泊洛沙姆188对脑缺血再灌注损伤的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:阐明泊洛沙姆188对脑缺血再灌注损伤的保护作用并探讨其保护机制
     方法:
     第一部分,P188对脑缺血再灌注损伤的保护作用
     采用大脑中动脉栓塞法建立小鼠局灶性脑缺血再灌注损伤模型,再灌注前尾静脉单次注射不同剂量的P188,24小时后测定脑梗死体积(TTC染色法),脑含水量以及神经症状评分以评价短期保护作用。为进一步观察P188的长期效应,小鼠尾静脉注射P188后再每天单次腹腔注射P188,3周后评估小鼠的生存期,应用爬杆实验和悬挂实验测定肢体运动功能,尼氏染色法测定脑萎缩。此外,体外建立海马神经细胞系(HT22)的糖氧剥夺模型,检测P188对细胞活力和乳酸脱氢酶释放的影响。
     第二部分,泊洛沙姆188对脑缺血保护作用的机制研究
     小鼠缺血再灌注损伤后,碘化丙啶(PI,非膜穿透性染料)侧脑室注射应用荧光显微镜观察细胞膜完整性。体外应用低浓度Triton X-100轻度裂解细胞膜,观察P188处理前后,细胞对碘化丙啶(红色荧光)和SYTOX Green(非膜穿透性染料,绿色荧光)两种染料的通透性,探讨P188对细胞膜的直接修复作用。进一步,应用伊文思蓝漏出实验检测小鼠缺血再灌注损伤后的血脑屏障的完整性,同时应用酶谱法和免疫印迹分析P188对基质金属蛋白酶9的活性和表达的影响。此外,为了探讨P188对细胞内膜的影响,对P188进行铱配合物标记(自带黄绿色荧光),荧光显微镜观察P188在HT22细胞和小鼠缺血再灌注后神经细胞中的分布。在证实P188能穿透细胞膜后,分离出脑缺血再灌注组织的溶酶体或线粒体,western blot检测P188应用后对Cyt c或Cathepsin L从线粒体或溶酶体中漏出的情况。
     第三部分,泊洛沙姆188与银杏内酯B合用对脑缺血再灌注损伤的保护作用
     采用大脑中动脉栓塞法建立小鼠局灶性脑缺血再灌注损伤模型,比较P188和银杏内酯B联合应有与相同剂量的P188和银杏内酯B单用的差异,观察指标为脑梗死体积,脑含水量和神经症状评分。
     结果:
     第一部分,P188对脑缺血再灌注损伤的影响
     中剂量和高剂量的P188(0.2g,0.4g/kg)尾静脉给药后能显著降低缺血再灌注损伤小鼠的脑梗死体积,脑含水量和神经症状评分。长期多次给药后能延长小鼠生存期,提高运动能力和减轻脑萎缩。体外OGD模型证实P188能显著提高细胞活力,降低LDH的释放。
     第二部分,泊洛沙姆188对脑缺血保护作用的机制研究
     脑缺血再灌注后小鼠海马和纹状体部位出现大量PI染色阳性的细胞,表明细胞膜的破损,P188干预后显著减少PI染色阳性细胞的数量。当低浓度Triton X-100处理细胞后,大量细胞对PI的通透性增加(细胞产生红色荧光),P188干预后,部分PI阳性细胞对SYTOX Green通透性降低(PI阳性/SYTOX Green阴性),表明P188对细胞膜的直接修复阻止SYTOX Green进入细胞内。伊文思蓝漏出实验发现P188能明显抑制缺血再灌注导致的血脑屏障的开放,这可能与P188直接修复血脑屏障或者抑制基质金属蛋白酶9的活性和表达有关。此外,铱配合物标记的P188能穿透正常细胞外膜以及脑缺血再灌注损伤部位的神经细胞,抑制缺血再灌注组织细胞色素C从线粒体释放入胞浆中,抑制caspase3的活化,此外,P188也能抑制溶酶体中的组织蛋白酶Cathepsin L的释放,这些结果提示P188进入细胞内后对细胞器膜产生一定的保护作用。
     第三部分,泊洛沙姆188与银杏内酯B合用对脑缺血再灌注损伤的保护
     单用银杏内酯B可以产生明显的保护作用,联合P188和银杏内酯B比单用P188和银杏内酯B有更为显著的保护作用。
     结论:
     P188对脑缺血再灌注损伤具有保护作用,其可能的机制有:直接修复受损的细胞质膜;降低血脑屏障的通透性;进入细胞内保护线粒体和溶酶体等细胞器膜。此外,P188与其它作用机制的神经保护药-银杏内酯B合用可以产生增强效应。
Aim: To explore whether P188has a protective effect against cerebralischemia/reperfusion injury and its underlying mechanisms.
