半导体金属氧化物纳米结构的构筑及其光电化学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电化学过程中,光电转换效率主要由光电极决定。光电极材料形貌、结构的调控,对电极光电化学性能的提高起到重要的作用。
     开发化学性能稳定、对光的利用率高、光电转换效率高的电极材料是光电转换技术的重点。低维纳米材料和具分级结构的纳米材料,其独特的形貌和结构,能产生优异的电学、光学性质,在光电化学和电化学领域具有广阔的应用前景。单一光解水产氢材料自身光生电子空穴对易复合,光电转换效率较低。本论文中,我们合成一维有序阵列结构和具分级结构的半导体光电极材料,通过对材料的形貌、结构进行调控,同时对材料进行复合改性,开发具有优异光电化学性能的光电极复合材料。
     本论文的主要内容归纳如下:
     1.利用水热法在FTO衬底上制备了TiO2纳米棒阵列薄膜(TiO2NRs/FTO)。然后,于半封闭反应器中用热缩聚法,将具有可见光响应的类石墨氮化碳颗粒修饰到TiO2NRs/FTO表层。随后对复合材料的光电化学性能进行了研究。实验结果表明,与TiO2NRs/FTO相比,经类石墨氮化碳颗粒修饰后,扩展了材料对光的响应范围至可见光区,一维的阵列结构为电子的传输提供了直接的路径,复合材料的协同作用,抑制了光生电子和空穴的复合,提高了材料的光电化学性能和光电催化降解有机污染物的性能。
     2.利用两步电化学沉积法,在FTO衬底上制备了ZnO纳米管阵列薄膜(ZnONTs/FTO)。在前面的工作的基础上,将具有可见光响应的类石墨氮化碳颗粒热缩聚填充ZnO纳米管和管之间的空隙,或是沉积到ZnO纳米管内。以期让两者有更多的接触位点,实验结果表明,两者复合后,复合物的平带电势负移,载流子密度增大,抑制电子空穴对的复合,在沿ZnO纳米管传输时的复合,提高光电化学性能。
     3.通过水热氧化过程在铜片上合成了氧化铜纳米片;然后,通过表面刻蚀、成核、水热生长三步法,合成了分级结构的ZnO纳米花/CuO纳米片(ZnO NFs/CuO NPs)。考察了分级结构复合材料的光电化学性能,发现复合后,光电流响应和光电转换效率都提高了数倍,光电化学性能的提高主要归因于两种材料间的协同作用,抑制了光生电子空穴对的复合,同时分级结构能吸收更多可见光,为电子的传输提供了有效路径。
     4.合成了ZnO/CuxO核壳分级结构(ZnO shell/CuxO core)复合材料。首先用水热法,在铜片上合成了氧化铜纳米线,然后,以CuxO纳米线为生长位点,合成了ZnO纳米线包覆的CuxO核壳结构,即ZnO shell/CuxO core复合材料。实验结果表明,和单一材料相比,复合材料的光电化学性能得到极大提高。CuxO和ZnO的协同作用,及核壳分级结构ZnO的纳米线为电子传输提供的多重有效路径,光生电子-空穴对的有效分离,从而提高复合材料光电化学性能。
     5.采用一步水热法,在金属铜片上制备了CuO纳米片电极,构筑无酶型葡萄糖传感器。该传感器具有良好的选择性、稳定性、较高的灵敏度和抗其它小分子干扰的能力,实现了对葡萄糖含量的快速便捷检测。
In the PEC process, the solar conversion efficiency is mainly determined by thephotoelectrodes. Morphological and structural control of photoelectrode play an importantrole for enhancement of PEC properties.
     The development of photoelectrodes with high utilization of solar energy, high energyconversion efficiency and excellent stability is the key issue for PEC technology. Owing totheir unique morphologies and structure, low dimensional nanomaterials or nanocompositewith hierarchical structures, have been widely applied in photo-electrochemistry andelectrochemistry. The rapid recombination of photoinduced electrons and holes greatly limitsthe quantum efficiency of single photoelectrode matrial. In this dissertation, our work focusedon the synthesis of one dimensional, well organized arrays of semiconductive nanomaterials.We intend to improve the PEC properties of photoelectrode material by morphological andstructural control of photoelectrode matrials, as well as combination of two differentmaterials.
