β-环糊精聚合物的合成、自组装及作为药物/基因载体的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环糊精(CD)具有独特的圆筒状疏水性内腔和亲水性外沿结构,其空腔对多种疏水性分子具有良好的包合性能。在药学领域,CD可通过主-客体相互作用包载多种疏水性药物,并提高药物的溶解性、稳定性及生物利用度等。环糊精聚合物(CDP)是在聚合物链上引入多个CD单元形成的聚合物,由于CDP链上相邻的CD单元之间存在协同作用,其可以包合更多不能被单一CD分子包合的客体分子。近年来在纳米自组装、药物及基因载体等领域受到了越来越多的关注。
     本论文以β-CD为基础,采用原子转移自由基聚合法(ATRP)合成了多种结构规整、组成明确的β-CDP,包括星型、线型及线-梳型结构等。详细研究了其与多种客体分子通过主-客体相互作用驱动形成的自组装体的性质,并评价了其作为药物/基因载体材料的应用前景。主要研究工作如下:
     1.采用“臂-引发”(arm-first)的方法,以溴代聚乙二醇(PEG-Br)为大分子引发剂,使用ATRP法同时引发甲基丙烯酸酯多取代β-环糊精单体(GECD)及甲基丙烯酸二甲基氨基乙酯(DMAEMA)的聚合得到核交联的星型聚合物PEG-(PCD-co-PDMAEMA)。之后,研究了其通过主-客体相互作用与疏水性小分子芘及疏水性聚合物聚乳酸(PLA)之间的自组装性质。结果显示:此星型聚合物可与这两种客体分子自组装形成纳米粒子;改变溶液pH值,客体分子类型及比例,纳米粒子的形态发生规律性的变化,即疏水部分比例增加可观察到纳米粒子由球形向棒状或囊泡结构转变。
     2.以阿霉素(DOX)为药物模型,通过主-客体相互作用将其包载于上述制备的星型聚合物中得到载药纳米粒子(DOX-NPs),详细研究了DOX-NPs的粒径、载药量、稳定性、体外药物释放行为及其在HeLa、HepG2和L929细胞中的摄取及毒性情况。结果表明:DOX可以包载于星型聚合物中形成稳定的纳米粒子,载药量在1.6-30.0%范围内,粒径为86-333nm;载药纳米粒子的药物体外释放具有pH值响应性;细胞摄取依赖于细胞类型、载体浓度和摄取时间;载体中的药物在细胞核和细胞浆中均有分布;DOX-NPs对肿瘤细胞HeLa和HepG2的体外细胞毒性高于非肿瘤细胞L929。动物实验结果进一步表明,与游离药物相比,DOX-NPs对接种HeLa细胞的BALB/c雌性裸鼠具有更高的体内抑瘤效果。以上结果表明,该星型聚合物有望作为药物载体应用于癌症治疗。
     3.通过对以往环糊精单体制备方法进行改进,在温和的反应条件下,使用简单易行的方法合成了一种新的甲基丙烯酸酯单取代β-环糊精单体GACD,并以PEG-Br为引发剂,引发了GACD的ATRP聚合,得到了侧链悬垂β-CD单元的二嵌段共聚物PEG-b-PCD。然后,以其作为“主体”聚合物研究了其与多种客体分子(罗丹明B、金刚烷聚合物、端基为金刚烷的均聚物ADA-PDMAEMA、PL A)之间的组装性质。结果显示:此共聚物可以与上述客体分子通过主-客体相互作用形成自组装体;改变客体分子类型、主/客体分子比例,自组装体呈现出不同的尺寸和形态。
     4.将PEG-b-PCD与2-溴异丁基酰溴反应制得ATRP引发剂PEG-b-P(CD-Br),采用ATRP法引发DMAEMA的聚合得到了组成明确的线-梳型阳离子聚合物刷PEG-b-P(CD-g-PDMAEMA)。此聚合物刷梳型嵌段的侧链可被认为由星型聚合物构成,星型聚合物的核为β-CD,臂为阳离子聚合物PDMAEMA。之后,详细研究了其作为基因载体的应用。结果表明:该聚合物刷具有高密度的PDMAEMA链,可以有效复合质粒DNA(pDNA)形成100-200nm的球形纳米粒子;与单一的星型聚合物相比,聚合物刷具有更高的转染效率;与聚乙烯亚胺(PEI25k)相比,聚合物刷具有相当或更高的转染效率,且表现出较低的细胞毒性。
     综上所述,本研究制备得到的一系列组成明确的β-CD聚合物,可以通过主-客体相互作用与多种客体分子进行自组装,得到具有不同结构和功能的纳米组装体,在药物和基因传递系统中具有良好的应用前景。事实上,本研究所用策略具有一定的通用性,改变环糊精种类、单体种类、客体分子种类及环境刺激等条件,可以制备得到更多具有不同形态及功能的材料,在药物/基因传递系统、生物传感器、自修复材料、催化、电化学、表面抗污染材料等多种领域均具有良好的应用前景。
Cyclodextrin (CD) is characteristic of a hydrophilic exterior surface and hydrophobic interior cavity, which can accommodate a wide range of guest molecules. In pharmaceutical field, CD has been widely utilized to complex with the hydrophobic drugs via host-guest interactions to improve their solubility, stability and bioavailability. CD-based polymer (CDP), the polymer composed of multiple CD rings threaded or tethered on a polymer chain, are able to bind guest molecules that are too large to be accommodated in a single CD cavity, due to the cooperation of adjacent CD moieties on a polymer chain. Thus, CDP has inspired much interest in the fields of nanostructure fabrication, pharmaceutics and biomedicine.
     In this thesis, well-defined β-CDPs with various structures including star shape, linear shape and coil-comb shape are prepared by atom transfer radical polymerization (ATRP). The properties of self-assemblies formed by the CDPs in the presence of various guest molecules are studied in detail. Moreover, the potential application of CDPs in drug and gene delivery system is evaluated as well. The main contents of this work are as follows:
     1. Cyclodextrin-based star polymer is synthesized using the "arm-first" method by ATRP. Copolymerization of a mixture of mono-and multi-methacrylate substituted (3-cyclodextrin (GECD) and2-(dimethylamino) ethyl methacrylate (DMAEMA) initiated by poly(ethylene glycol) macroinitiator produces a core cross-linked star polymer PEG-P(CD-co-PDMAEMA). The star polymer can self-assemble into nanostructures via host-guest interactions between the cyclodextrin polymers and hydrophobic guest molecules. The morphologies of these nanostructures showed regular transitions by altering the type of guest molecules, the ratio of star polymer to guest, and the pH of the solution.
     2. Doxorubicin (DOX), as the model drug, can be loaded into the star polymer to form nanoparticles (DOX-NPs) via host-guest interactions. The size, drug loading content, stability and drug release kinetics of DOX-NPs are investigated in detail and the cellular uptake and cytotoxicity are evaluated in HeLa, HepG2and L929cells as well. The cellular uptake of DOX-NPs is in a concentration-, time-and cell type-dependent manner. DOX is distributed both in the cytoplasm and nucleus for DOX-NPs, while it is mainly located in the cell nucleus for the free drug. Moreover, a significantly higher level of cytotoxicity is achieved with DOX-NPs towards HeLa and HepG2cancer cells than that towards L929non-cancer cells. The in vivo anti-tumor experiment is conducted on BALB/c mice bearing cervical tumor, which shows that DOX-NPs suppress the growth of tumor significantly. These findings suggest that the cyclodextrin-based pH-responsive star polymer shows potential in developing novel drug delivery system for cancer therapy.
     3. A new mono-methacrylate substituted β-cyclodextrin (GACD) is prepared in a mild condition. Thus, well-defined hydrophilic diblock copolymer poly(ethylene glycol)-b-poly(cyclodextrin)(PEG-b-PCD) with high CD density can be easily synthesized via ATRP of GACD from poly(ethylene glycol) macro initiator. The block copolymer is able to include a variety of guest molecules and self-assemble into advanced nanostructures due to the synergistic effect of CD moieties. By altering the type of guest molecules and the ratio of PEG-b-PCD to guest, the self-assembled nanostructures show different size and morphology.