     Methods:
     Part1: The effects of P188on the cerebral ischemia/reperfusion injury
     Firstly we established the mouse middle cerebral artery occlusion (MCAO) modelby intraluminal occlusion using monofilament. P188was intravenously injected justbefore reperfuion, mice were sacrificed to determine the infarct volume using TTCstaining, brain water content and neurological symptoms24h after ischemia/reperfusion.To learn the long-term protective effects, P188were administered by IP injection once aday for three weeks, the survival rate was determined, motor function was evaluatedwith wire hanging and pole test and the loss of brain volume was calculated using cresylviolet staining. In addition, we also apply the oxygen and glucose deprivation cellmodel to evaluate the effects of P188on the cell viability and LDH leakage.
     Part2: The underlying mechanisms of P188against the cerebralischemia/reperfusion injury.
     In this part we firstly applied the Propidium Iodide (PI) to evaluate the membraneintegrity24h after ischemia/reperfusion. Furthermore, in vitro0.03%Triton X-100, anonionic detergent, was used to directly disrupt neuronal membranes. Two differentmembrane-impermeant fluorescence dyes (PI and SYTOX Green) were sequentiallyadded to cell medium to observe the changes in membrane integrity after P188treatment. Secondly, we applied Evans Blue Dye Extravasation to assess thepermeability of blood-brain barrier (BBB), and analyzed the activity and expressionlevels of MMP-9using zymogram and western blot. Thirdly, to explore whether P188can penetrate the cell membrane into the cytosol, P188was labeled with Ir complexeswhich can emit the fluencerence and observe its distribution in HT-22cell and in mousebrain suffered from ischemia-reperfusion injury. Furthermore, mitochondrial and lysosome were separated from ischemic hemisphere of MCAO mice to analyze theleakage of cytochrome c and Cathepsin L.
     Part3: The effects of combined P188and Ginkgolide B on theischemia/reperfusion injury
     Combined P188and Ginkgolide B were compared with same dosage of P188orGinkgolide B by the infarct volume, brain water content and neurological symptoms.
     Results:
     Part1: The effects of P188on the cerebral ischemia/reperfusion injury
     The results from in vivo MCAO model showed that P188significantly reduced theinfarct volume, ameliorated the brain edema and neurological symptoms24h afterischemia/reperfusion. In the long-term outcome study, P188markedly alleviated brainatrophy and motor impairments and increased survival rate in3weeks of post strokeperiod. Additionally, P188protected cultured hippucampal HT22cells againstoxygen–glucose deprivation and reoxygenation (OGD/R) injury
     Part2: The underlying mechanisms of P188against the cerebralischemia/reperfusion injury.
     Firstly, P188treatment significantly reduced the PI-positive cells followingischemia/reperfusion injury and repaired the HT22cell membrane rupture induced byTriton X-100. Secondly, P188inhibited ischemia/reperfusion-induced activation ofmatrixmetalloproteinase (MMP)-9and leakage of Evans blue, which suggests that P188can preserve the integrity of blood-brain barrier. Thirdly, we found P188labeled with Ircomplexes can penetrate the cell membrane, thus continued to assess the effects of P188on organelles including mitochondrial and lysosomes and also discovered that P188caninhibit the leakage of Cyt c and Cathepsin L.
     Part3: The effects of combined P188and Ginkgolide B on theischemia/reperfusion injury
     Combined P188and Ginkgolide B had greater protective effects on theischemia/reperfusion than that of P188or Ginkgolide B alone.