     The details are summerized briefly as follows:
     1. Firstly, TiO2nanorod arrays on FTO substrate were synthesized by hydrothermalprocess. After that, a facile thermal polycondensation process in half closed reactor wasconducted for the deposition of g-C3N4nanoparticles onto TiO2nanorod arrays. PECmeasurements were proformed with the g-C3N4/TiO2NRs nanocomposites. The experimentresults indicate that, after introducing g-C3N4, the absorption spectrum of the composite isexpanded to visible region of solar spectrum, the flat band shifted to a more negativepotential, and the donor density was also greatly increased. The one dimensional structureprovided direct path way for the transfer of electrons. Thus, the recombination ofphoto-induced electrons and holes was hindered, the PEC properties were greatly enhanced.
     2. ZnO nanotube arrays on FTO substrate were prepared by two-step electrochemicalprocesses. And then, g-C3N4nanoparticles were deposited into the interspaces of the ZnOnanotube arrays or into the inner wall of the ZnO nanotubes to provide more contact sites forZnO and g-C3N4. After coupling of ZnO nanotube arrays and g-C3N4, the flat band shifted toa more negative potential, and the donor density was also greatly increased. The one dimensional structure provided direct path way for electrons transfer, so the recombination ofphoto-induced electrons and holes was hindered, thus greatly enhanced the PEC properties.
     3. CuO nanoplatelets were synthesized on Cu substrate by a hydrothermal oxidationprocess, and then ZnO nanoflowers were grown on the CuO nanoplatelets by a three-stepprocedure consisting of etching, seed nucleation and hydrothermal growth. Theelectrochemical properties and photoelectrochemical properties of the ZnO/CuO areinvestigated. The PEC properties were greatly enhanced under visible light irradiation. This isattributed to the large contact area with the electrolyte and high conductive pathway forcharge carrier collection of the nanocomposite as well as the synergistic effect between thetwo components. The ZnO/CuO nanocomposite holds great potential for application for solarenergy conversion.
     4. Hierarchically branched ZnO/CuxO heterostructure was fabricated through a simplewet chemical method combined with a hydrothermal process. Under visible light irradiation,hierarchically branched ZnO/CuxO photoelectrode showed enhanced PEC properties. Theadhesive growth of ZnO nanowires on the CuxO backbones greatly improves the exposedsurface area, and the one-dimensional ZnO nanowires continuously provide conductivepathways for the transfer of photo-induced electron.
     5. The CuO nanoplatelets were fabricated on Cu foil by a one-step hydrothermal process.The attached growth of CuO nanoplatelets on Cu foil is easy to be integrated as an electrodefor enzyme-free sensing of glucose. An excellent selectivity, good stability, high sensitivityand anti-interference property was obtained, and the facile and quick determination ofglucose concentration is realized.
引文
[1] Becquerel E. On Electric Effects Under the Influence of Solar Radiation[Z].1839,9:561-567
    [2] Fujishima A., Honda K. Electrochemical Photolysis of Water at a SemiconductorElectrode[J]. Nature,1972,238(5358):37-38
    [3] Oregan B., Gratzel M. A Low-Cost, High-Efficiency Solar-Cell Based OnDye-Sensitized Colloidal TiO2Films[J]. Nature,1991,353(6346):737-740
    [4] Asagoe K., Ngamsinlapasathian S., Suzuki Y., et al. Addition of TiO2Nanowires inDifferent Polymorphs for Dye-Sensitized Solar Cells[J]. Central European Journal ofChemistry,2007,5(2):605-619
