hBMSCs脑内移植的安全评价、迁移、分化及迁移机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景中枢神经系统疾病是一组严重威胁人类健康的疾病,主要包括脑血管疾病和神经变性疾病,多表现为神经元的变性缺失,神经系统无法产生新的神经元,建立新的突触联系,致使中枢神经系统损伤后结构和功能难以恢复,而目前现有的临床治疗方法有限,不能达到有效恢复神经功能的目的。因此寻找新的方法对神经系统疾病的治疗至为关键。而干细胞移植为治疗中枢神经系统疾病建立了一个新的技术平台。
     MSCs为中胚层来源的多能干细胞,主要存在于全身结缔组织和器官间质中,以骨髓组织中含量最为丰富。来源于骨髓的MSCs称为骨髓MSCs (bone marrow-derived MSCs, BMSCs),其具有多向分化的潜力,获取方便,易于分离培养和鉴定,遗传背景稳定,体内植入免疫反应比较弱等优点。自从首次报道间充质干细胞(mesenchymal stem cells, MSCs)在脑内可以向神经细胞分化后,MSCs移植治疗中枢神经系统疾病就成为了非常感兴趣的课题。本实验采用的人BMSCs (human hBMSCs)来源于健康志愿者,前期工作已证实其在体外具有多向分化的潜能、并能快速扩增、可诱导免疫耐受、能减轻或抑制移植物抗宿主病等,在神经系统疾病、自身免疫性疾病及血液病的临床前期及临床研究中颇受重视。
     目前MSCs的移植途径主要包括直接脑内注射和间接通过静脉、动脉及腹腔注射等。间接途径移植为全身治疗,到达病变部位的时间较长,细胞数量较少,发挥作用较慢等,而脑内注射移植为局部治疗,创伤小,起效快,并且脑内的免疫应答能力比较弱,因此直接脑内注射成为局部治疗中枢神经系统疾病的一个很好的选择。已有研究报道同种异体BMSCs小鼠脑内移植没有发现明显副作用,并能在大脑内迁移和向神经细胞方向分化。但hBMSCs直接脑内移植的安全性如何?其脑内移植后能否进行迁移?能否分化为神经元及其他神经细胞?如果hBMSCs能够在脑内进行迁移,其迁移途径及迁移机制如何?这些都是hBMSCs临床应用前期亟需解决的问题。
     方法我们分别利用小动物Wistar大鼠和与人类最为接近的非人灵长类动物食蟹猴作为研究对象,脑内直接注射hBMSCs,观察hBMSCs直接脑内注射的安全性,通过对hBMSCs体外标记示踪和携带的男性特异基因的检测观察hBMSCs在脑内的迁移及迁移途径,应用免疫荧光双标记观察移植的hBMSCs在脑内的分化。Real-time PCR及免疫组织化学的方法用来检测部分神经营养因子、细胞因子以及黏附分子在hBMSCs移植后的表达情况。
     结果我们的结果显示直接脑内注射hBMSCs未引起受试动物出现全身症状,包括精神、饮食、运动等方面。移植hBMSCs的局部脑组织炎症反应比较局限,未观察到明显的免疫反应,未观察到脑组织的变性坏死和明显胶质细胞聚集。hBMSCs移植4周后,仍大量存活,并可在脑内广泛迁移,且迁移分布具有一定的规律性,可观察到不同移植受体细胞分布重叠现象。hBMSCs迁移分布模式图显示不管是在大鼠,还是在食蟹猴,hBMSCs有从前脑向后脑迁移的趋势。在大鼠,hBMSCs主要沿胼胝体-外囊轴线和室管膜下方向迁移,而且随着移植时间的推移,hBMSCs逐渐向对侧迁移;在食蟹猴,hBMSCs有向血管和室管膜下迁移的趋势。因此我们推测血液循环和脑脊液循环可能是hBMSCs迁移的一个途径之一。
     免疫荧光双标记结果显示移植的hBMSCs能表达神经元的标记物NeuN和神经胶质细胞的标记物GFAP,说明hBMSCs可在脑内向神经细胞方向分化。hBMSCs移植后,部分神经营养因子和生长因子和神经钙粘素(N-cadherin)表达明显升高。神经钙粘素介导神经系统发育过程中神经细胞的迁移,在细胞的迁移过程中也发挥重要作用,因此, N-cadherin也可能诱导hBMSCs在脑内的迁移。我们应用hUCMSCs作为研究对象,应用transwell小室迁移系统检测了N-cadherin对hUCMSCs的体外迁移作用,结果表明N-cadherin具有明显趋化hUMSCs迁移的作用,并且发现其能够上调细胞内源性N-cadherin和p连环蛋白的表达,因此N-cadherin也可能介导了hBMSCs在脑内的迁移。
     结论hBMSCs直接脑内注射移植,没有引起明显的副作用;hBMSCs可以在脑内长期存活,并能进行迁移和分化;hBMSCs移植后上调脑组织内部分细胞因子和神经钙粘素的表达,这可能是其在脑内迁移的一个机制之一
     目的探讨食蟹猴脑缺血模型在人骨髓间充质干细胞(human bone marrow2derived mesenchymal stem cells, hBMSCs)移植后对脑缺血损伤的保护作用和IL-10的表达情况。
     方法食蟹猴8只,在脑定位仪定位下,应用光化学法构建食蟹猴脑缺血模型,并将其随机分为高剂量治疗组、低剂量治疗组和模型组,分别在脑缺血部位附近注射高、低密度的hBMSCs和生理盐水。术后,通过影像学、神经功能评分及组织病理学观察对hBMSC的治疗效果进行评价。并应用原位细胞凋亡检测的方法观察脑缺血周围脑组织神经细胞的凋亡情况,免疫组织化学的方法被用来观察脑缺血周围脑组织神经胶质细胞反应和室管膜下细胞的增殖情况,并应用免疫组织化学、real-time PCR和Western blot检测检测脑损伤周围IL-10的表达水平。
     结果与模型组相比,hBMSCs移植能明显改善脑缺血模型的症状,hBMSC治疗能够减少损伤部位周围细胞的凋亡,减轻脑缺血周围脑组织的胶质细胞反应,促进室管膜下细胞的增殖。免疫组织化学显示IL-10阳性细胞的数量及染色强度均较模型组明显升高,real-time PCR和Western Blot也证明IL-10在hBMSCs移植治疗后表达升高。
     结论hBMSCs对食蟹猴脑缺血模型具有修复作用,其治疗机制可能与上调炎症抑制因子IL-10的表达有关。
Central nervous system disorders (CNS) mainly including cerebrovascular diseases (intracerebral hemorrhage and intracerebral ischemsia), neural degenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, etc), seriously threaten peoples'life. The neruological function and brain struction are difficult to recover from injury because neurons can not regenergate. At present, there are no ideal therapeutic methods for those disorders which affect the life quality of patients seriously. Stem cell therapy is a promsing treatment for neulogical disorders.