     4. The CD moieties on diblock copolymer PEG-b-PCD are then reacted with2-bromoisobutyryl bromide to obtain macroinitiator PEG-b-P(CD-Br). Well-defined coil-comb polycationic brushes PEG-b-P(CD-g-PDMAEMA) are synthesized via ATRP of DMAEMA and used as gene carriers. The side chains of the comb block are composed of star polymers with β-CD as the core and PDMAEMA as the arm. With such super-high grafting density of PDMAEMA, the brushes effectively condense pDNA into spherical nanoparticles of100-200nm in size and exhibit significantly higher transfection capability compared to the single star polymer. In some cases, they also show comparable or higher transfection efficiency and lower cytotoxicity than PEI25K. The results indicate these brushes have good promise for the potential gene therapy.
     In summary, a series of well-defined β-CDPs are synthesized via ATRP in this thesis. Advanced nanostructures can be formed by the inclusion interactions between these CDPs and various guest molecules. And these nanostructures show good promise for the potential drug and gene therapy. Actually, this strategy provides a facile method to prepare well-defined CDPs with various structures and a versatile method for the design of nanostructures based on CDPs. These CDPs and the self-assembled nanostructures may find attractive applications in the fields of drug and gene delivery, self-healing materials, catalysts and coatings, etc.
引文
[1]Rekharsky M. V., Inoue Y. Complexation thermodynamics of cyclodextrins [J]. Chemical Reviews,1998,98(5):1875-1918.
    [2]Ye Y., Sun Y., Zhao H., et al. A novel lactoferrin-modified β-cyclodextrin nanocarrier for brain-targeting drug delivery [J]. International Journal of Pharmaceutics,2013,458(1): 110-117.
    [3]Fuchs R., Habermann N., Kliifers P. Multinuclear sandwich-type complexes of deprotonated β-cyclodextrin and copper(Ⅱ) ions [J]. Angewandte Chemie International Edition in English, 1993,32(6):852-854.
    [4]Irie T., Uekama K. Cyclodextrins in peptide and protein delivery [J]. Advanced Drug Delivery Reviews,1999,36(1):101-123.
    [5]Lysik M. A., Wu-Pong S. Innovations in oligonucleotide drug delivery [J]. Journal of Pharmaceutical Sciences,2003,92(8):1559-1573.
    [6]Loftsson T., Duchene D. Cyclodextrins and their pharmaceutical applications [J]. International Journal of Pharmaceutics,2007,329(1-2):1-11.
    [7]Cal K., Centkowska K. Use of cyclodextrins in topical formulations:Practical aspects [J]. European Journal of Pharmaceutics and Biopharmaceutics,2008,68(3):467-478.
    [8]Loftsson T., Brewster M. E. Pharmaceutical applications of cyclodextrins.1. Drug solubilization and stabilization [J]. Journal of Pharmaceutical Sciences,1996,85(10): 1017-1025.
    [9]Gourevich D., Dogadkin O., Volovick A., et al. Ultrasound-mediated targeted drug delivery with a novel cyclodextrin-based drug carrier by mechanical and thermal mechanisms [J]. Journal of Controlled Release,2013,170(3):316-324.
    [10]Crini G, Morcellet M. Synthesis and applications of adsorbents containing cyclodextrins [J]. Journal of Separation Science,2002,25(13):789-813.
    [11]Hu J., Tao Z., Li S., et al. The effect of cyclodextrins on polymer preparation [J]. J Mater Sci, 2005,40(23):6057-6061.
    [12]Szente L., Szejtli J. Cyclodextrins as food ingredients [J]. Trends in Food Science & Technology, 2004,15(3-4):137-142.
    [13]Buschmann H. J., Knittel D., Schollmeyer E. New textile applications of cyclodextrins [J]. Journal of Inclusion Phenomena,2001,40(3):169-172.
    [14]Wang Yongjian Z. Z. H. B. Polymer Effects of Cyclodextr in polymer [J]. Progress in Chemistry,2000,12(03):318.
    [15]Solms J., Egli R. H. Harze mit Einschlusshohlraumen von Cyclodextrin-struktur [J]. Helvetica Chimica Acta,1965,48(6):1225-1228.
    [16]Harada A., Furue M., Nozakura S.-i. Cyclodextrin-containing polymers.1. preparation of polymers [J]. Macromolecules,1976,9(5):701-704.
    [17]Harada A., Furue M., Nozakura S.-i. Cyclodextrin-containing polymers.2. cooperative effects in catalysis and binding [J]. Macromolecules,1976,9(5):705-710.
    [18]Szeman J., Fenyvesi E., Szejtli J., et al. Water soluble cyclodextrin polymers:their interaction with drugs [J]. Journal of Inclusion Phenomena,1987,5(4):427-431.
    [19]Fenyvesi E. Cyclodextrin polymers in the pharmaceutical industry [J]. Journal of Inclusion Phenomena,1988,6(5):537-545.
    [20]Renard E., Deratani A., Volet G., et al. Preparation and characterization of water soluble high-molecular weight β-cyclodextrin-epichlorohydrin polymers [J]. European Polymer Journal, 1997,33(1):49-57.
    [21]Machin R., Isasi J. R., Velaz I.β-Cyclodextrin hydrogels as potential drug delivery systems [J]. Carbohydrate Polymers,2012,87(3):2024-2030.
    [22]Cirri M., Bragagni M., Mennini N., et al. Development of a new delivery system consisting in "drug-in cyclodextrin-in nanostructured lipid carriers" for ketoprofen topical delivery [J]. European Journal of Pharmaceutics and Biopharmaceutics,2012,80(1):46-53.
    [23]Gidwani B., Vyas A. Synthesis, characterization and application of Epichlorohydrin-β-cyclodextrin polymer [J]. Colloids and Surfaces B:Bio interfaces,2014, 114(0):130-137.
    [24]Bibby D. C., Davies N. M., Tucker I. G. Investigations into the structure and composition of (3-cyclodextrin/poly(acrylic acid) microspheres [J]. International Journal of Pharmaceutics, 1999,180(2):161-168.
    [25]Bibby D. C., Davies N. M., Tucker I. G. Poly(acrylic acid) microspheres containing β-cyclodextrin:loading and in vitro release of two dyes [J]. International Journal of Pharmaceutics,1999,187(2):243-250.
    [26]王竞,江明轻度交联环糊精聚合物包结诱导自组装胶束的研究[J].高分子报,2007,(10):979-985.
    [27]Davis M. E., Brewster M. E. Cyclodextrin-based pharmaceutics:past, present and future [J]. Nat Rev Drug Discov,2004,3(12):1023-1035.
    [28]Davis M. E. Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin [J]. Advanced Drug Delivery Reviews,2009,61(13):1189-1192.
    [29]Srinivasachari S., Reineke T. M. Versatile supramolecular pDNA vehicles via "click polymerization" of p-cyclodextrin with oligoethyleneamines [J]. Biomaterials,2009,30(5): 928-938.
    [30]Weickenmeier M., Wenz G. Cyclodextrin sidechain polyesters - synthesis and inclusion of adamantan derivatives [J]. Macromolecular Rapid Communications,1996,17(10):731-736.
    [31]Liu Y.-Y., Fan X.-D., Gao L. Synthesis and Characterization of β-Cyclodextrin Based Functional Monomers and its Copolymers with N-isopropylacrylamide [J]. Macromolecular Bioscience,2003,3(12):715-719.
    [32]Zhang J., Ma P. X. Host-guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications [J]. Nano Today,2010,5(4):337-350.
    [33]Zhang J., Ellsworth K., Ma P. X. Synthesis of β-Cyclodextrin containing copolymer via "click" chemistry and its self-assembly in the presence of guest compounds [J]. Macromolecular Rapid Communications,2012,33(8):664-671.
    [34]Wang J., Jiang M. Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation [J]. Journal of the American Chemical Society,2006, 128(11):3703-3708.
    [35]Ohno K., Wong B., Haddleton D. M. Synthesis of well-defined cyclodextrin-core star polymers [J]. Journal of Polymer Science Part A:Polymer Chemistry,2001,39(13):2206-2214.
    [36]Gou P.-F., Zhu W.-P., Shen Z.-Q. Synthesis, Self-assembly, and drug-loading capacity of well-defined cyclodextrin-centered drug-conjugated amphiphilic A14B7 miktoarm star copolymers based on poly(s-caprolactone) and poly(ethylene glycol) [J]. Biomacromolecules, 2010,11(4):934-943.