     Conclusions:
     P188can protect against cerebral ischemia/reperfusion injury, and the protectionmechanisms involve:1) directly sealing the cell membranes;2) preserve the integrity ofblood-brain barrier and3) penetrate the membrane and render the protection on mitochondrial and lysosomes. In addition, the combination of P188and Ginkgolide Bcan produce greater protective effects on ischemia/reperfusion injury.
引文
1. Lo EH A new penumbra: transitioning from injury into repair after stroke. NatureMedicine2008;14:497-500.
    2. Eltzschig HK, Eckle T Ischemia and reperfusion-from mechanism to translation. NatMed2011;17:1391-1401.
    3. Richard Green A, Odergren T, Ashwood T Animal models of stroke: do they havevalue for discovering neuroprotective agents? Trends Pharmacol Sci2003;24:402-408.
    4. Sobrado M, Lopez MG, Carceller F, Garcia AG, Roda JM Combined nimodipine andciticoline reduce infarct size, attenuate apoptosis and increase bcl-2expression afterfocal cerebral ischemia. Neuroscience2003;118:107-113.
    5. Alonso de Lecinana M, Gutierrez M, Roda JM, Carceller F, Diez-Tejedor E Effectof combined therapy with thrombolysis and citicoline in a rat model of embolicstroke. J Neurol Sci2006;247:121-129.
    6. Fan X, Ning M, Lo EH, Wang X Early insulin glycemic control combined with tPAthrombolysis reduces acute brain tissue damages in a focal embolic stroke model ofdiabetic rats. Stroke2013;44:255-259.
    7. Wang Y, Zhao X, Liu L, Wang D, Wang C, et al. Clopidogrel with aspirin in acuteminor stroke or transient ischemic attack. N Engl J Med2013;369:11-19.
    8. Moloughney JG, Weisleder N Poloxamer188(p188) as a membrane resealingreagent in biomedical applications. Recent Pat Biotechnol2012;6:200-211.
    9. Zweifler RM (2002) Membrane stabilizer: citicoline. Curr Med Res Opin18Suppl2:s14-17.
    10. McNeil PL, Steinhardt RA Plasma membrane disruption: repair, prevention,adaptation. Annu Rev Cell Dev Biol2003;19:697-731.
    11. Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, et al. Defective membrane repairin dysferlin-deficient muscular dystrophy. Nature2003;423:168-172.
    12. Waddell LB, Lemckert FA, Zheng XF, Tran J, Evesson FJ, et al. Dysferlin, annexinA1, and mitsugumin53are upregulated in muscular dystrophy and localize tolongitudinal tubules of the T-system with stretch. J Neuropathol Exp Neurol2011;70:302-313.
    13. Davalos A, Alvarez-Sabin J, Castillo J, Diez-Tejedor E, Ferro J, et al. Citicoline inthe treatment of acute ischaemic stroke: an international, randomised, multicentre,placebo-controlled study (ICTUS trial). Lancet2012;380:349-357.
    14. Marks JD, Pan CY, Bushell T, Cromie W, Lee RC Amphiphilic, tri-blockcopolymers provide potent membrane-targeted neuroprotection. FASEB J2001;15:1107-1109.
    15. Serbest G, Horwitz J, Barbee K The effect of poloxamer-188on neuronal cellrecovery from mechanical injury. J Neurotrauma2005;22:119-132.
    16. Serbest G, Horwitz J, Jost M, Barbee K Mechanisms of cell death andneuroprotection by poloxamer188after mechanical trauma. FASEB J2006;20:308-310.
    17. Borgens RB, Bohnert D, Duerstock B, Spomar D, Lee RC Subcutaneous tri-blockcopolymer produces recovery from spinal cord injury. J Neurosci Res2004;76:141-154.
    18. Curry DJ, Wright DA, Lee RC, Kang UJ, Frim DM Poloxamer188volumetricallydecreases neuronal loss in the rat in a time-dependent manner. Neurosurgery2004;55:943-948; discussion948-949.