     MSCs exist in connective tissue and the interstitium of organ all over the body and maily reside in bone marrow, which belong to mesodermal multipotent stem cells. MSCs are readily obtained, can be expanded rapidly in vitro, and have low immunogenicity. The MSCs derived from bone marrow were called bone marrow derived-MSCs (BMSCs). MSCs become an attractive candidate for cell therapy and tissue engineering since MSCs were reported that can differentiated into neural cells in the brain. hBMSCs used in this experiment derived from healthy male bone marrow, were confimed having the ablity of multi-directional differentiation. Beacuse hBMSCs can be easily obtained, quickly amplificated ex vivo, autoplastic transplanted, induce immune tolerance, relieve or inhibit graft-versus-host diseases, hBMSCs was widely used in the preclinical or clinical research in nerve system disease, autoimmune diseases or blood diseases.
     The routes of stem cell adminsteration mainly include intracerebral injection, veno-or arterio-injection, abdominal cavity injection and cerebrospinal fluid injection. MSCs reached to brain lesions need time and the onset time was later by the indirectly routes. On the contary, intracerebral injection has many advantages. It has been reported that there were no obvius side effects when MSCs form homogeneity transplanted into the variant brain. How about the safety of intracerebral injection? Can hBMSCs migrate into the brain? Can MSCs differentiate into neural cells? What's the routes and mechanism of migration of hBMSCs if hBMSCs can migrate throughout the brain? So, the safety evaluation of hBMSCs engraftment, the distribution and differentiation of hBMSCs are very important and critical. Small animals (Wistar rats) and non-human primate animals (Macaca Fascicularis) were used to evaluate the safety of intracerebral injection, and engraftment, distribution and differentiation of transplanted-hBMSCs and its migrated mechanisms in the CNS. The transplanted cells were traced by detecting male DNA and labeling in vivo. Double immunofluorescence staining was used to observe the differentiation of hBMSCs. We also detected the mRNA level of neurophins, cytokines, and adhesion molecules by real-time PCR and immunohistochemical staining.
     Our results indicated that no inflammatory reaction and immunological rejection was detected, and negeneration and necrosis of neural cells were absent in the local injection sites. The transplanted hBMSCs survived, and migrated into the brain after 2 and 4 weeks transplantation. Although hBMSCs were injected unilaterally, male DNA was detected in both brain hemispheres and its distribution was overlapping between transplant recipients. Male DNA also tended to extend rostrally into the forebrain as a function of time posttransplantation, although the difference between 2 and 4 weeks posttransplant was not statistically significant. In rats, hBMSCs migrated along the asllosum-external capsule to the opposite side. We also observed tranlplanted hBMSCs tended to migrate toward vascular and ependymal layer, which may suggest one migratory route of hBSMCs.
     We also observed transplanted-hBMSCs expressed neuron maker (NeuN) and glial cell maker (GFAP) rather than neural stem cell marker (Nestin). In addtion, the mRNA levels of parts of neurotrophins and growth factors tended to upregulate. Therefore, we speculated that neurotrophins and growth factors might paly great roles in survival and differentiation of stem cells. The expression of N-cadherin increased too after hBMSCs transplantation. N-cadherin plays great roles in migration of neural cells during the devopment of CNS. So, N-cadherin may be one chemotatic factor for hBMSCs' migration. Human UCMSCs were used to detect the role of N-cadherin in stem cells' migration. The results demonstrated that N-cadherin induced the migration of hUCMSCs and increased the expression of endogenous N-cadherin andβ-catenin of hUCMSCs. N-cadherin/β-catenin signalling pathway may paly a role in migration of stem cells.
     In conclusion, intracerebral transplantation is safe in four weeks. And hBMSCs can migrate into the brain and differentiate into neural cells. The upregulated expression of neurotrophins, growth factors, and N-cadherin in response to hMSCs transplantion may be one mechanism of migration.
     Objective To investigate the role of IL-10 in treatment of cynomolgus macaques brain ischemia by human bone marrow-derived msenchymal stem cell (hBMSCs) transplantation.
     Methods A non-human primate ischemia model was used to test the hypothesis that transplanted human bone-marrow-derived MSCs (hBMSCs) exert a neuroprotective effects on cerebral ischemia and upregulate IL-10 expression. We also assessed neuronal apoptosis and astroglial activity in the area around the ischemic lesion and proliferating cells in thesubventricular zone (SVZ).