    [37]Gou P.-F., Zhu W.-P., Xu N., et al. Synthesis and self-assembly of well-defined cyclodextrin-centered amphiphilic A14B7 multimiktoarm star copolymers based on poly(ε-caprolactone) and poly(acrylic acid) [J]. Journal of Polymer Science Part A:Polymer Chemistry,2010,48(14):2961-2974.
    [38]Xu J., Liu S. Synthesis of well-defined 7-arm and 21-arm poly(N-isopropylacrylamide) star polymers with β-cyclodextrin cores via click chemistry and their thermal phase transition behavior in aqueous solution [J]. Journal of Polymer Science Part A:Polymer Chemistry,2009, 47(2):404-419.
    [39]Li J., Loh X. J. Cyclodextrin-based supramolecular architectures:syntheses, structures, and applications for drug and gene delivery [J]. Advanced Drug Delivery Reviews,2008,60(9): 1000-1017.
    [40]Elsabahy M., Nazarali A., Foldvari M. Non-viral nucleic acid delivery:key challenges and future directions [J]. Current Drug Delivery,2011,8(3):235-244.
    [41]Tomas S., Milanesi L. Hydrophobically self-assembled nanoparticles as molecular receptors in water [J]. Journal of the American Chemical Society,2009,131 (18):6618-6623.
    [42]Jin Y., Qiao Y., Li M., et al. Langmuir monolayers of the long-chain alkyl derivatives of a nucleoside analogue and the formation of self-assembled nanoparticles [J]. Colloids and Surfaces B:Bio interfaces,2005,42(1):45-51.
    [43]Liu S., Zhu H., Zhao H., et al. Interpolymer hydrogen-bonding complexation induced micellization from polystyrene-b-poly(methyl methacrylate) and PS(OH) in toluene [J]. Langmuir,2000,16(8):3712-3717.
    [44]Pan Q., Liu S., Xie J., et al. Synthesis and characterization of block-graft copolymers composed of poly(styrene-b-ethylene-co-propylene) and poly(ethyl methylacrylate) by atom transfer radical polymerization [J]. Journal of Polymer Science Part A:Polymer Chemistry,1999, 37(15):2699-2702.
    [45]Harada A., Kataoka K. Novel polyion complex micelles entrapping enzyme molecules in the core:preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium [J]. Macromolecules,1998, 31(2):288-294.
    [46]Bronich T. K., Kabanov A. V., Kabanov V. A., et al. Soluble complexes from poly(ethylene oxide)-block-polymethacrylate anions and N-alkylpyridinium cations [J]. Macromolecules, 1997,30(12):3519-3525.
    [47]Gohy J.-F., Lohmeijer B. G. G., Schubert U. S. From supramolecular block copolymers to advanced nano-objects [J]. Chemistry-A European Journal,2003,9(15):3472-3479.
    [48]levins A. D., Moughton A. O., O'Reilly R. K. Synthesis of hollow responsive functional nanocages using a metal-ligand complexation strategy [J]. Macromolecules,2008,41(10): 3571-3578.
    [49]Guo M., Jiang M., Zhang G. Surface Modification of polymeric vesicles via host-guest inclusion complexation [J]. Langmuir,2008,24(19):10583-10586.
    [50]Chen G., Jiang M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly [J]. Chemical Society Reviews,2011,40(5): 2254-2266.
    [51]Jazkewitsch O., Mondrzyk A., Staffel R., et al. Cyclodextrin-modified polyesters from lactones and from bacteria:an approach to new drug carrier systems [J]. Macromolecules,2011,44(6): 1365-1371.
    [52]Trellenkamp T., Ritter H. Poly(N-vinylpyrrolidone) bearing covalently attached cyclodextrin via click-chemistry:synthesis, characterization, and complexation behavior with phenolphthalein [J]. Macromolecules,2010,43(13):5538-5543.
    [53]Choi S., Munteanu M., Ritter H. Monoacrylated cyclodextrin via "click" reaction and copolymerization with N-isopropylacrylamide:guest controlled solution properties [J]. J Polym Res,2009,16(4):389-394.
    [54]Amajjahe S., Choi S., Munteanu M., et al. Pseudopolyanions based on poly(nipaam-co-β-cyclodextrin methacrylate) and ionic liquids [J]. Angewandte Chemie International Edition,2008,47(18):3435-3437.
    [55]Zhang J., Ma P. X. Polymeric core-shell assemblies mediated by host-guest interactions: versatile nanocarriers for drug delivery [J]. Angewandte Chemie International Edition,2009, 48(5):964-968.
    [56]Zhang J., Ellsworth K., Ma P. X. Hydrophobic pharmaceuticals mediated self-assembly of (3-cyclodextrin containing hydrophilic copolymers:novel chemical responsive nano-vehicles for drug delivery [J]. Journal of Controlled Release,2010,145(2):116-123.
    [57]Zhang J., Feng K., Cuddihy M., et al. Spontaneous formation of temperature-responsive assemblies by molecular recognition of a [small beta]-cyclodextrin-containing block copolymer and poly(N-isopropylacrylamide) [J]. Soft Matter,2010,6(3):610-617.
    [58]Ge Z., Liu H., Zhang Y., et al. Supramolecular thermoresponsive hyperbranched polymers constructed from Poly(N-Isopropylacrylamide) containing one adamantyl and two β-cyclodextrin terminal moieties [J]. Macromolecular Rapid Communications,2011,32(1): 68-73.
    [59]Ren S., Chen D., Jiang M. Noncovalently connected micelles based on a β-cyclodextrin-containing polymer and adamantane end-capped poly(ε-caprolactone) via host-guest interactions [J]. Journal of Polymer Science Part A:Polymer Chemistry,2009, 47(17):4267-4278.
    [60]Liu Y., Yu C., Jin H., et al. A Supramolecular Janus hyperbranched polymer and its photoresponsive self-assembly of vesicles with narrow size distribution [J]. Journal of the American Chemical Society,2013,135(12):4765-4770.
    [61]Daoud-Mahammed S., Grossiord J. L., Bergua T., et al. Self-assembling cyclodextrin based hydrogels for the sustained delivery of hydrophobic drugs [J]. Journal of Biomedical Materials Research Part A,2008,86A(3):736-748.
    [62]Charlot A., Auzely-Velty R. Synthesis of Novel Supramolecular assemblies based on hyaluronic acid derivatives bearing bivalent P-cyclodextrin and adamantane moieties [J]. Macromolecules, 2007,40(4):1147-1158.
    [63]van de Manakker F., van der Pot M., Vermonden T., et al. Self-assembling hydrogels based on β-cyclodextrin/cholesterol inclusion complexes [J]. Macromolecules,2008,41(5):1766-1773.
    [64]van de Manakker F., Braeckmans K., Morabit N. e., et al. Protein-release behavior of self-assembled peg-β-cyclodextrin/peg-cholesterol hydrogels [J]. Advanced Functional Materials,2009,19(18):2992-3001.
    [65]Zhu Y., Che L., He H., et al. Highly efficient nanomedicines assembled via polymer-drug multiple interactions:Tissue-selective delivery carriers [J]. Journal of Controlled Release,2011, 152(2):317-324.
    [66]Che L., Zhou J., Li S., et al. Assembled nanomedicines as efficient and safe therapeutics for articular inflammation [J]. International Journal of Pharmaceutics,2012,439(1-2):307-316.
    [67]Du F., Meng H., Xu K., et al. CPT loaded nanoparticles based on beta-cyclodextrin-grafted poly(ethylene glycol)/poly (1-glutamic acid) diblock copolymer and their inclusion complexes with CPT [J]. Colloids and Surfaces B:Bio interfaces,2014,113(0):230-236.
    [68]Cheng J., Khin K. T., Jensen G. S., et al. Synthesis of linear, β-cyclodextrin-based polymers and their camptothecin conjugates [J]. Bioconjugate Chemistry,2003,14(5):1007-1017.
    [69]Schluep T., Cheng J. J., Khin K. T., et al. Pharmacokinetics and biodistribution of the camptothecin-polymer conjugate IT-101 in rats and tumor-bearing mice [J]. Cancer Chemother. Pharmacol.,2005,2006:654-662.
    [70]Schluep T., Hwang J., Cheng J., et al. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models [J]. Clinical Cancer Research,2006,12(5): 1606-1614.