    19. Colbassani HJ, Barrow DL, Sweeney KM, Bakay RA, Check IJ, et al. Modificationof acute focal ischemia in rabbits by poloxamer188. Stroke1989;20:1241-1246.
    20. Longa EZ, Weinstein PR, Carlson S, Cummins R Reversible middle cerebral arteryocclusion without craniectomy in rats. Stroke1989;20:84-91.
    21. Clark WM, Lessov NS, Dixon MP, Eckenstein F (1997) Monofilament intraluminalmiddle cerebral artery occlusion in the mouse. Neurol Res19:641-648.
    22. Yang Y, Shuaib A, Li Q Quantification of infarct size on focal cerebral ischemiamodel of rats using a simple and economical method. J Neurosci Methods1998;84:9-16.
    23. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, et al. Neuronal injury in rat modelof permanent focal cerebral ischemia is associated with activation of autophagicand lysosomal pathways. Autophagy2008;4:762-769.
    24. Wang Y, Han R, Liang ZQ, Wu JC, Zhang XD, et al. An autophagic mechanism isinvolved in apoptotic death of rat striatal neurons induced by thenon-N-methyl-D-aspartate receptor agonist kainic acid. Autophagy2008;4:214-226.
    25. Ji S, Kronenberg G, Balkaya M, Farber K, Gertz K, et al. Acute neuroprotection bypioglitazone after mild brain ischemia without effect on long-term outcome. ExpNeurol2009;216:321-328.
    26. Sheng R, Zhang LS, Han R, Liu XQ, Gao B, et al. Autophagy activation isassociated with neuroprotection in a rat model of focal cerebral ischemicpreconditioning. Autophagy2010;6.
    27. Kleiner DE, Stetler-Stevenson WG Quantitative zymography: detection of picogramquantities of gelatinases. Anal Biochem1994;218:325-329.
    28. Whalen MJ, Dalkara T, You Z, Qiu J, Bermpohl D, et al. Acute plasmalemmapermeability and protracted clearance of injured cells after controlled corticalimpact in mice. Journal of Cerebral Blood Flow&Metabolism2007;28:490-505.
    29. Unal Cevik I, Dalkara T Intravenously administered propidium iodide labelsnecrotic cells in the intact mouse brain after injury. Cell Death and Differentiation2003;10:928-929.
    30. Dayeh VR, Chow SL, Schirmer K, Lynn DH, Bols NC Evaluating the toxicity ofTriton X-100to protozoan, fish, and mammalian cells using fluorescent dyes asindicators of cell viability. Ecotoxicology and Environmental Safety2004;57:375-382.
    31. Han F, Shirasaki Y, Fukunaga K Microsphere embolism-induced endothelial nitricoxide synthase expression mediates disruption of the blood brain barrier in rat brain.Journal of Neurochemistry2006;99:97-106.
    32. Oberpichler H, Sauer D, Rossberg C, Mennel HD, Krieglstein J PAF antagonistginkgolide B reduces postischemic neuronal damage in rat brain hippocampus. JCereb Blood Flow Metab1990;10:133-135.
    33. Gu JH, Ge JB, Li M, Wu F, Zhang W, et al. Inhibition of NF-kappaB activation isassociated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in amouse model of cerebral ischemia/reperfusion injury. Eur J Pharm Sci2012;47:652-660.
    34. Schaer GL, Hursey TL, Abrahams SL, Buddemeier K, Ennis B, et al. Reduction inreperfusion-induced myocardial necrosis in dogs by RheothRx injection (poloxamer188N.F.), a hemorheological agent that alters neutrophil function. Circulation1994;90:2964-2975.
    35. Murphy AD, McCormack MC, Bichara DA, Nguyen JT, Randolph MA, et al.Poloxamer188protects against ischemia-reperfusion injury in a murine hind-limbmodel. Plast Reconstr Surg2010;125:1651-1660.
    36. Palmer JS, Cromie WJ, Lee RC Surfactant administration reduces testicularischemia-reperfusion injury. J Urol1998;159:2136-2139.