     Results Results showed that hBMSC transplantation in ischemic tissues improved the neurological functions and induced an increase in IL-10 expression. In addition, neuronal apoptosis and astroglial activity in the peri-ischemic area decreased, and the number of proliferating cells in the SVZ increased.
     Conclusion hBMSC transplantation does greatly help the repair of ischemic injury in cynomolgus macaques and the effectiveness of treatment may be associated with the increase of anti2inflammary factor IL-10.
引文
[1]Zuk, PA, Zhu, M, Ashjian, P, De Ugarte, DA, Huang, JI, Mizuno, H, Alfonso, ZC, Fraser, JK, Benhaim, P, Hedrick, MH. Human adipose tissue is a source of multipotent stem cells [J]. Mol Biol Cell,2002,13(12):4279-4295.
    [2]Jiang, Y, Vaessen, B, Lenvik, T, Blackstad, M, Reyes, M, Verfaillie, CM. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain [J]. Exp Hematol,2002,30(8):896-904.
    [3]Noth U, Osyczka A.M., Tuli R, Hickok NJ, Danielson KG, Tuan RS. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells [J]. J Orthop Res,2002,20(5):1060-1069.
    [4]Tuli R, Seghatoleslami MR, Tuli S, Wang ML, Hozack WJ, Manner PA, Danielson KG, Tuan RS. A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone [J]. Mol Biotechnol,2003,23(1):37-49.
    [5]Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow o steogenic stem cells:in vit ro cultivation and t ransp lantat ion in diffusion chambers [J]. Cell Tissue Kinet,1987,20(3):263-267.
    [6]Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation [J]. J Cell Biochem, 1997,64(2):278-294.
    [7]Oswald J, Boxberger S, J(?)rgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro [J].Stem Cells,2004,22(3):377-384.
    [8]Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant,1997,6(2):125-134.
    [9]Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair [J]. J Orthop Res,1998,16(4):406-413.
    [10]Awad HA, Butler DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B, Caplan AI Autologous mesenchymal stem cell-mediated repair of tendon [J]. Tissue Eng, 1999,5(3):267-277.
    [11]Dennis JE, Merriam A, Awadallah A, Yoo JU, Johnstone B, Caplan AI. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse [J]. J Bone Miner Res,1999,14(5):700-709.
    [12]Croft AP, Przyborski SA. Implicates an Artifact of Growth in Culture Formation of Neurons by Non-Neural Adult Stem Cells:Potential Mechanism [J]. Stem Cells, 2006,24(8):1841-1851.
    [13]Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis[J]. J Neurosci Res,2002,69(6):908-917.
    [14]Reyes M, Lund T, Leuvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and in vivo expansion of postnatal human marrow mesodermal progenitor cells [J]. Blood,2001,98(9):2615-2625.
    15] Maitra B, Szekely E, Gjini K, Laughlin MJ, Dennis J, Haynesworth SE, Koc ON. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation [J]. Bone Marrow Transplant,2004,33(6):597-604.
    [16]Deans RJ, Moseley AB. Mesenchymal stem cells:Biology and potential clinical uses [J]. Exp Hematol,2000,28(8):875-884.
    [17]Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells [J]. Exp Hematol,2003,31(10):890-896
    [18]Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation [J]. Transplantation,2003,75(3):389-397.
    [19]Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR, Mosca JD. Characterization and functionality of cell surface molecules on human mesenchymal stem cells [J]. J Biomed Sci,2003,10(2):228-241.
    [20]Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D, Daudt L, Ibatici A, Piaggio G, Pozzi S, Frassoni F, Locatelli F. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype [J]. Haematologica,2005,90(4):516-525.
    [21]Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibitthe response of naive and memory antigen-specific T cells to their cognate peptide [J]. Blood,2003,101 (9):3722-3729.
    [22]Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-like activity of mesenchymal stem cells:functional discrimination between cellular responses to alloantigens and recall antigens [J]. Immunol,2003,171(7):3426-3434.
    [23]Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW, Deans RJ, McIntosh KR. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance and suppression [J]. Biomed Sci, 2005,12(1):47-57.
    [24]Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli [J]. Blood, 2002,99(10):3838-3843.
    [25]Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms [J]. Exp Cell Res,2005,305(1):33-41.
    [26]Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells [J]. Transplantation.2003;76(8):1208-1213.
    [27]Rasmusson I, Uhlin M, Le Blanc K, Levitsky V. Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes [J]. J Leukoc Biol, 2007,82(4):887-893.
    [28]Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide [J]. Blood,2003,101 (9):3722-3729.
    [29]English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation stem cell [J]. Immunol Lett,2008,115(1):50-58.
    [30]Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A. Human mesenchymal stem cells modulate B-cell functions [J]. Blood,2006,107(1):367-372.
    [31]Zhou K, Zhang H, Jin O, Feng X, Yao G, Hou Y, Sun L. Transplantation of human bone marrow mesenchymal stem cell ameliorates the autoimmune pathogenesis in MRL/lpr mice [J]. Cellular & Molecular Immunology, 2008,5(6):417-424.
    [32]Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway [J]. Eur J Immunol, 2005,35(5):1482-1490.
    [33]Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms [J]. Exp Cell Res,2005,305(1):33-41.
    [34]Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation. Transplantation,2003,75(3):389-397.
    [35]Chen J, Guo Z, Xu C, Li Y, Hou C, Mao N, Chen H. Mesenchymal stem cells suppress allogeneic T cell responses by secretion of TGF-beta1[J]. Zhong guo Shi Yan Xue Ye Xue Za Zhi,2002,10(4):285-258.
    [36]Kopen, GC, Prockop, DJ, Phinney, DG. Marrow stromal cells migrate throughout forebrain and cerebellum and they differentiate into astrocytes after injection into neonatal mouse brains [J]. Proc Natl Acad Sci USA,1999,96(19):10711-10716.