    [71]Svenson S., Wolfgang M., Hwang J., et al. Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101 [J]. Journal of Controlled Release,2011,153(1): 49-55.
    [72]Gaur S., Chen L., Yen T., et al. Preclinical study of the cyclodextrin-polymer conjugate of camptothecin CRLX101 for the treatment of gastric cancer [J]. Nanomedicine:Nanotechnology, Biology and Medicine,2012,8(5):721-730.
    [73]Weiss G., Chao J., Neidhart J., et al. First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies [J]. Invest New Drugs,2013,31 (4):986-1000.
    [74]Sivasubramanian M., Thambi T., Park J. H. Mineralized cyclodextrin nanoparticles for sustained protein delivery [J]. Carbohydrate Polymers,2013,97(2):643-649.
    [75]Sajomsang W., Nuchuchua O., Gonil P., et al. Water-soluble P-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier [J]. Carbohydrate Polymers,2012,89(2):623-631.
    [76]Yang Y., Zhang Y.-M., Chen Y., et al. Targeted polysaccharide nanoparticle for adamplatin prodrug delivery [J]. Journal of Medicinal Chemistry,2013,56(23):9725-9736.
    [77]Yong D., Luo Y, Du F., et al. CDDP supramolecular micelles fabricated from adamantine terminated mPEG and β-cyclodextrin based seven-armed poly (1-glutamic acid)/CDDP complexes [J]. Colloids and Surfaces B:Biointerfaces,2013,105(0):31-36.
    [78]Liu T., Li X., Qian Y., et al. Multifunctional pH-disintegrable micellar nanoparticles of asymmetrically functionalized β-cyclodextrin-Based star copolymer covalently conjugated with doxorubicin and DOTA-Gd moieties [J]. Biomaterials,2012,33(8):2521-2531.
    [79]Moya-Ortega M. D., Alvarez-Lorenzo C., Sigurdsson H. H., et al. Cross-linked hydroxypropyl-β-cyclodextrin and y-cyclodextrin nanogels for drug delivery:Physicochemical and loading/release properties [J]. Carbohydrate Polymers,2012,87(3):2344-2351.
    [80]Anirudhan T. S., Dilu D., Sandeep S. Synthesis and characterisation of chitosan crosslinked-β-cyclodextrin grafted silylated magnetic nanoparticles for controlled release of Indomethacin [J]. Journal of Magnetism and Magnetic Materials,2013,343(0):149-156.
    [81]Dong H., Li Y., Cai S., et al. A facile one-pot construction of supramolecular polymer micelles from a-cyclodextrin and poly(s-caprolactone) [J]. Angewandte Chemie International Edition, 2008,47(30):5573-5576.
    [82]Liu J., Sondjaja H. R., Tam K. C. a-Cyclodextrin-induced self-assembly of a double-hydrophilic block copolymer in aqueous solution [J]. Langmuir,2007,23(9): 5106-5109.
    [83]Liu Y, Zhao D., Ma R., et al. Chaperone-like a-cyclodextrins assisted self-assembly of double hydrophilic block copolymers in aqueous medium [J]. Polymer,2009,50(3):855-859.
    [84]Li Q., Xia B., Branham M., et al. Self-assembly of carboxymethyl konjac glucomannan-g-poly(ethylene glycol) and (a-cyclodextrin) to biocompatible hollow nanospheres for glucose oxidase encapsulation [J]. Carbohydrate Polymers,2011,86(1): 120-126.
    [85]Liu G, Jin Q., Liu X., et al. Biocompatible vesicles based on PEO-b-PMPC/[small alpha]-cyclodextrin inclusion complexes for drug delivery [J]. Soft Matter,2011,7(2):662-669.
    [86]Tardy B. L., Dam H. H., Kamphuis M. M. J., et al. Self-assembled stimuli-responsive polyrotaxane core-shell particles [J]. Biomacromolecules,2014,15(1):53-59.
    [87]Jackson D. A., Juranek S., Lipps H. J. Designing nonviral vectors for efficient gene transfer and long-term gene expression [J]. Mol Ther,2006,14(5):613-626.
    [88]Redenti E., Pietra C., Gerloczy A., et al. Cyclodextrins in oligonucleotide delivery [J]. Advanced Drug Delivery Reviews,2001,53(2):235-244.
    [89]Mellet C. O., Fernandez J. M. G., Benito J. M. Cyclodextrin-based gene delivery systems [J]. Chemical Society Reviews,2011,40(3):1586-1608.
    [90]Yang C., Li H., Goh S. H., et al. Cationic star polymers consisting of a-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors [J]. Biomaterials,2007,28(21): 3245-3254.
    [91]O'Mahony A. M., Godinho B. M. D. C., Ogier J., et al. Click-modified cyclodextrins as nonviral vectors for neuronal siRNA delivery [J]. ACS Chemical Neuroscience,2012,3(10): 744-752.
    [92]Martinez A., Bienvenu C., Jimenez Blanco J. L., et al. Amphiphilic oligoethyleneimine-β-cyclodextrin "click" clusters for enhanced DNA delivery [J]. The Journal of Organic Chemistry,2013,78(16):8143-8148.
    [93]Xu F. J., Zhang Z. X., Ping Y., et al. Star-shaped cationic polymers by atom transfer radical polymerization from (3-cyclodextrin cores for nonviral gene delivery [J]. Biomacromolecules, 2009,10(2):285-293.
    [94]Xiu K. M., Yang J. J., Zhao N. N., et al. Multiarm cationic star polymers by atom transfer radical polymerization from β-cyclodextrin cores:Influence of arm number and length on gene delivery [J]. Acta Biomaterialia,2013,9(1):4726-4733.
    [95]Hu Y., Zhu Y., Yang W. T., et al. New star-shaped carriers composed of P-cyclodextrin cores and disulfide-Iinked poly(glycidyl methacrylate) derivative arms with plentiful flanking secondary amine and hydroxyl groups for highly efficient gene delivery [J]. ACS Applied Materials & Interfaces,2013,5(3):703-712.
    [96]Li R. Q., Niu Y. L., Zhao N. N., et al. Series of new β-Cyclodextrin-cored starlike carriers for gene delivery [J]. ACS Applied Materials & Interfaces,2014.
    [97]Dou X. B., Hu Y., Zhao N. N., et al. Different types of degradable vectors from low-molecular-weight polycation-functionalized poly(aspartic acid) for efficient gene delivery [J]. Biomaterials,2014,35(9):3015-3026.
    [98]Liang B., Deng J. J., Yuan F., et al. Efficient gene transfection in the neurotypic cells by star-shaped polymer consisting of β-cyclodextrin core and poly(amidoamine) dendron arms [J]. Carbohydrate Polymers,2013,94(1):185-192.
    [99]Zhao F., Yin H., Zhang Z., et al. Folic acid modified cationic y-cyclodextrin-oligoethylenimine star polymer with bioreducible disulfide linker for efficient targeted gene delivery [J]. Biomacromolecules,2013,14(2):476-484.
    [100]Gonzalez H., Hwang S. J., Davis M. E. New class of polymers for the delivery of macromolecular therapeutics [J]. Bioconjugate Chemistry,1999,10(6):1068-1074.
    [101]Hwang S. J., Bellocq N. C., Davis M. E. Effects of structure of (3-cyclodextrin-containing polymers on gene delivery [J]. Bioconjugate Chemistry,2001,12(2):280-290.
    [102]Popielarski S. R., Mishra S., Davis M. E. Structural effects of carbohydrate-containing polycations on gene delivery.3. cyclodextrin type and functionalization [J]. Bioconjugate Chemistry,2003,14(3):672-678.
    [103]Reineke T. M., Davis M. E. Structural effects of carbohydrate-containing polycations on gene delivery.1. carbohydrate size and its distance from charge centers [J]. Bioconjugate Chemistry, 2003,14(1):247-254.
    [104]Reineke T. M., Davis M. E. Structural effects of carbohydrate-containing polycations on gene delivery.2. charge center type [J]. Bioconjugate Chemistry,2003,14(1):255-261.
    [105]Mishra S., Webster P., Davis M. E. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles [J]. European Journal of Cell Biology,2004,83(3):97-111.
