ) Catalyst; R. Takita, Y. Fukuta, R. Tsuji, T. Ohshima, M. Shibasaki, Org. Lett. 2005, 7, 1363-1366.
    29. Palladium(Ⅱ)-catalyzed cyclization of γ,δ-unsaturated alcohols synthesis of 2-vinyltetrahydrofurans; T. Hosokawa, M. Hirata, S.-I. Murahashi, A. Sonoda, Tetrahedron Lett. 1976, 17, 1821-1824.
    30. Palladium(Ⅱ)-Catalyzed Cyclization Using Molecular Oxygen as Reoxidant; M. Ronn, J.-E. B(a|¨)ckvall, P. G. Andersson, Tetrahedron Lett. 1995, 36, 7749-7752.
    31. A new synthetic method for γ-butyrolactols by the paladium-catalyzed regioselective oxidation of 1-alken-4-ols; J. Nokami, H. Ogawa, S. Miyamoto, T. Mandai, S. Wakabayashi, J. Tsuji, Tetrahedron Lett. 1988, 29, 5181-5184.
    32. A novel palladium catalysed oxycarbonylation of dienones: A convenient method for construction of cyclic acetals; J. S. Yadav, E. S. Rao, V. S. Rao, B. M. Choudary, Tetrahedron Lett. 1990, 31, 2491-2492.
    33. CuI-catalyzed intramolecular O-vinylation of carbonyl compound; Y.-W. Fang, C.-Z. Li, Chem. Commun. 2005, 3574-3576.
    34. (a)A mild method for the synthesis of furans. Application to 2,5-bridged furano macrocyclic compounds; J. A. Marshall, E. D. Robinson, J. Org. Chem. 1990, 55, 3450-3451.
    (b) Synthesis of furans by silver(Ⅰ)-promoted cyclization of allenyl ketones and aldehydes; J. A. Marshall, X.-J. Wang, d. Org. Chem. 1991, 56, 960-969.
    (c) Observations regarding the Ag(Ⅰ)-catalyzed conversion of allenones to furans; J. A. Marshall, G. S. Bartley, J. Org. Chem. 1994, 59, 7169-7171.
    35. Synthesis of 2,5-furanocycles through intraannular cyclization of macrocyclic allenones; J. A. Marshall, X.-J. Wang, J. Org. Chem. 1992, 57, 3387-3396.
    36. Pd~0-catalyzed coupling cyclization reaction of aryl or alkenyl halides with 1,2-allenyl ketones: scope and mechanism. An efficient assembly of 2,3,4-, 2,3,5-tri- and 2,3,4,5-tetra-substituted Furans; S. M. Ma, J. L. Zhang, L. H. Lu, Chem. Eur. J. 2003, 9, 2447-2456.
    37. Transition-metal-catalyzed rearrangement of allenyl sulfides: A route to furan derivatives; L.-L. Peng, X. Zhang, M. Ma, J.-B. Wang, Angew. Chem., Int. Ed. Engl. 2007, 46, 1905-1908.
    38. Intramolecular palladium-catalyzed 1,4-addition to conjugated dienes. Stereoselective synthesis of fused tetrahydrofurans and tetrahydropyrans; J.-E. B(a|¨)ckvall, P. G. Andersson, J. Am. Chem. Soc. 1992, 114, 6374-6381.
    39. Palladium-mediated stereo- and regioselective tandem-cyclization-carbonylations of 13-dienes; P.G. Andersson, A. Aranyos, Tetrahedron Lett. 1994, 35, 4441-4444.
    40. (a) Novel Palladium-catalyzed reactions of propargyl carbonates with Carbonucleophiles under neutral conditions; J. Tsuji, H. Watanabe, I. Minami, I. Shimizu, J. Am. Chem. Soc. 1985, 107, 2196-2198.
    (b) A new furan annulation Reaction by the Palladium-catalyzed reaction of 2-alkynyl carbonates or 2-(1-alkynyl)oxiranes with β-keto esters; I. Minami, M. Yuhara, H. Watanabe, J. Tsuji, J. Organomet. Chem. 1987, 334, 225-242.
    41. Palladium-catalyzed one-pot synthesis of highly substituted furans by a Three-component annulation reaction; X.H. Duan, X.-Y. Liu, L.-N. Guo, M.-N. Liao, W.-M. Liu, Y.-M. Liang, J. Org. Chem. 2005, 70, 6980-6983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700