    [37]Azizi SA, Stokes D, Augelli B, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts [J]. Proc. Natl. Acad. Sci. USA,1998,95(7):pp. 3908-3913.
    [38]Black IB, Woodbury D. Adult rat and human bone marrow stromal stem cells differentiate into neurons [J]. Blood Cells Mol Dis,2001,27(3):632-636.
    [39]徐强,徐如祥,姜晓丹,等.恒河猴骨髓基质细胞向成熟神经细胞分化的实验研究[J].中华神经医学杂志,2006,5(5):434-437.
    [40]张化彪,张苏明,徐玉明.大鼠骨充质干细胞移植治疗脑出血的实验研究.中华神经外科杂志,2003,36(6):420-442.
    [41]Guillermo. Marrow stromal cells, Mitosis, and neuronal Differentiation: stem cell and precursor functions [J]. Stem Cell,2003,21(4):437-448.
    [42]Berezovskaya O, Maysinger D. Eedoroffs. Colony stimulating factor-1 potentiates neuronal survival in cerebral cortex ischemic lesion [J]. Acta Neuropathol(Berl),1996,92(5):479-486.
    [43]Maestroni GJ, Cosentino M, Marino F, Togni M, Conti A, Lecchini S, Frigo G Neural and endogenous catechotamines in the bone marrow:circadian association of norepinephrine with hematopoiesis? [J]. Exp Hematol,1998,26(12):1172-1177.
    [44]Eglitis MA, Dawson D, Park KW, et al.Targeting of marrowderived astrocytes to the ischemic brain[J]. Neuroreport,1999,10(6):1289-1292.
    [45]高波,柳州,王会信.骨髓间质干细胞定向分化的研究进展[J].生理科学进展, 2000,32:249-252.
    [46]Fleischman RA, Simpson F, Gallardo T, Jin XL, Perkins S. Isolation of endothelial-like stromal cells that express kit ligant and support invitro hematopoiesis. Hematol,1995,23(13):1407-1416.
    [47]Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischeimia and cytokineinduced mobilization of bone marrow-derived endothelial progenitor cells for neovescularization [J]. Nat Med, 1999,5(4),434-438.
    [48]Eglitis MA, Dawson D, Park KW, Mouradian MM. Targeting of marrowderived astrocytes to the ischemic brain [J]. Neuroreport,1999,10(6):1289-1292.
    [49]Mackenzie TC, Flake AW. Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation and are presenten site of wound healing and tissue regeneration after transplantation into fetal sheep [J]. Blood Cells Mol Dis, 2001,27(3):601-604.
    [50]Chen J, Li Y, Want L, et al. Therapeutic benefit of intravenous administrastion of bone marrow stromal cells after cerebral ischemia in rats. Stroke,2001,32(4):1005-1011.
    [51]Fukunnaga A, Uchida K, Hare K, et al. Differentiation and angiogenesis of central nervous system stem cells implanted with mesenchyme into ischemic rat brain.Cell Transplant,1999,8(4):435-441.
    [52]Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells [J]. Stem cells,2005,23(10):1549-1559.
    [53]Mizoguchi M, Suga Y, Sanmano B, Ikeda S, Ogawa H. Organotypic culture and surface plantation using umbilical cord epithelial cells:Morphogenesis and expression of differentiation markers mimicking cutaneous epidermis [J]. J Dermatol Sci, 2004,35(3):199-206.
    [54]Sanmano B, Mizoguchi M, Suga Y, Ikeda S, Ogawa H. Engraftment of umbilical cord epithelial cells in athymic mice:In an attempt to improve reconstructed skin equivalents used as epithelial composite [J]. J Dermatol Sci,2005,37(1):29-39.
    [55]Kadivar M, Khatami S, Mortazavi Y, Shokrgozar MA, Taghikhani M, Soleimani M. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells [J]. Biochem Biophys Res Commun,2006,340(2):639-647.
    [56]Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells:Candidate MSC-like cells from umbilical cord [J]. Stem cells,2003,21(1):105-110.
    [57]Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells:A source of mesenchymal progenitors [J]. Stem cells,2005,23(2):220-229.
    [58]Bailey MM, Wang L, Bode CJ, Mitchell KE, Detamore MS. A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage [J]. Tissue Eng,2007,13(8):2003-2010.
    [59]Jomura S, Uy M, Mitchell K, Dallasen R, Bode CJ, Xu Y. Potential treatment of cerebral global ischemia with Oct-4+ umbilical cord matrix cells [J]. Stem cells,2007, 25(1):98-106.
    [60]Weiss ML, Medicetty S, Bledsoe AR. Human umbilical cord matrix stem cells: Preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease [J]. Stem cells 2006,24(3):781-792.
    [61]Wang H, Hung S, Peng S, Huang C, Wei H, Guo Y, Fu Y, Lai M, Chen C. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord [J]. Stem cells,2004,22(7):1330-1337.
    [62]Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A. Biology of stem cells in human umbilical cord stroma: In situ and in vitro surveys [J]. Stem cells,2007,25(2):319-331.
    [63]Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials [J]. Haematologica,2006,91(8):1017-1026.
    [64]Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J]. Cytotherapy,2006,8(4):315-317.
    [65]Carlin R, Davis D, Weiss M, Schultz B, Troyer D. Expression of early transcription factors Oct4, Sox2 and Nanog by porcine umbilical cord (PUC) matrix cells [J]. Reprod Biol Endocrinol,2006,4:8.
    [66]Conconi MT, Burra P, Di Liddo R, Calore C, Turetta M, Bellini S, Bo P, Nussdorfer GG, Parnigotto PP. CD105(+)cells from Wharton's jelly show in vitro and in vivo myogenic differentiative potential [J]. Int J Mol Med,2006,18(6):1089-1096.