    [106]Bartlett D. W., Davis M. E. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles [J]. Bioconjugate Chemistry,2007,18(2):456-468.
    [107]Buckwalter D. J., Sizovs A., Ingle N. P., et al. MAG versus PEG:incorporating a Poly(MAG) layer to promote colloidal stability of nucleic acid/"click cluster" complexes [J]. ACS Macro Letters,2012,1(5):609-613.
    [108]Harada A., Takashima Y., Yamaguchi H. Cyclodextrin-based supramolecular polymers [J]. Chemical Society Reviews,2009,38(4):875-882.
    [109]Ooya T., Choi H. S., Yamashita A., et al. Biocleavable Polyrotaxane-Plasmid DNA Polyplex for Enhanced Gene Delivery [J]. Journal of the American Chemical Society,2006,128(12): 3852-3853.
    [110]Li J., Yang C., Li H., et al. Cationic Supramolecules composed of multiple oligoethylenimine-grafted β-cyclodextrins threaded on a polymer chain for efficient gene delivery [J]. Advanced Materials,2006,18(22):2969-2974.
    [111]Li Z., Yin H., Zhang Z., et al. Supramolecular anchoring of DNA polyplexes in cyclodextrin-based polypseudorotaxane hydrogels for sustained gene delivery [J]. Biomacromolecules,2012,13(10):3162-3172.
    [112]Zhou Y., Wang H., Wang C., et al. Receptor-mediated, tumor-targeted gene delivery using folate-terminated polyrotaxanes [J]. Molecular Pharmaceutics,2012,9(5):1067-1076.
    [113]Creixell M., Peppas N. A. Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance [J]. Nano Today,2012,7(4):367-379.
    [114]Liu Q., Li R. T., Qian H. Q., et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles [J]. Biomaterials,2013,34(29): 7191-7203.
    [115]Dong D. W., Xiang B., Gao W., et al. PH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNAto cancer cells [J]. Biomaterials, 2013,34(20):4849-4859.
    [116]Biswas S., Deshpande P. P., Navarro G., et al. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery [J]. Biomaterials,2013,34(4):1289-1301.
    [117]Zhang J., Sun H., Ma P. X. Host-guest interaction mediated polymeric assemblies: multifunctional nanoparticles for drug and gene delivery [J]. ACS Nano,2010,4(2):1049-1059.
    [118]Lu X., Wang Q.-Q., Xu F.-J., et al. A cationic prodrug/therapeutic gene nanocomplex for the synergistic treatment of tumors [J]. Biomaterials,2011,32(21):4849-4856.
    [119]Fan H., Hu Q.-D., Xu F.-J., et al. In vivo treatment of tumors using host-guest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL [J]. Biomaterials, 2012,33(5):1428-1436.
    [120]Deng J., Li N., Mai K., et al. Star-shaped polymers consisting of a [small beta]-cyclodextrin core and poly(amidoamine) dendron arms:binding and release studies with methotrexate and siRNA [J]. Journal of Materials Chemistry,2011,21(14):5273-5281.
    [121]Ma D., Zhang H.-B., Chen Y.-Y., et al. New cyclodextrin derivative containing poly(L-lysine) dendrons for gene and drug co-delivery [J]. Journal of Colloid and Interface Science,2013, 405(0):305-311.
    [122]Liu T., Xue W., Ke B., et al. Star-shaped cyclodextrin-poly(1-lysine) derivative co-delivering docetaxel and MMP-9 siRNA plasmid in cancer therapy [J]. Biomaterials,2014,35(12): 3865-3872.
    [123]Zhao F., Yin H., Li J. Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug [J]. Biomaterials,2014,35(3):1050-1062.
    [124]Hu Q., Li W., Hu X., et al. Synergistic treatment of ovarian cancer by co-delivery of survivin shRNA and paclitaxel via supramolecular micellar assembly [J]. Biomaterials,2012,33(27): 6580-6591.
    [1]Tomas S., Milanesi L. Hydrophobically self-assembled nanoparticles as molecular receptors in water [J]. Journal of the American Chemical Society,2009,131(18):6618-6623.
    [2]Jin Y., Qiao Y., Li M., et al. Langmuir monolayers of the long-chain alkyl derivatives of a nucleoside analogue and the formation of self-assembled nanoparticles [J]. Colloids and Surfaces B:Bio interfaces,2005,42(1):45-51.
    [3]Liu S., Zhu H., Zhao H., et al. Interpolymer hydrogen-bonding complexation induced micellization from polystyrene-b-poly(methyl methacrylate) and PS(OH) in toluene [J]. Langmuir,2000,16(8):3712-3717.
    [4]Pan Q., Liu S., Xie J., et al. Synthesis and characterization of block-graft copolymers composed of poly(styrene-b-ethylene-co-propylene) and poly(ethyl methylacrylate) by atom transfer radical polymerization [J]. Journal of Polymer Science Part A:Polymer Chemistry,1999, 37(15):2699-2702.
    [5]Harada A., Kataoka K. Novel polyion complex micelles entrapping enzyme molecules in the core:preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium [J]. Macromolecules,1998, 31(2):288-294.
    [6]Bronich T. K., Kabanov A. V., Kabanov V. A., et al. Soluble complexes from poly(ethylene oxide)-block-polymethacrylate anions and N-Alkylpyridinium cations [J]. Macromolecules, 1997,30(12):3519-3525.
    [7]Gohy J.-F., Lohmeijer B. G. G., Schubert U. S. From supramolecular block copolymers to advanced nano-objects [J]. Chemistry-A European Journal,2003,9(15):3472-3479.
    [8]levins A. D., Moughton A. O., O'Reilly R. K. Synthesis of hollow responsive functional nanocages using a metal-ligand complexation strategy [J]. Macromolecules,2008,41(10): 3571-3578.
    [9]Guo M., Jiang M., Zhang G. Surface modification of polymeric vesicles via host-guest inclusion complexation [J]. Langmuir,2008,24(19):10583-10586.
    [10]Othman M., Bouchemal K., Couvreur P., et al. A comprehensive study of the spontaneous formation of nanoassemblies in water by a "lock-and-key" interaction between two associative polymers [J]. Journal of Colloid and Interface Science,2011,354(2):517-527.
    [11]Daoud-Mahammed S., Ringard-Lefebvre C., Razzouq N., et al. Spontaneous association of hydrophobized dextran and poly-(3-cyclodextrin into nanoassemblies.:formation and interaction with a hydrophobic drug [J]. Journal of Colloid and Interface Science,2007,307(1):83-93.
    [12]Harada A., Furue M., Nozakura S.-i. Cyclodextrin-Containing Polymers.2. Cooperative Effects in Catalysis and Binding [J]. Macromolecules,1976,9(5):705-710.
    [13]Deratani A., Popping B., Muller G. Linear cyclodextrin-containing polyelectrolytes,1. Synthesis of poly(1-vinylimidazole)-supported β-cyclodextrin. Effect of pH and ionic strength on the solution behaviour [J]. Macromolecular Chemistry and Physics,1995,196(1):343-352.
    [14]Wang J., Jiang M. Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation [J]. Journal of the American Chemical Society,2006, 128(11):3703-3708.
    [15]Zhang J., Sun H., Ma P. X. Host-guest interaction mediated polymeric assemblies: multifunctional nanoparticles for drug and gene delivery [J]. ACS Nano,2010,4(2):1049-1059.
    [16]Zhang J., Ellsworth K., Ma P. X. Hydrophobic pharmaceuticals mediated self-assembly of β-cyclodextrin containing hydrophilic copolymers:novel chemical responsive nano-vehicles for drug delivery [J]. Journal of Controlled Release,2010,145(2):116-123.
    [17]Zhang J., Ma P. X. Polymeric core-shell assemblies mediated by host-guest interactions: versatile nanocarriers for drug delivery [J]. Angewandte Chemie International Edition,2009, 48(5):964-968.
    [18]Dai S., Ravi P., Tam K. C., et al. Novel pH-responsive amphiphilic diblock copolymers with reversible micellization properties [J]. Langmuir,2003,19(12):5175-5177.
    [19]Matyjaszewski K., Xia J. Atom transfer radical polymerization [J]. Chemical Reviews,2001, 101(9):2921-2990.
    [20]Matyjaszewski K. Atom transfer radical polymerization (ATRP):current status and future perspectives [J]. Macromolecules,2012,45(10):4015-4039.