    37. Singh-Joy SD, McLain VC Safety assessment of poloxamers101,105,108,122,123,124,181,182,183,184,185,188,212,215,217,231,234,235,237,238,282,284,288,331,333,334,335,338,401,402,403, and407, poloxamer105benzoate,and poloxamer182dibenzoate as used in cosmetics. Int J Toxicol2008;27Suppl2:93-128.
    38. Burns JW, Baer LA, Jones JA, Dubick MA, Wade CE Severe controlledhemorrhage resuscitation with small volume poloxamer188in sedated miniatureswine. Resuscitation.2011;82(11):1453-1459
    39. Cadichon SB, Le Hoang M, Wright DA, Curry DJ, Kang U, et al. Neuroprotectiveeffect of the surfactant poloxamer188in a model of intracranial hemorrhage in rats.J Neurosurg2007;106:36-40.
    40. Follis F, Jenson B, Blisard K, Hall E, Wong R, et al. Role of poloxamer188duringrecovery from ischemic spinal cord injury: a preliminary study. J Invest Surg1996;9:149-156.
    41. Gao D, Zhang X, Jiang X, Peng Y, Huang W, et al. Resveratrol reduces the elevatedlevel of MMP-9induced by cerebral ischemia-reperfusion in mice. Life Sci2006;78:2564-2570.
    42. Yagi K, Kitazato KT, Uno M, Tada Y, Kinouchi T, et al. Edaravone, a free radicalscavenger, inhibits MMP-9-related brain hemorrhage in rats treated with tissueplasminogen activator. Stroke2009;40:626-631.
    43. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, et al. Cerebral ischemia-reperfusion-inducedautophagy protects against neuronal injury by mitochondrial clearance. Autophagy2013;9.
    1. Maiuri MC, Zalchvar E, Kimchi A, Kroemer G. Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev Mol Cell2007,8:741-752.
    2. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms andbiological functions of autophagy. Dev Cell2004,6:463-477.
    3. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation.Science2000,290:1717-1721.
    4. Kunz JB, Schwarz H, Mayer A. Determination of four sequential stages duringmicroautophagy in vitro. J Biol Chem2004,279:9987-9996.
    5. Dice JF. Chaperone-mediated autophagy. Autophagy2007,3:295-299.
    6. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights diseasethrough cellular self-digestion. Nature2008,451:1069-1075.
    7. Klionsky DJ. Autophagy: from phenomenology to molecular understanding in lessthan a decade. Nat Rev Mol Cell Biol2007,8:931-937.
    8. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeuticapplications of autophagy. Nat Rev Drug Discov2007,6:304-312.
    9. Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. NatNeurosci2010,13:805-811.
    10. Nixon RA. Autophagy in neurodegenerative disease: friend, foe or turncoat? TrendsNeurosci2006,29:528-535.
    11. Mari o G, Madeo F, Kroemer G. Autophagy for tissue homeostasis andneuroprotection. Curr Opin Cell Bio2010,23:1-9.
    12. Banerjee R, Beal MF, Thomas B. Autophagy in neurodegenerative disorders:pathogenic roles and therapeurtic implications. Trends Neurosci2010,33:541-549.
    13. Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, et al. The influence ofage on apoptotic and other mechanisms of cell death after cerebralhypoxia-ischemia. Cell Death Differ2005,12:162-176.
    14. Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y, Blomgren K, et al. Differentapoptotic mechanisms are activated in male and female brains after neonatalhypoxia-ischaemia. J Neurochem2006,96:1016-1027.
    15. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al.Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am JPathol2006,169:566-583.
    16. Adhami F, Schloemer A, Kuan CY. The roles of autophagy in cerebral ischemia.Autophagy2007,3:42-44.
    17. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, et al.Inhibition of autophagy prevents hippocampal pyramidal neuron death afterhypoxic-ischemic injury. Am J Pathol2008,172:454-469.
    18. Chu CT. Eaten alive: autophagy and neuronal cell death after hypoxia-ischemia.Am J Pathol2008,172:284-287.
    19. Uchiyama Y, Koike M, Shibata M. Autophagic neuron death in neonatal brainischemia/hypoxia. Autophagy2008,4:404-408.
    20. Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatalhypoxia-ischemia induced brain injury. Neurobiol Dis2008,32:329-339.