    [67]Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow [J]. Stem cells,2007,25(6):1384-1392.
    [68]Fu YS, Shih YT, Cheng YC, Min MY. Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci,2004,11(5):652-660.
    [69]Ma L, Feng XY, Cui BL, Law F, Jiang XW, Yang LY, Xie QD, Huang TH. Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells [J]. Chin Med J (Engl),2005,11(23):1987-1993.
    [70]Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro:Potential therapeutic application for Parkinsonism [J]. Stem cells,2006,24(1):115-124.
    [71]Wu KH, Zhou B, Lu SH, Feng B, Yang SG, Du WT, Gu DS, Han ZC, Liu YL. In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells [J]. J Cell Biochem,2007,100(3):608-616.
    [72]Weiss ML, Mitchell KE, Hix JE, Medicetty S, El-Zarkouny SZ, Grieger D, Troyer DL. Transplantation of porcine umbilical cord matrix cells into the rat brain [J]. Exp Neurol,2003,182(2):288-299.
    [73]Medicetty S, Bledsoe AR, Fahrenholtz CB, Troyer D, Weiss ML. Transplantation of pig stem cells into rat brain:Proliferation during the first 8 weeks [J]. Exp Neurol, 2004,190(1):32-41.
    [74]Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett N, Crystal R, Besmer P, Lyden D, Moore M, Werb Z, Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand [J]. Cell,2002,109(5):625-637.
    [75]Whetton A, Graham G. Homing and mobilization in the stem cell niche [J]. Trends Cell Biol,1999,9(6):233-238.
    [76]Teixido J, Hemler M, Greenberger J, Anklesaria P. Role of beta 1 and beta 2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma [J]. J Clin Invest,1992,90(2):358-367.
    [77]Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. Cell migration: integrating signals from front to back [J]. Science,2003,302(5651):1704-1709.
    [78]Caswell P, Norman J. Endocytic transport of integrins during cell migration and invasion [J]. Trends Cell Biol,2008,18(6):257-263.
    [79]Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly [J]. Cell,2005,123(5):903-915.
    [80]Lock JG, Wehrle-Haller B, Stromblad S. Cell-to-matrix adhesion complexes: master control machinery of cell migration [J]. Semin Cancer Biol,2008,18(1):65-76.
    [81]Hynes RO. Integrins:bidirectional, allosteric signaling machines [J]. Cell, 2002,110(6):673-687.
    [82]Arnaout MA, Goodman SL, Xiong JP. Structure and mechanics of integrin-based cell adhesion [J]. Curr Opin Cell Biol,2007,19(5):495-507.
    [83]Humphries JD, Byron A, Humphries MJ. Integrin ligands at a glance [J]. J Cell Sci,2006,119(Pt19):3901-3903.
    [84]Trinh LA, Stainier DY. Fibronectin regulates epithelial organization during myocardial migration in zebrafish [J]. Dev Cell,2004,6(3):371-382.
    [85]Davidson LA, Marsden M, Keller R, Desimone DW. Integrin alpha5 betal and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension [J]. Curr Biol,2006,16(9):833-844.
    [86]Rose DM, Alon R, Ginsberg MH. Integrin modulation and signaling in leukocyte adhesion and migration [J]. Immunol Rev,2007,218:126-134.
    [87]Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis [J]. Nat Rev Mol Cell Biol,2005,6(8):622-634.
    [88]Tepass U, Truong K, Godt D, Ikura M, Peifer M. Cadherins in embryonic and neural morphogenesis [J]. Nat. Rev. Mol Cell Biol,2000,1(2):91-100.
    [89]Dumstrei K, Wang F, Shy D, Tepass U, Hartenstein V. Interaction between EGFR signaling and DE-cadherin during nervoussystem morphogenesis [J]. Development, 2002,129(17):3983-3994.
    [90]Godt D, Laski F. Mechanisms of cell rearrangement and cell recruitment in Drosophila ovary morphogenesis and the requirement of bricabrac [J]. Development, 1995,121(1):173-178.
    [91]Godt D, Tepass U. Drosophila oocyte localization is mediated by differential cadherin-based adhesion [J]. Nature,1998,395(6700):387-391.
    [92]Sun Z, Han Q, Liu L, Chen B, Cao Y, Li K, Zhao RC. Impairment in immunomodulatory function of Flkl(+)CD31(-)CD34(-) MSCs from MDS-RA patients [J]. Leuk Res,2007,31(11):1469-1478.
    [93]Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts [J]. Proc Natl Acad Sci USA,1998,95(7): 3908-3913.
    [94]Sturrock RR, Smart IH. A morphological study of the mouse subependymal layer from embryonic life to old age [J]. J Anat,1980,130(Pt2):391-415.
    [95]Alvarez-Buylla A, Lois C. Neuronal stem cells in the brain of adult vertebrates [J]. Stem Cells,1995,13(3):263-272.
    [96]Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice [J]. Proc Natl Acad Sci USA, 1997,94(8):4080-4085.
    [97]Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats [J]. Exp Neurol,2002,174(1):11-20.
    [98]Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation [J]. Stem Cells,2006,24(4):1054-1064.
    [99]Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J. Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells'hide out' in the bone marrow [J]. Leukemia, 2004,18(1):29-40.
    [100]Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B. Plasticity of cultured mesenchymal stem cells:Switch from nestin-positive to excitable neuron-like phenotype [J]. Stem Cells,2005,23(3):392-402.
    [101]Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains [J]. Proc Natl Acad Sci USA,1999,96(19):10711-10716.
    [102]Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells [J]. Exp Hematol,2003,31(10):890-896.