    [5] Kim D., Ghicov A., Albu S. P., et al. Bamboo-Type TiO2Nanotubes: ImprovedConversion Efficiency in Dye-Sensitized Solar Cells[J]. Journal of the AmericanChemical Society,2008,130(49):16454-16455
    [6] Zhou Z., Yuan S., Fan J., et al. CuInS2Quantum Dot-Sensitized TiO2NanorodArray Photoelectrodes: Synthesis and Performance Optimization[J]. NanoscaleResearch Letters,2012,7:652
    [7] Mor G. K., Shankar K., Paulose M., et al. Use of Highly-Ordered TiO2NanotubeArrays in Dye-Sensitized Solar Cells[J]. Nano Letters,2006,6(2):215-218
    [8] Shankar K., Mor G. K., Prakasam H. E., et al. Highly-Ordered TiO2Nanotube Arraysup to220μm in Length: Use in Water Photoelectrolysis and Dye-Sensitized SolarCells[J]. Nanotechnology,2007,18:06570
    [9] Liu B., Aydil E. S. Growth of Oriented Single-Crystalline Rutile TiO2Nanorods OnTransparent Conducting Substrates for Dye-Sensitized Solar Cells[J]. Journal of theAmerican Chemical Society,2009,131(11):3985-3990
    [10] Law M., Greene L. E., Johnson J. C., et al. Nanowire Dye-Sensitized Solar Cells[J].Nature Materials,2005,4(6):455-459
    [11] Wang X., Li G., Zhu H., et al. Vertically Aligned CdTe Nanotube Arrays On IndiumTin Oxide for Visible-Light-Driven Photoelectrocatalysis[J]. Applied CatalysisB-Environmental,2014,147:17-21
    [12] Kung C., Chen H., Lin C., et al. CoS Acicular Nanorod Arrays for the CounterElectrode of an Efficient Dye-Sensitized Solar Cell[J]. ACS Nano,2012,6(8):7016-7025
    [13] Sun M., Fu W., Li Q., et al. Embedded CdS nanorod arrays in PbS absorber layers:enhanced energy conversion efficiency in bulk heterojunction solar cells[J]. RscAdvances,2014,4(14):7178-7184
    [14] Han L., Hu P., Xu Z. K., et al. Electrodeposition and Photoelectrochemical Properties ofP-Type BiOIαCl1-αNanoplatelet Thin Films[J]. Electrochimica Acta,2014,115:263-268
    [15] Liu Y., Li W. Z., Li J., et al. Enhancing Photoelectrochemical Performance with aBilayer-Structured Film Consisting of Graphene-WO3Nanocrystals and WO3Vertically Plate-Like Arrays as Photoanodes[J]. Rsc Advances,2014,4(7):3219-3225
    [16] Jun H., Im B., Kim J. Y., et al. Photoelectrochemical Water Splitting Over OrderedHoneycomb Hematite Electrodes Stabilized by Alumina Shielding[J]. Energy&Environmental Science,2012,5(4):6375-6382
    [17] Han J., Fan F., Xu C., et al. Zno Nanotube-Based Dye-Sensitized Solar Cell and itsApplication in Self-Powered Devices[J]. Nanotechnology,2010,21:405203
    [18] Guan X., Huang S., Zhang Q., et al. Front-Side Illuminated CdS/CdSe Quantum DotsCo-Sensitized Solar Cells Based On TiO2Nanotube Arrays[J]. Nanotechnology,2011,22:465402
    [19] Zhang W., Jiang L., Ye J. Photoelectrochemical Study On Charge Transfer Propertiesof ZnO Nanowires Promoted by Carbon Nanotubes[J]. Journal of Physical Chemistry C,2009,113(36):16247-16253
    [20] Cheng H., Chiu W., Lee C., et al. Formation of Branched ZnO Nanowires FromSolvothermal Method and Dye-Sensitized Solar Cells Applications[J]. Journal ofPhysical Chemistry C,2008,112(42):16359-16364
    [21] Ko S. H., Lee D., Kang H. W., et al. Nanoforest of Hydrothermally Grown HierarchicalZno Nanowires for a High Efficiency Dye-Sensitized Solar Cell[J]. Nano Letters,2011,11(2):666-671
    [22] Xu F., Dai M., Lu Y., et al. Hierarchical ZnO Nanowire-Nanosheet Architectures forHigh Power Conversion Efficiency in Dye-Sensitized Solar Cells[J]. Journal ofPhysical Chemistry C,2010,114(6):2776-2782
    [23] Weintraub B., Wei Y., Wang Z. L. Optical Fiber/Nanowire Hybrid Structures forEfficient Three-Dimensional Dye-Sensitized Solar Cells[J]. AngewandteChemie-International Edition,2009,48(47):8981-8985
    [24] Kargar A., Jing Y., Kim S. J., et al. ZnO/CuO Heterojunction Branched Nanowires forPhotoelectrochemical Hydrogen Generation[J]. Acs Nano,2013,7(12):11112-11120