    21. BalduiniW, Carloni S, Buonocore G. Autophagy in hypoxia-ischemia induced braininjury. Autophagy2009,5:221-223.
    22. Ginet V, Puyal J, Clarke PGH, Truttmann AC. Enhancement of autophagic fluxafter neonatal cerebral hypoxia-ischemia and its region-specific relationship toapoptotic mechanisms. Am J Pathol2009,175:1962-1974.
    23. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, et al. Delayedneuronal death in the CA1pyramidal cell layer of the gerbil hippocampus followingtransient ischemia is apoptosis. J Neurosci1995,15:1001-1011.
    24. Wang JY, Xia Q, Chu KT, Pan J, Sun LN, Zeng B, et al. Severe global cerebralischemia-induced programmed necrosis of hippocampal CA1neurons in rat isprevented by3-methyladenine: a widely used inhibitor of autophagy. J NeuropatholExp Neurol2011,70:314-322.
    25. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemicalinhibitor of nanapoptotic cell death with therapeutic potential for ischemic braininjury. Nat Chem Biol2005,1:112-119.
    26. Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregluation ofBeclin1and autophagy-like cell death. Neurobiol Dis2008,29:132-141.
    27. Rami A. Upregulation of Beclin1in the ischemic penumbra. Autophagy2008,4:227-229.
    28. Rami A, Kogel D. Apoptosis meets autophagy-like cell death in the ischemicpenumbra. Autophagy2008,4:422-426.
    29. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, et al. Neuronal injuryin rat model of permanent focal cerebral ischemia is associated with activation ofautophagic and lysosomal pathways. Autophagy2008,4:762-769.
    30. Puyal J, Vaslin A, Mottier V, Clarke PGH. Postischemic treatment of neonatalcerebral ischemia should target autophagy. Ann Neurol2009,66:378-389.
    31. Puyal J, Clarke PGH. Targeting autophagy to prevent neonatal stroke damage.Autophagy2009,5:1060-1061.
    32. Liu C, Gao Y, Barrett J, Hu B. Autophagy and protein aggeregation after brainischemia. J Neurochem2010,115:68-78.
    33. Zheng YQ, Liu JX, Li XZ, Xu L, Xu YG. RNA interference-mediateddownregulation of Beclin1attenuates cerebral ischemic injury in rats. ActaPharmocol Sin2009,30:919-927.
    34. Chen Y, Klionsky DJ. The regulation of autophagy-unanswered questions. J CellSci2011,124:161-170.
    35. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200complexs mediate mTOR signaling to the autophagy machinery. Mol Biol Cell2009,20:1992-2003.
    36. Genley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1·ATG13·FIP2000complex mediates mTOR signaling and is essential for autophagy. J Biol Chem2009,284:12297-12305.
    37. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al.Nutrient-dependent mTORC1associated with the ULK1-Atg13-FIP200complexrequired for autophagy. Mol Biol Cell2009,20:1981-1991.
    38. Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13binding protein,Atg101, interacts with ULK1and is essential for macroautophagy. Autophagy2009,5:649-662.
    39. Funderburk SF, Wang QJ, Yue Z. The Beclin-1-VPS34complex at the crossroads ofautophagy and beyong. Trends Cell Biol2010,20:355-362.
    40. Yang Z, Klionsky DJ. Mamalian autophagy: core molecular machinery andsignaling regulation. Curr Opin Cell Biol2010,22:124-131.
    41. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, et al. Two Beclin1-binding proteins, Atg14L and Rubicon reciprocally regulate autophagy atdifferent stages. Nat Cell Biol2009,11:385-396.
    42. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, et al. Distinct regulation ofautophagic activity by Atg14L and Rubicon associated with Beclin1-phosphatidylinositol-3-kinase complex. Nat Cell Biol2009,11:468-476.
    43. Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, et al. Thedynamic interaction of AMBRA1with the dynein motor complex regulatesmammalian autophagy. J Cell Biol2010,191:155-168.