    [103]Lee RH, Hsu SC, Munoz J, Jung JS, Lee NR, Pochampally R, Prockop DJ. A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice [J]. Blood,2006,107(5):2153-2161.
    [104]Henriksson HB, Svanvik T, Jonsson M, Hagman M, Horn M, Lindahl A, Brisby H. Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model [J]. Spine (Phila Pa 1976),2009,34(2):141-148.
    [105]Shabbir A, Zisa D, Leiker M, Johnston C, Lin H, Lee T. Muscular dystrophy therapy by nonautologous mesenchymal stem cells:muscle regeneration without immunosuppression and inflammation [J]. Transplantation,2009,87(9):1275-1282.
    [106]Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, Xu Y, Gautam SC, Chopp M. Ischemic rat brain extracts induce human marrow stromal cell growth factor production [J]. Neuropathology,2002,22(4):275-279.
    [107]Pisati F BP, Meregalli M, Cova L, Cova L, Belicchi M, Gavina M, Marchesi C, Calzarossa C, Soligo D, Lambertenghi-Deliliers G, Bresolin N, Silani V, Torrente Y, Polli E. Induction of neurotrophin expression via human adult mesenchymal stem cells:Implication for cell therapy in neurodegenerative diseases [J]. Cell Transplant, 2007,16(1):41-55.
    [108]Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury [J]. J Neurotrauma,2004,21(1):33-39.
    [109]Vicario-Abejon C, Johe KK, Hazel TG, Collazo D, McKay RD. Functions of basic fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons [J]. Neuron,1995,15(1):105-114.
    [110]Ghosh A, Greenberg ME. Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis [J]. Neuron,1995,15(1):89-103.
    [111]Jazayeri M, Allameh A, Soleimani M, Jazayeri SH, Piryaei A, Kazemnejad S. Molecular and ultrastructural characterization of endothelial cells differentiated from human bone marrow mesenchymal stem cells [J]. Cell Biol Int, 2008,32(10):1183-1192.
    [112]Li Y, Yu X, Lin S, Li X, Zhang S, Song YH. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells [J]. Biochem Biophys Res Commun,2007,356(3):780-784.
    [113]Iryna AI, Kate B, Jason D, Gaupp D, Phinney DG. Preclinical evaluation of adult stem cell engraftment and toxicity in the CNS of rhesus macaques [J]. Mol therapy,2006,13(6):1173-1184.
    [114]Taylor, RM, Wolfe, JH. Decreased lysosomal storage in the adult MPS Ⅶ mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high level of h-glucuronidase [J]. Nat. Med,1997,3(7):771-774.
    [115]Ross, CJ, Ralph, M, Chang, PL. Somatic gene therapy for a neurodegenerative disease using microencapsulated recombinant cells [J]. Exp. Neurol,2000,166(2): 276-286.
    [116]Lacorazza HD, Flax JD, Snyder EY, Jendoubi M. Expression of human h-hexosaminidase a-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells [J]. Nat Med 1996,2(4):424-429.
    [117]Snyder, EY, Taylor, RM, Wolfe, JH. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain [J]. Nature, 1995,374(6520):67-370.
    [118]Kosuga M, Li XK, Okawa H, Ogino I, Okuda O, Arai H, Sakuragawa N, Kamata Y, Azuma N, Suzuki S, Yamada M, Okuyama T. Engraftment of genetically engineered amniotic epithelial cells corrects lysosomal storage in multiple areas of the brain in mucopolysaccharidosis type VII mice [J]. Mol Ther,2001,3(2):139-148.
    [119]Kopen GC, Prockop DJ, Phinney, DG. Marrow stromal cells migrate throughout forebrain and cerebellum and they differentiate into astrocytes after injection into neonatal mouse brains [J]. Proc Natl Acad Sci USA,1999,96(19):10711-10716.
    [120]McBride C, Gaupp D, Phinney DG. Quantifying levels of transplanted murine and human mesenchymal stem cells in vivo by real-time PCR [J]. Cytotherapy, 2003,5(1):7-18.
    [121]Munoz-Elias G, Marcus AJ, Coyne TM, Woodbury D, Black IB. Adult Bone Marrow Stromal Cells in the Embryonic Brain: Engraftment, Migration, Differentiation, and Long-TermSurvival [J]. The Journal of Neuroscience, 2004,24(19):4585-4595.
    [122]Isakova IA, Baker K, Dufour J, Gaupp D, Phinney DG. Preclinical Evaluation of Adult Stem Cell Engraftment and Toxicity in the CNS of Rhesus Macaques. Molecular therapy,2006,13(6):1173-1184.
    [123]Isakova IA, Baker K, DuTreil M, Dufour J, Gaupp D, Phinney DG. Age and Dose-Related Effects on MSC Engraftment Levels and Anatomical Distribution in the CNS of Non-Human Primates:Identification of Novel MSC Subpopulations that Respond to Guidance Cues in Brain [J]. Stem cells,2007,25(12):3261-3270.
    [124]Bae JS, Furuya S, Ahn SJ, Yi SJ, Hirabayashi Y, Jin HK. Neuroglial activation in Niemann-Pick type C mice is suppressed by intracerebral transplantation of bone marrow derived mesenchymal stem cells [J]. Neurosci Lett,2005,381(3):234-236.
    [125]Bankiewicz KS, Bringas J, Pivirotto P, Kutzscher E, Nagy D, Emborg ME. Technique for bilateral intracranial implantation of cells in monkeys using an automated delivery system [J]. Cell Transplant,2000,9(5):595-607.
    [126]Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JA. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats [J]. Exp Neurol,2003,183(2):355-366.