    [25] Kuang S., Yang L., Luo S., et al. Fabrication, Characterization andPhotoelectrochemical Properties of Fe2O3Modified TiO2Nanotube Arrays[J]. AppliedSurface Science,2009,255(16):7385-7388
    [26] Wang D. J., Sun J. R., Lue W. M., et al. Rectifying Behaviours of HeterojunctionsComposed of Manganites with Different Resistive Properties[J]. Journal of PhysicsD-Applied Physics,2007,40(17):5075-5079
    [27] Yin J., Bie L., Yuan Z. Photoelectrochemical Property of ZnFe2O4/TiO2Double-Layered Films[J]. Materials Research Bulletin,2007,42(8):1402-1406
    [28] Smith W., Wolcott A., Fitzmorris R. C., et al. Quasi-Core-Shell TiO2/WO3andWO3/TiO2Nanorod Arrays Fabricated by Glancing Angle Deposition for Solar WaterSplitting[J]. Journal of Materials Chemistry,2011,21(29):10792-10800
    [29] Wang J., Han Y., Feng M., et al. Preparation and Photoelectrochemical Characterizationof WO3/TiO2Nanotube Array Electrode[J]. Journal of Materials Science,2011,46(2):416-421
    [30] Smith W., Wolcott A., Fitzmorris R. C., et al. Quasi-core-shell TiO2/WO3andWO3/TiO2nanorod arrays fabricated by glancing angle deposition for solar watersplitting[J]. Journal of Materials Chemistry,2011,21(29):10792-10800
    [31] Su J., Guo L., Bao N., et al. Nanostructured WO3/BiVO4Heterojunction Films forEfficient Photoelectrochemical Water Splitting[J]. Nano Letters,2011,11(5):1928-1933
    [32] Hong S. J., Lee S., Jang J. S., et al. Heterojunction BiVO4/WO3Electrodes forEnhanced Photoactivity of Water Oxidation[J]. Energy&Environmental Science,2011,4(5):1781-1787
    [33] Vogel R., Hoyer P., Weller H. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3Particles as Sensitizers for Various Nanoporous Wide-Band Gap Semiconductors[J].Journal of Physical Chemistry,1994,98(12):3183-3188
    [34] Zhang X., Wang F., Huang H., et al. Carbon Quantum Dot Sensitized TiO2NanotubeArrays for Photoelectrochemical Hydrogen Generation Under Visible Light[J].Nanoscale,2013,5(6):2274-2278
    [35] Chen S. G., Paulose M., Ruan C., et al. Electrochemically Synthesized CdSNanoparticle-Modified TiO2Nanotube-Array Photoelectrodes: Preparation,Characterization, and Application to Photoelectrochemical Cells[J]. Journal ofPhotochemistry and Photobiology A-Chemistry,2006,177(2-3):177-184
    [36] Cheng C., Karuturi S. K., Liu L., et al. Quantum-Dot-Sensitized TiO2Inverse Opals forPhotoelectrochemical Hydrogen Generation[J]. Small,2012,8(1):37-42
    [37] Hotchandani S., Kamat P. V. Charge-Transfer Processes in Coupled SemiconductorSystem-Photochemistry and Photoelectrochemistry of the Colloidal CdS-ZnOSystem[J]. Journal of Physical Chemistry,1992,96(16):6834-6839
    [38] Tak Y., Hong S. J., Lee J. S., et al. Solution-Based Synthesis of a CdSNanoparticle/ZnO Nanowire Heterostructure Array[J]. Crystal Growth&Design,2009,9(6):2627-2632
    [39] Lin C., Lu Y., Hsieh C., et al. Surface Modification of Highly Ordered TiO2NanotubeArrays for Efficient Photoelectrocatalytic Water Splitting[J]. Applied Physics Letters,2009,94:113102
    [40] Cho S., Jang J., Lim S., et al. Solution-Based Fabrication of ZnO/ZnSe HeterostructureNanowire Arrays for Solar Energy Conversion[J]. Journal of Materials Chemistry,2011,21(44):17816-17822
    [41] Asahi R., Morikawa T., Ohwaki T., et al. Visible-Light Photocatalysis inNitrogen-Doped Titanium Oxides[J]. Science,2001,293(5528):269-271
    [42] Kleiman-Shwarsctein A., Hu Y., Forman A. J., et al. Electrodeposition of α-Fe2O3Doped with Mo Or Cr as Photoanodes for Photocatalytic Water Splitting[J]. Journal ofPhysical Chemistry C,2008,112(40):15900-15907
    [43] Hu Y., Kleiman-Shwarsctein A., Forman A. J., et al. Pt-Doped α-Fe2O3Thin FilmsActive for Photoelectrochemical Water Splitting[J]. Chemistry of Materials,2008,20(12):3803-3805