    [21]Liu L., Zhang M., Zhao H. In-Situ Polymerization at the interface of micelles:a novel method to control functionality and morphology [J]. Macromolecular Rapid Communications,2007, 28(9):1051-1056.
    [22]Petter R. C., Salek J. S., Sikorski C. T., et al. Cooperative binding by aggregated mono-6-(alkylamino)-.beta.-cyclodextrins [J]. Journal of the American Chemical Society,1990, 112(10):3860-3868.
    [23]Liu Y.-Y., Fan X.-D., Gao L. Synthesis and Characterization of β-Cyclodextrin Based Functional Monomers and its Copolymers with N-isopropylacrylamide [J]. Macromolecular Bioscience,2003,3(12):715-719.
    [24]Wang J., Jiang M. Studies on self-assembly from lightly-crosslinked polymers via inclusion interection [J]. Act Polymerica Sinica,2007,10:979-985.
    [25]Kalyanasundaram K., Thomas J. K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems [J]. Journal of the American Chemical Society,1977,99(7):2039-2044.
    [26]Ohya Y., Takamido S., Nagahama K., et al. Polyrotaxane composed of poly-1-lactide and α-cyclodextrin exhibiting protease-triggered hydrolysis [J]. Biomacromolecules,2009,10(8): 2261-2267.
    [27]Xie D. M., Yang K. S., Sun W. X. Formation and characterization of polylactide and β-cyclodextrin inclusion complex [J]. Current Applied Physics,2007,7, Supplement 1(0): e15-el8.
    [28]Qin J., Meng X., Li B., et al. Self-assembly of β-cyclodextrin and pluronic into hollow nanospheres in aqueous solution [J]. Journal of Colloid and Interface Science,2010,350(2): 447-452.
    [29]Liu G., Jin Q., Liu X., et al. Biocompatible vesicles based on PEO-b-PMPC/[small alpha]-cyclodextrin inclusion complexes for drug delivery [J]. Soft Matter,2011,7(2):662-669.
    [30]Halperin A., Tirrell M., Lodge T. P., Tethered chains in polymer microstructures. In Macromolecules:Synthesis, Order and Advanced Properties, Springer Berlin Heidelberg:1992; Vol.100/1, pp 31-71.
    [31]Zhao Y., Guo K., Wang C., et al. Effect of inclusion complexation with cyclodextrin on the cloud point of poly(2-(dimethylamino)ethyl methacrylate) solution [J]. Langmuir,2010,26(11): 8966-8970.
    [32]Shen H., Eisenberg A. Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA52/Dioxane/H2O [J]. The Journal of Physical Chemistry B,1999,103(44): 9473-9487.
    [33]Shen H., Eisenberg A. Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/Dioxane/H2O [J]. Macromolecules,2000,33(7):2561-2572.
    [34]Zhang L., Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution [J]. Polymers for Advanced Technologies,1998, 9(10-11):677-699.
    [35]Desbaumes L., Eisenberg A. Single-solvent preparation of crew-cut aggregates of various morphologies from an amphiphilic diblock copolymer [J]. Langmuir,1998,15(1):36-38.
    [1]Schneider H.-J., Hacket E, Riidiger V., et al. NMR studies of cyclodextrins and cyclodextrin complexes [J]. Chemical Reviews,1998,98(5):1755-1786.
    [2]Davis M. E., Brewster M. E. Cyclodextrin-based pharmaceutics:past, present and future [J]. Nat Rev Drug Discov,2004,3(12):1023-1035.
    [3]Li J., Loh X. J. Cyclodextrin-based supramolecular architectures:Syntheses, structures, and applications for drug and gene delivery [J]. Advanced Drug Delivery Reviews,2008,60(9): 1000-1017.
    [4]Xie D. M., Yang K. S., Sun W. X. Formation and characterization of polylactide and β-cyclodextrin inclusion complex [J]. Current Applied Physics,2007,7, Supplement 1(0): e15-e18.
    [5]Brewster M. E., Loftsson T. Cyclodextrins as pharmaceutical solubilizers [J]. Advanced Drug Delivery Reviews,2007,59(7):645-666.
    [6]Carrier R. L., Miller L. A., Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability [J]. Journal of Controlled Release,2007,123(2):78-99.
    [7]Loftsson T., Brewster M. E. Pharmaceutical applications of cyclodextrins:effects on drug permeation through biological membranes [J]. Journal of Pharmacy and Pharmacology,2011, 63(9):1119-1135.
    [8]Harada A., Furue M., Nozakura S.-i. Cyclodextrin-containing polymers.2. cooperative effects in catalysis and binding [J]. Macromolecules,1976,9(5):705-710.
    [9]Harada A., Furue M., Nozakura S.-i. Inclusion of aromatic compounds by a [beta]-cyclodextrin-epichlorohydrin polymer [J]. Polym J,1981,13(8):777-781.
    [10]Harada A., Hashidzume A., Yamaguchi H., et al. Polymeric rotaxanes [J]. Chemical Reviews, 2009,109(11):5974-6023.
    [11]Zhang J., Ma P. X. Polymeric core-shell assemblies mediated by host-guest interactions: versatile nanocarriers for drug delivery [J]. Angewandte Chemie International Edition,2009, 48(5):964-968.
    [12]Zhang J., Ellsworth K., Ma P. X. Hydrophobic pharmaceuticals mediated self-assembly of P-cyclodextrin containing hydrophilic copolymers:novel chemical responsive nano-vehicles for drug delivery [J]. Journal of Controlled Release,2010,145(2):116-123.
    [13]Fan H., Hu Q.-D., Xu F.-J., et al. In vivo treatment of tumors using host-guest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL [J]. Biomaterials, 2012,33(5):1428-1436.
    [14]Mura S., Nicolas J., Couvreur P. Stimuli-responsive nanocarriers for drug delivery [J]. Nat Mater,2013,12(11):991-1003.
    [15]Zhang J., Feng K., Cuddihy M., et al. Spontaneous formation of temperature-responsive assemblies by molecular recognition of a [small beta]-cyclodextrin-containing block copolymer and poly(N-isopropylacrylamide) [J]. Soft Matter,2010,6(3):610-617.
    [16]Keys K. B., Andreopoulos F. M., Peppas N. A. Poly(ethylene glycol) star polymer hydrogels [J]. Macromolecules,1998,31(23):8149-8156.
    [17]Blencowe A., Tan J. F., Goh T. K., et al. Core cross-linked star polymers via controlled radical polymerisation [J]. Polymer,2009,50(1):5-32.
    [18]Gou P.-F., Zhu W.-P., Shen Z.-Q. synthesis, self-assembly, and drug-loading capacity of well-defined cyclodextrin-centered drug-conjugated amphiphilic A14B7 miktoarm star copolymers based on poly(e-caprolactone) and poly(ethylene glycol) [J]. Biomacromolecules, 2010,11(4):934-943.
    [19]Qiu L. Y., Wang R. J., Zheng C., et al. β-cyclodextrin-centered star-shaped amphiphilic polymers for doxorubicin delivery [J]. Nanomedicine,2010,5(2):193-208.
    [20]Bae Y., Diezi T. A., Zhao A., et al. Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents [J]. Journal of Controlled Release,2007,122(3):324-330.
    [21]Chen S.-F., Lu W.-F., Wen Z.-Y., et al. Preparation, characterization and anticancer activity of norcantharidin-loaded poly(ethylene glycol)-poly(caprolactone) amphiphilic block copolymer micelles [J]. Die Pharmazie-An International Journal of Pharmaceutical Sciences,2012,67(9): 781-788.
    [22]Wu H., Zhu L., Torchilin V. P. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery [J]. Biomaterials,2013,34(4):1213-1222.
    [23]Zhang Y., Wang N., Zhang Q., et al. [J]. Chinese Journal of Applied Chemistry,2011,28(3): 343-348.
    [24]Uchida E., Uyama Y., Ikada Y. Zeta Potential of polycation layers grafted onto a film surface [J]. Langmuir,1994,10(4):1193-1198.
    [25]Hu Y., Xie J., Tong Y. W., et al. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells [J]. Journal of Controlled Release, 2007,118(1):7-17.
    [26]Danhier F., Lecouturier N., Vroman B., et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles:In vitro and in vivo evaluation [J]. Journal of Controlled Release,2009,133(1): 11-17.