    [127]Woodbury D, Schwarz EJ, Prochop DJ, Black IB. Adault rat and human bone marrow stromal cells differentiate into neural cells in vitro [J]. J Neurosci Res, 2000,61(4):364-370.
    [128]Guillermo.Marrow stromal cells, Mitosis, and neuronal Differentiation:stem cell and precursor functions [J]. Stem Cell,2003,21 (4):437-448.
    [129]Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice [J]. Proc Natl Acad Sci USA,1997,94(8): 4080-4085.
    [130]Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice [J]. Sience,2000,290(5497): 1775-1779.
    [131]Eglitis MA, Dawson D, Park KW, Mouradian MM. Targeting of marrow derived astrocytes to the ischemic brain [J]. Neuroreport,1999,10(6):1289-1292.
    [132]Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee KS, Oh W, Lee JK, Jeun SS. Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways [J]. Journal of Neuroscience Research,2008,86(10):2168-2178.
    [133]Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells [J]. PNAS,2000,97(21):11307-11312.
    [134]Barbin G, Manthorpe M, Varon S. Purification of the chick eye ciliary neuronotrophic factor [J]. J Neurochem,1984,43(5):1468-1478.
    [135]Hughes SM, Lillien LE, Raff MC, Rohrer H, Sendtner M. Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture [J]. Nature, 1988,335(6185):70-73.
    [136]Lillien LE, Sendtner M, Rohrer H, Hughes SM, Raff MC. Type-2 astrocyte development in rat brain cultures is initiated by a CNTF-like protein produced by type-1 astrocytes [J]. Neuron,1988,1(16):485-494.
    [137]Clatterbuck RE, Price DL, Koliatsos VE. Ciliary neurotrophic factor prevents retrograde neuronal death in the adult central nervous system [J]. Proc Natl Acad Sci USA,1993,90(6):2222-2226.
    [138]Jian H, Shen X, Liu I, Semenov M, He X, Wang XF. Smad3-dependent nuclear translocation of beta-catenin is required for TGF-betal-induced proliferation of bone marrow-derived adult human mesenchymal stem cells [J]. Genes Dev, 2006,20(6):666-674.
    [139]Gao X, Bian W, Yang J, Tang K, Kitani H, Atsumi T, Jing N. A role of N-cadherin in neuronal differentiation of embryonic carcinoma P19 cells [J]. Biochem Biophys Res Commun,2001,284(5):1098-1103.
    [140]Barda-Saad M, Rozenszajn LA, Ashush H, Shav-Tal Y, Ben Nun A, Zipori D. Adhesion molecules involved in the interaction beteen early T cells and mesenchymal bone marrow stromal cells [J]. Exp Hematol,1999,27(5):834-844.
    [141]Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor [J]. Blood,2001,98(5):1289-1297.
    [142]Conley BA, Koleva R, Smith JD Kacer D, Zhang D, Bernabeu C, Vary CP. Endoglin controls cell migration and composition of focal adhesions [J]. J Biol Biochem,2004,279(26):27440-27449.
    [143]Lapidot T, Dar A, Kollet O. How do stem cells find their way home?[J]. Blood, 2005,106(6):1901-1910.
    [144]Quesenberry PJ, Colvin G, Abedi M. Perspective:Fundamental and clinical concepts on stem cell homing and engraftment: A journey to niches and beyond [J]. Exp Hematol,2005,33(1):9-19.
    [145]Mannello F, Tonti GA, Papa S. Papa S. Role and function of matrix metalloproteinases in the differentiation and biological characterization of mesenchymal stem cells [J]. Stem cells,2006,24(3):475-481.
    [146]Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor [J]. Nature, 2006,439(7076):599-603.
    [147]Bolno PB, Wechsler A, Kresh JY. Chemokine induced migration of human mesenchymal stem cells:A strategy for directing cardiac repair [J]. J Am Coll Surg, 2004,199:33.
    [148]Schmidt A, Ladage D, Schinkothe T, Klausmann U, Ulrichs C, Klinz FJ, Brixius K, Arnhold S, Desai B, Mehlhorn U, Schwinger RH, Staib P, Addicks K, Bloch W. Basic fibroblast growth factor controls migration in human mesenchymal stem cells [J]. Stem cells,2006,24(7):1750-1758.
    [149]Schenk S, Mal N, Finan A, Zhang M, Kiedrowski M, Popovic Z, McCarthy PM, Penn MS. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor [J]. Stem cells,2007,25(1):245-251.
    [150]Zhang F, Tsai S, Kato K, Yamanouchi D, Wang C, Rafii S, Liu B, Kent KC. Transforming growth factor-beta promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells [J]. J Biol Chem,2009,284(26):17564-17574.
    [151]Tang J, Wang J, Kong X, Yang J, Guo L, Zheng F, Zhang L, Huang Y, Wan Y. Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway [J]. Experimental cell Research,2009,315(20):3521-3531.
    [152]Schmidt NO, Koeder D, Messing M, Mueller FJ, Aboody KS, Kim SU, Black PM, Carroll RS, Westphal M, Lamszus K. Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the cruitment of neural stem cells to the neurovascular niche [J]. Brain Res,2009,1268:24-37.
    [153]Fu X, Han B, Cai S, Lei Y, Sun T, Sheng Z. Migration of bone marrow-derived mesenchymal stem cells induced by tumor necrosis factor-alpha and its possible role in wound healing [J]. Wound Repair and Regeneration,2009,17(2):185-191.
    [154]Hatta K, Takagi S, Fujisawa H, Takeichi M. Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos [J]. Dev Biol,1987,120(1):215-227.
    [155]Uglow EB, Slater S, Sala-Newby GB, Aguilera-Garcia CM, Angelini GD, Newby AC, George SJ. Dismantling of cadherin-mediated cell-cell contacts modulates smooth muscle cell proliferation. [J]. Circ Res,2003,92(12):1314-1421.