    44. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, etal. Ambra1regulates autophagy and development of the nervous system. Nature2007,447:1121-1125.
    45. Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, et al. Beclin1-bindingUVRAG targets the class C Vps complex to coordinate autophagosome maturationand endocytic trafficking. Nat Cell Biol2008,10:776-787.
    46. Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, et al. Bif-1interacts with Beclin1through UVRAG and regulates autophagy andtumorigenesis. Nat Cell Biol2007,9:1142-1151.
    47. Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat RevMol Cell Biol2001,2:211-216.
    48. Geng J, Klionsky DJ. The Atg8and Atg12ubiquitin-like conjugation systems inmacroautophagy. EMBO Rep2008,9:859-864.
    49. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complexspecifies the site of LC3lipidation for membrane biogenesis in autophagy. Mol BiolCell2008,19:2092-2100.
    50. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, et al. TheAtg12-Atg5conjugate has a novel E3-like activity for protein lipidation inautophagy. J Biol Chem2007,282:37298-37302.
    51. J ger S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, et al. Role for Rab7inmaturation of late autophagic vacuoles. J Cell Sci2004,117:4837-4848.
    52. Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lüllmann-Rauch R, et al.Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficientmice. Nature2000,406:902-906.
    53. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis ofautophagy in response to nutrient starvation using transgenic mice expressing afluorescent autophagosome marker. Mol Biol Cell2004,15:1101-1111.
    54. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R,et al. Suppression of basal autophagy in neural cells causes neurodegenerativedisease in mice. Nature2006,441:885-889.
    55. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss ofautophagy in the central nervous system causes neurodegeneration in mice. Nature2006,441:880-884.
    56. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, etal. Ambra1regulates autophagy and development of the nervous system. Nature2007,447:1121-1125.
    57. Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, et al.Essential role for autophagy protein Atg7in the maintenance of axonal homeostasisand the prevention of axonal degeneration. Proc Natl Acad Sci USA2007,104:14489-14494.
    58. Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, et al. Inductionof autophagy in axonal dystrophy and degeneration. J Neurosci2006,26:8057-8068.
    59. Rabinowitz JD, White E. Autophagy and metabolism. Science2010,330:1344-1348.
    60. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy.Annu Rev Genet2009,43:67-93.
    61. Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell2000,103:253-262.
    62. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al.Characterization of α3-phosphoinositide-dependent protein kinase whichphosphorylates and activates protein kinase Balpha. Curr Biol1997,7:261-269.
    63. Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, et al.Dural role of phosphatidylinositol-3,4,5-trisphosphate in the activation of proteinkinase B. Science1997,277:567-570.
    64. Inoki K, Zhu T, Guan KL. TSC2mediates cellular cellular energy response tocontrol cell growth and survival. Cell2003,115:577-590.
    65. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of thetuberous sclerosis complex-2tumor suppressor gene product tuberin as a target ofthe phosphoinositide3-kinase/Akt pathway. Mol Cell2002,10:151-162.
    66. Long Z, Lin Y, Ortiz-Vegas S, Yonezawa K, Avruch J. Rheb binds and regulates themTOR kinase. Curr Biol2005,15:702-713.
    67. Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W. Activation ofautophagy and Akt/CREB signaling play an equivalent role in the neuroprotectiveeffect of rapmycin in neonatal hypoxia-ischemia. Autophagy2010,6:366-377.
    68. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, et al. The energy sensingLKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decisionto enter autophagy or apoptosis. Nat Cell Biol2007,9:218-224.
    69. H yer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G,Farkas T, et al. Control of macroautophagy by calcium, calmodulin-dependentkinase kinase-beta, and Bcl-2. Mol Cell2007,25:193-205.
    70. Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. Induction of autophagycontributes to the neuroprotection of nicotinamide phosphoribosyltransferase incerebral ischemia. Autophagy2012,8(1).[Epub ahead of print]
    71. Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the Bcl-XL-Beclin1peptidecomplex: Beclin1is a novel BH3-only protein. J Biol Chem2007,282:13123-13132.
    72. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2antiapoptotic proteins inhibit Beclin1-dependent autophagy. Cell2005,122:927-939.