    [27]Yu C.-Y., Jia L.-H., Yin B.-C., et al. Fabrication of nanospheres and vesicles as drug carriers by self-assembly of alginate [J]. The Journal of Physical Chemistry C,2008,112(43): 16774-16778.
    [28]Yu C.-Y., Cao H., Zhang X.-C., et al. Hybrid nanospheres and vesicles based on pectin as drug carriers [J]. Langmuir,2009,25(19):11720-11726.
    [29]Szachowicz-Petelska B., Figaszewski Z., Lewandowski W. Mechanisms of transport across cell membranes of complexes contained in antitumour drugs [J]. International Journal of Pharmaceutics,2001,222(2):169-182.
    [30]Panyam J., Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue [J]. Advanced Drug Delivery Reviews,2003,55(3):329-347.
    [1]Harada A., Furue M., Nozakura S.-i. Cyclodextrin-containing polymers.2. cooperative effects in catalysis and binding [J]. Macromolecules,1976,9(5):705-710.
    [2]Deratani A., Popping B., Muller G Linear cyclodextrin-containing polyelectrolytes,1. Synthesis of poly(1-vinylimidazole)-supported β-cyclodextrin. Effect of pH and ionic strength on the solution behaviour [J]. Macromolecular Chemistry and Physics,1995,196(1):343-352.
    [3]Zhang J., Sun H., Ma P. X. Host-guest interaction mediated polymeric assemblies: multifunctional nanoparticles for drug and gene delivery [J]. ACS Nano,2010,4(2):1049-1059.
    [4]Zhang J., Ma P. X. Polymeric core-shell assemblies mediated by host-guest interactions: versatile nanocarriers for drug delivery [J]. Angewandte Chemie International Edition,2009, 48(5):964-968.
    [5]Che L., Zhou J., Li S., et al. Assembled nanomedicines as efficient and safe therapeutics for articular inflammation [J]. International Journal of Pharmaceutics,2012,439(1-2):307-316.
    [6]Tian W., Fan X.-D., Liu Y.-Y., et al. β-Cyclodextrin polymer brushes based on hyperbranched polycarbosilane:Synthesis and characterization [J]. Journal of Polymer Science Part A: Polymer Chemistry,2008,46(15):5036-5052.
    [7]Tian W., Fan X.-D., Kong J., et al. Amphiphilic hyperbranched polymers containing two types of β-cyclodextrin segments:synthesis and properties [J]. Macromolecular Chemistry and Physics,2009,210(24):2107-2117.
    [8]Yhaya F., Binauld S., Kim Y., et al. Shell cross-linking of cyclodextrin-based micelles via supramolecular chemistry for the delivery of drugs [J]. Macromolecular Rapid Communications, 2012,33(21):1868-1874.
    [9]Rodell C. B., Kaminski A. L., Burdick J. A. Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels [J]. Biomacromolecules,2013,14(11): 4125-4134.
    [10]Tsutsumi T., Hirayama F., Uekama K., et al. Evaluation of polyamidoamine dendrimer/a-cyclodextrin conjugate (generation 3, G3) as a novel carrier for small interfering RNA (siRNA) [J]. Journal of Controlled Release,2007,119(3):349-359.
    [11]Jazkewitsch O., Mondrzyk A., Staffel R., et al. Cyclodextrin-modified polyesters from lactones and from bacteria:an approach to new drug carrier systems [J]. Macromolecules,2011,44(6): 1365-1371.
    [12]Ren S., Chen D., Jiang M. Noncovalently connected micelles based on a β-cyclodextrin-containing polymer and adamantane end-capped poly(s-caprolactone) via host-guest interactions [J]. Journal of Polymer Science Part A:Polymer Chemistry,2009, 47(17):4267-4278.
    [13]Amajjahe S., Choi S., Munteanu M., et al. Pseudopolyanions based on Poly(NIPAAM-co-β-cyclodextrin methacrylate) and ionic liquids [J]. Angewandte Chemie International Edition,2008,47(18):3435-3437.
    [14]Moya-Ortega M. D., Alvarez-Lorenzo C., Concheiro A., et al. Cyclodextrin-based nanogels for pharmaceutical and biomedical applications [J]. International Journal of Pharmaceutics,2012, 428(1-2):152-163.
    [15]Acar H. Y., Jensen J. J., Thigpen K., et al. Evaluation of the spacer effect on adamantane-containing vinyl polymer Tg's [J]. Macromolecules,2000,33(10):3855-3859.
    [16]Zhang M., Liu L., Wu C., et al. Synthesis, characterization and application of well-defined environmentally responsive polymer brushes on the surface of colloid particles [J]. Polymer, 2007,48(7):1989-1997.
    [17]Kajiwara A., Matyjaszewski K., Kamachi M. Simultaneous EPR and kinetic study of styrene atom transfer radical polymerization (ATRP) [J]. Macromolecules,1998,31(17):5695-5701.
    [18]Sumerlin B. S., Neugebauer D., Matyjaszewski K. Initiation efficiency in the synthesis of molecular brushes by grafting from via atom transfer radical polymerization [J]. Macromolecules,2005,38(3):702-708.
    [19]Ringsdorf H., Venzmer J., Winnik F. M. Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides) [J]. Macromolecules,1991,24(7):1678-1686.
    [20]Zhang M., Xiong Q., Chen J., et al. A novel cyclodextrin-containing pH-responsive star polymer for nanostructure fabrication and drug delivery [J]. Polymer Chemistry,2013,4(19): 5086-5095.
    [21]Cromwell W. C., Bystrom K., Eftink M. R. Cyclodextrin-adamantanecarboxylate inclusion complexes:studies of the variation in cavity size [J]. The Journal of Physical Chemistry,1985, 89(2):326-332.
    [22]Kakuta T., Takashima Y., Nakahata M., et al. Preorganized hydrogel:self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups [J]. Advanced Materials,2013,25(20):2849-2853.
    [23]Peters O., Ritter H. Supramolecular controlled water uptake of macroscopic materials by a cyclodextrin-induced hydrophobic-to-hydrophilic transition [J]. Angewandte Chemie International Edition,2013,52(34):8961-8963.
    [24]Mu C.-G., Fan X.-D., Tian W., et al. An H-shaped polymer bonding β-cyclodextrin at branch points:synthesis and influences of attached β-cyclodextrins on physical properties [J]. Journal of Polymer Science Part A:Polymer Chemistry,2013,51(6):1405-1416.
    [25]Ohya Y., Takamido S., Nagahama K., et al. Polyrotaxane composed of poly-1-lactide and a-cyclodextrin exhibiting protease-triggered hydrolysis [J]. Biomacromolecules,2009,10(8): 2261-2267.
    [26]Xie D. M., Yang K. S., Sun W. X. Formation and characterization of polylactide and β-cyclodextrin inclusion complex [J]. Current Applied Physics,2007,7, Supplement 1(0): el5-e18.
    [1]Friedmann T. Overcoming the obstacles to gene therapy [J]. Scientific American,1997,3: 96-101.
    [2]Friedmann T. Human gene therapy [mdash] an immature genie, but certainly out of the bottle [J]. Nat Med,1996,2(2):144-147.
    [3]Friedmann T. The maturation of human gene therapy [J]. Acta Pcediatrica,1996,85(11): 1261-1265.
    [4]Bonadio J., Goldstein S. A., Levy R. J. Gene therapy for tissue repair and regeneration [J]. Advanced Drug Delivery Reviews,1998,33(1-2):53-69.
    [5]Curtin C. M., Cunniffe G M., Lyons F. G, et al. Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation [J]. Advanced Materials,2012,24(6):749-754.
    [6]Jackson D. A., Juranek S., Lipps H. J. Designing nonviral vectors for efficient gene transfer and long-term gene expression [J]. Mol Ther,2006,14(5):613-626.
    [7]Elsabahy M., Nazarali A., Foldvari M. Non-viral nucleic acid delivery:key challenges and future directions [J]. Current Drug Delivery,2011,8(3):235-244.
    [8]Wang Y, Zheng M., Meng F., et al. Branched polyethylenimine derivatives with reductively cleavable periphery for safe and efficient in vitro gene transfer [J]. Biomacromolecules,2011, 12(4):1032-1040.