    [156]Monier-Gavelle F, Duband JL. Cross Talk between Adhesion Molecules: Control of N-cadherin Activity by Intracellular Signals Elicited by β1 and β3 Integrins in Migrating Neural Crest Cells [J]. The Journal of Cell Biology, 1997,137(7):1663-1681.
    [157]Kim JB, Islam S, Kim YJ, Prudoff RS, Sass KM, Wheelock MJ, Johnson KR. N-cadherin extracellular repeat 4 mediates epithelial to mesenchymal transition and increased motility [J]. J Cell Biol,2000,151(6):1193-1206.
    [158].Cavallaro U. N-cadherin as an invasion promoter: a novel target for antitumor therapy? [J]. Curr Opin Investig Drugs,2004,5(12):1274-1278.
    [159]Qi J, Chen N, Wang J, Siu CH. Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway [J]. Mol Biol Cell,2005,16(9):4386-4397.
    [160]Derycke LD, Bracke ME. N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling [J]. Int J Dev Biol, 2004,48(5-6):463-476.
    [161]Otero JJ, Fu W, Kan L, Cuadra AE, Kessler JA. Beta-catenin signaling is required for neural differentiation of embryonic stem cells [J]. Development, 2004,131(15): 3545-3557.
    [162]Yu X, Malenka RC. Multiple functions for the cadherin/catenin complex during neuronal development [J]. Neuropharmacology,2004,47(5):779-786.
    [163]Luo Y, Cai J, Xue H, Mattson MP, Rao MS. SDFlalpha/CXCR4 signaling stimulates beta-catenin transcriptional activity in rat neural progenitors [J]. Neurosci Lett,2006,398(3):291-295.
    [1]朱华,李秦,徐艳峰,等.光化学法制作食蟹猴局部脑缺血模型[J].中国比较医学杂志,2008,18(9):32-34.
    [2]Iryna AI, Kate B Jason D,et al. Preclinical evaluation of adult stem cell engraftment and toxicity in the CNS of rhesus macaques [J]. Mol Therapy,2006,13 (6):1173-1184.
    [3]Li Y, Chen J, Wang L, et al. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrah-ydropyridine mouse model of Parkinsonπs disease[J]. Neurosci Lett,2001,316 (2):67-70.
    [4]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats [J]. J Neurol Sci,2001,189 (122):49-57.
    [5]Ginsberg, MD, Pulsinelli, WA. The ischemic penumbra, injury thresholds, and the therapeutic window for acute stroke [J]. Ann. Neurol.1994,36(4),553-554.
    [6]Sturrock, RR, Smart, IH. A morphological study of the mouse subependymal layer from embryonic life to old age [J]. J Anat,1980,130(Pt 2),391-415.
    [7]Arvidsson, A., Kokaia, Z., Lindvall, O. N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke [J]. Eur J Neurosci, 2001,14(1),10-18.
    [8]Zhang, RL, Zhang, ZG, Zhang, L, Chopp, M. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia [J]. Neuroscience 2001,105(1),33-41.
    [9]Chen, J, Li, Y, Katakowski, M, Chen, X, Wang, L, Lu, D, Lu, M, Gautam, SC, Chopp, M. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat [J]. J Neurosci Res, 2003,73(6),778-786.
    [10]Morita Y, Takizawa S, Kamiguchi H, et al. Administration of hematopoietic cytokines increases the expression of anti2inflammatory cytokine (IL-10) mRNA in the subacute phase after stroke [J]. Neurosci Res,2007,58 (4):356-360.
    [11]Gunnett CA, Berg DJ, Faraci FM, et al. Vascular effects of lipopolysaccharide are enhanced in interleukin2102deficient mice [J]. Stroke,1999,30(10):2191-2195.
    [12]Hornell TM, Beresford GW, Bushey A, et al.Regulation of the class Ⅱ MHC pathway in primary human monocytes by granulocyte macrophage colony2stimulating factor [J]. J Immunol,2003,171(5):2374-2383.
    [13]Pahan K, Khan M, Singh I. Interleukin-10 and interleukin-13 inhibit proinflammatory cytokine2induced ceramide production through the activation of phosphatidylinositol 3-kinase[J]. J Neurochem,2000,75(2):576-582.
    [14]刘楠,陈荣华,郑安,等.白细胞介素-10对大鼠脑缺血的保护作用[J].中国脑血管病杂志,2004,1(4):178.
    [15]Kang H, Yang PY, Rui YC. Adenovirus viral interleukin-10 inhibits adhesion molecule expressions induced by hypoxia (?) reoxygenation in cerebrovascular endothelial cells [J]. Acta Pharmacol Sin,2008,29(1):50-56.
    [16]Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E (2)-dependent reprogramming of host macrophages to increase their interleukin-10 production [J]. Nat Med,2009,15 (1):42-49.
    [17]Kang YJ, Yang SJ, Park G, et al. A novel function of interleukin-10 promoting self-renewal of stem cells [J]. Stem Cells,2007,25(7):1814-1822.
    [18]Du YY, Zhou SH, Zhou T, et al. Immunoinflammatory regulation effect of mesenchymal stem cell transplantation in a rat model of myocardial infarction [J]. Cytotherapy,2008,10(5):469-478.
    [19]Balasingam V and Yong, VW. Attenuation of astroglial reactivity by interleukin-10 [J]. J. Neurosci.1996,16(9),2945-2955.
    [20]Ooboshi H, Ibayashi S, Shichita T, Kumai Y, Takada J, Ago T, Arakawa S, Sugimori H, Kamouchi M, Kitazono T, Iida M. Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia [J]. Circulation, 2005,111(7),913-919.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700