    73. He C, Levine B. The Beclin1interactome. Curr Opin Cell Biol2010,22:140-149.
    74. Maiuri MC, Criollo A, Kroemer G. Crosstalk between apoptosis and autophagywithin the Beclin1interactome. EMBO J2010,29:515-516.
    75. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct role ofautophagy in the heart during ischemia and reperfusion: roles of AMPK and Beclin1in mediating autophagy. Circ Res2007,100:914-922.
    76. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin1network regulates autophagy andapoptosis. Cell Death Differ2011,18:571-580.
    77. Xin XY, Pan J, Wang XQ, Ma JF, Ding JQ, Yang GY, et al.2-methoxyestradiolattenuates autophagy activation after global ischemia. Can J Neurol Sci2011,38:631-638.
    78. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al.Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response tohypoxia. J Biol Chem2008,283:10892-10903.
    79. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, et al. Functionaland physical interaction between Bcl-X(L) and a BH3-like domain in Beclin1.EMBO J2007,26:2527-2539.
    80. Banasiak JK, Haddad GG. Hypoxia-induced apoptosis: effect of hypoxic severityand role of p53in neuronal cell death. Brain Res1998,797:295-304.
    81. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, ap53-induced modulator of autophagy, is critcal for apoptosis. Cell2006,126:121-134.
    82. Wang Y, Dong XX, Cao Y, Liang ZQ, Han R, Wu JC, et al. p53inductioncontributes to excitotoxic neuronal death in rat striatum through apoptotic andautophagic mechanisms. Eur J Neurosci2009,30:2258-2270.
    83. Zhang XD, Wang Y, Wang Y, Zhang X, Han R, Wu JC, et al. p53mediatesmitochondria dysfunction-triggered autophagy activation and cell death in ratstriatum. Autophagy2009,5:339-350.
    84. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, et al. Dual role of3-methyladenine in modulation of autophagy via different temporal patterns ofinhibition on class I and III phosphoinositide3-kinase. J Biol Chem2010,285:10850-10861.
    85. Sheng R, Zhang LS, Han R, Liu QX, Gao B, Qin ZH. Autophagy activation isassociated with neuroprotection in a rat model of focal cerebral ischemicpreconditioning. Auophagy2010May16.[Epub ahead of print]
    86. Northington FJ, Chavez-Valdez R, Martin LJ. Neuronal cell death in neonatalhypoxia-ischemia. Ann Neurol2011,69:743-758.
    87. Puyal J, Ginet V, Grishchuk Y, Truttmann AC, Clarke PG. Neuronal autophagy as amediator of life and death: contrasting roles in chronic neurodegenerative and acuteneural disorders. Neuroscientist2011Apr27.[Epub ahead of print]
    88. Carloni S, Carnevali A, Cimino M, Balduini W. Extended role of necrotic cell deathafter hypoxia-ischemia-induced neurodegeneration in the neonatal rat. NeurobiolDis2007,27:354-361.
    89. Northington FJ, Zelaya ME, O’Riordan DP, Blomgren K, Flock DL, Hagberg H, etal. Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as“continnum” phenotype of cell death and occurs with multiple manifestations ofmitochondrial dysfunction in rodent forebrain. Neuroscience2007,149:822-833.
    90. Portera-Cailiau C, Price DL, Martin LJ. Excitotoxic neuronal death in the immaturebrain is an apoptosis-necrosis morphological continuum. J Com Neurol1997,378:70-87.
    91. Nakajima W, Ishida A, Lange MS, Gabrielson KL, Wilson MA, Martin LJ, et al.Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia inthe newborn rat. J Neurosci2000,20:7994-8004.
    92. Sheldon RA, Hall JJ, Noble LJ, Ferriero DM. Delayed cell death in neonatal mousehippocampus from hypoxia-ischemia is neither apoptotic or necrotic. Neurosci Lett2001,304:165-168.
    93. Grishchuk Y, Ginet V, Truttmann AC, Clarke PG, Puyal J. Beclin1-independentautophagy contributes to apoptosis in cortical neurons. Autophagy2011,7:1115-1131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700