    [9]Qiao Y., Huang Y, Qiu C., et al. The use of PEGylated poly [2-(N,N-dimethylamino) ethyl methacrylate] as a mucosal DNA delivery vector and the activation of innate immunity and improvement of HTV-1-specific immune responses [J]. Biomaterials,2010,31(1):115-123.
    [10]Li Y, Zhu Y, Xia K., et al. Dendritic Poly(1-lysine)-b-Poly(1-lactide)-b-Dendritic Poly(1-lysine) Amphiphilic Gene Delivery Vectors:Roles of PLL Dendritic Generation and Enhanced Transgene Efficacies via Termini Modification [J]. Biomacromolecules,2009,10(8): 2284-2293.
    [11]Asayama S., Sudo M., Nagaoka S., et al. Carboxymethyl poly(1-histidine) as a new ph-sensitive polypeptide to enhance polyplex gene delivery [J]. Molecular Pharmaceutics,2008,5(5): 898-901.
    [12]Ghilardi A., Pezzoli D., Bellucci M. C., et al. Synthesis of multifunctional PAMAM-aminoglycoside conjugates with enhanced transfection efficiency [J]. Bioconjugate Chemistry,2013,24(11):1928-1936.
    [13]Shi B., Shen Z., Zhang H., et al. Exploring N-imidazolyl-O-carboxymethyl chitosan for high performance gene delivery [J]. Biomacromolecules,2011,13(1):146-153.
    [14]Hu Y., Zhu Y., Yang W. T., et al. New star-shaped carriers composed of β-cyclodextrin cores and disulfide-linked poly(glycidyl methacrylate) derivative arms with plentiful flanking secondary amine and hydroxyl groups for highly efficient gene delivery [J]. ACS Applied Materials & Interfaces,2012,5(3):703-712.
    [15]Cohen J. L., Schubert S., Wich P. R., et al. Acid-degradable cationic dextran particles for the delivery of siRNA therapeutics [J]. Bioconjugate Chemistry,2011,22(6):1056-1065.
    [16]Srinivasachari S., Fichter K. M., Reineke T. M. Polycationic P-cyclodextrin "click clusters" monodisperse and versatile scaffolds for nucleic acid delivery [J]. Journal of the American Chemical Society,2008,130(14):4618-4627.
    [17]Kizhakkedathu J. N., Norris-Jones R., Brooks D. E. Synthesis of Well-defined environmentally responsive polymer brushes by aqueous ATRP [J]. Macromolecules,2004,37(3):734-743.
    [18]Pyun J., Kowalewski T., Matyjaszewski K. Synthesis of polymer brushes using atom transfer radical polymerization [J]. Macromolecular Rapid Communications,2003,24(18):1043-1059.
    [19]Zhang Z., Lu X., Fan Q., et al. Conjugated polyelectrolyte brushes with extremely high charge density for improved energy transfer and fluorescence quenching applications [J]. Polymer Chemistry,2011,2(10):2369-2377.
    [20]Zhang Z., Fan Q., Sun P., et al. Highly selective anionic counterion-based fluorescent sensor for Hg2+ by grafted conjugated polyelectrolytes [J]. Macromolecular Rapid Communications, 2010,31(24):2160-2165.
    [21]Liu J., Liu Z., Luo X., et al. RAFT Controlled synthesis of biodegradable polymer brushes on graphene for DNA binding and release [J]. Macromolecular Chemistry and Physics,2013, 214(20):2266-2275.
    [22]Wei H., Pahang J. A., Pun S. H. Optimization of brush-like cationic copolymers for nonviral gene delivery [J]. Biomacromolecules,2012,14(1):275-284.
    [23]Shi J., Schellinger J. G., Johnson R. N., et al. Influence of histidine incorporation on buffer capacity and gene transfection efficiency of HPMA-co-oligolysine brush polymers [J]. Biomacromolecules,2013,14(6):1961-1970.
    [24]Zhao Y., Qin Y., Liang Y., et al. Salt-Induced stability and serum-resistance of polyglutamate polyelectrolyte brushes/nuclear factor-KB p65 siRNA polyplex enhance the apoptosis and efficacy of doxorubicin [J]. Biomacromolecules,2013,14(6):1777-1786.
    [25]Liu J., Xu Y., Yang Q., et al. Reduction biodegradable brushed PDMAEMA derivatives synthesized by atom transfer radical polymerization and click chemistry for gene delivery [J]. Acta Biomaterialia,2013,9(8):7758-7766.
    [26]Jiang R., Lu X., Yang M., et al. Monodispersed brush-like conjugated polyelectrolyte nanoparticles with efficient and visualized SiRNA delivery for gene silencing [J]. Biomacromolecules,2013,14(10):3643-3652.
    [27]Zhang P., Yang J., Li W., et al. Cationic polymer brush grafted-n an odi am on d via atom transfer radical polymerization for enhanced gene delivery and bioimaging [J]. Journal of Materials Chemistry,2011,21(21):7755-7764.
    [28]Ping Y., Liu C.-D., Tang G.-P., et al. Functionalization of chitosan via atom transfer radical polymerization for gene delivery [J]. Advanced Functional Materials,2010,20(18):3106-3116.
    [29]Wang Z. H., Li W. B., Ma J., et al. Functionalized nonionic dextran backbones by atom transfer radical polymerization for efficient gene delivery [J]. Macromolecules,2010,44(2):230-239.
    [30]Xu F. J., Zhang Z. X., Ping Y., et al. Star-shaped cationic polymers by atom transfer radical polymerization from β-cyclodextrin cores for nonviral gene delivery [J]. Biomacromolecules, 2009,10(2):285-293.
    [31]Boyer C., Teo J., Phillips P., et al. Effective delivery of siRNA into cancer cells and rumors using well-defined biodegradable cationic star polymers [J]. Molecular Pharmaceutics,2013, 10(6):2435-2444.
    [32]Newland B., Zheng Y., Jin Y., et al. Single cyclized molecule versus single branched molecule: a simple and efficient 3D "knot" polymer structure for nonviral gene delivery [J]. Journal of the American Chemical Society,2012,134(10):4782-4789.
    [33]Newland B., Abu-Rub M., Naughton M., et al. GDNF Gene Delivery via a 2-(dimethylamino)ethyl methacrylate based cyclized knot polymer for neuronal cell applications [J]. ACS Chemical Neuroscience,2013,4(4):540-546.
    [34]Li J., Yang C., Li H., et al. Cationic Supramolecules composed of multiple oligoethylenimine-grafted β-cyclodextrins threaded on a polymer chain for efficient gene delivery [J]. Advanced Materials,2006,18(22):2969-2974.
    [35]Yang C., Li H., Goh S. H., et al. Cationic star polymers consisting of a-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors [J]. Biomaterials,2007,28(21): 3245-3254.
    [36]Zhao F., Yin H., Zhang Z., et al. Folic acid modified cationic Y-cyclodextrin-oligoethylenimine star polymer with bioreducible disulfide linker for efficient targeted gene delivery [J]. Biomacromolecules,2013,14(2):476-484.
    [37]Li J., Guo Z., Xin J., et al.21-Arm star polymers with different cationic groups based on cyclodextrin core for DNA delivery [J]. Carbohydrate Polymers,2010,79(2):277-283.
    [38]Al-Dosari M., Gao X. Nonviral gene delivery:principle, limitations, and recent progress [J]. AAPS J,2009,11(4):671-681.
    [39]van de Wetering P., Moret E. E., Schuurmans-nieuwenbroek n. m. e., et al. structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery [J]. Bioconjugate Chemistry,1999,10(4):589-597.
    [40]Zhang M., Liu L., Wu C., et al. Synthesis, characterization and application of well-defined environmentally responsive polymer brushes on the surface of colloid particles [J]. Polymer, 2007,48(7):1989-1997.
    [41]Shuai X., Merdan T., Unger F., et al. Novel biodegradable ternary copolymers hy-pei-g-pcl-b-peg:synthesis, characterization, and potential as efficient nonviral gene delivery vectors [J]. Macromolecules,2003,36(15):5751-5759.
    [42]Takeuchi K.-i., Ishihara M., Kawaura C., et al. Effect of zeta potential of cationic liposomes containing cationic cholesterol derivatives on gene transfection [J]. FEBS Letters,1996, 397(2-3):207-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700