    [44] Kleiman-Shwarsctein A., Hu Y., Forman A. J., et al. Electrodeposition of α-Fe2O3doped with Mo or Cr as photoanodes for photocatalytic water splitting[J]. Journal ofPhysical Chemistry C,2008,112(40):15900-15907
    [45] Parmar K. P. S., Kang H. J., Bist A., et al. Photocatalytic and PhotoelectrochemicalWater Oxidation Over Metal-Doped Monoclinic BiVO4Photoanodes[J]. Chemsuschem,2012,5(10):1926-1934
    [46] Khan S., Al-Shahry M., Ingler W. B. Efficient Photochemical Water Splitting by aChemically Modified N-TiO2[J]. Science,2002,297(5590):2243-2245
    [47] Park J. H., Kim S., Bard A. J. Novel Carbon-Doped TiO2Nanotube Arrays with HighAspect Ratios for Efficient Solar Water Splitting[J]. Nano Letters,2006,6(1):24-28
    [48] Raja K. S., Misra M., Mahajan V. K., et al. Photo-Electrochemical HydrogenGeneration Using Band-Gap Modified Nanotubular Titanium Oxide in Solar Light[J].Journal of Power Sources,2006,161(2):1450-1457
    [49] Hoang S., Guo S., Hahn N. T., et al. Visible Light Driven Photoelectrochemical WaterOxidation On Nitrogen-Modified TiO2Nanowires[J]. Nano Letters,2012,12(1):26-32
    [50] Yang X., Wolcott A., Wang G., et al. Nitrogen-Doped ZnO Nanowire Arrays forPhotoelectrochemical Water Splitting[J]. Nano Letters,2009,9(6):2331-2336
    [51] Wang P., Huang B., Dai Y., et al. Plasmonic Photocatalysts: Harvesting Visible Lightwith Noble Metal Nanoparticles[J]. Physical Chemistry Chemical Physics,2012,14(28):9813-9825
    [52] Brus L. Noble Metal Nanocrystals: Plasmon Electron Transfer Photochemistry andSingle-Molecule Raman Spectroscopy[J]. Accounts of Chemical Research,2008,41(12):1742-1749
    [53] Gao H., Liu C., Jeong H. E., et al. Plasmon-Enhanced Photocatalytic Activity of IronOxide On Gold Nanopillars[J]. ACS Nano,2012,6(1):234-240
    [54] Liu Z., Hou W., Pavaskar P., et al. Plasmon Resonant Enhancement of PhotocatalyticWater Splitting Under Visible Illumination[J]. Nano Letters,2011,11(3):1111-1116
    [55] Zhang Z., Zhang L., Hedhili M. N., et al. Plasmonic Gold Nanocrystals Coupled withPhotonic Crystal Seamlessly On TiO2Nanotube Photoelectrodes for Efficient VisibleLight Photoelectrochemical Water Splitting[J]. Nano Letters,2013,13(1):14-20
    [56] Pu Y., Wang G., Chang K., et al. Au Nanostructure-Decorated TiO2NanowiresExhibiting Photoactivity Across Entire UV-Visible Region for PhotoelectrochemicalWater Splitting[J]. Nano Letters,2013,13(8):3817-3823
    [57] Wang P., Huang B., Qin X., et al. Ag@Agcl: A Highly Efficient and StablePhotocatalyst Active Under Visible Light[J]. Angewandte Chemie-International Edition,2008,47(41):7931-7933
    [58] Wang P., Huang B., Zhang X., et al. Highly Efficient Visible-Light PlasmonicPhotocatalyst Ag@Agbr[J]. Chemistry-A European Journal,2009,15(8):1821-1824
    [59] Wang P., Huang B., Lou Z., et al. Synthesis of Highly Efficient Ag@Agcl PlasmonicPhotocatalysts with Various Structures[J]. Chemistry-A European Journal,2010,16(2):538-544
    [60] Wang P., Huang B., Zhang Q., et al. Highly Efficient Visible Light PlasmonicPhotocatalyst Ag@Ag(Br,I)[J]. Chemistry-A European Journal,2010,16(33):10042-10047
    [61] Franklin E. C. The Ammono Carbonic Acids[J]. Journal of the American ChemicalSociety,1922,44:486-509
    [62] Redemann C. E., Lucas H. J. Some Derivatives of Cyameluric Acid and ProbableStructures of Melam, Melem and Melon[J]. Journal of the American Chemical Society,1940,62:842-846
    [63] May H. Pyrolysis of Melamine[Z].Journal of Applied Chemistry,1959,9:340-344
    [64] Finkelshtein A. L., Spiridonova N. V. Chemical Properties and Molecular Structure ofDerivatives of Sym--Heptazine[1,3,4,6,7,9,9B-Heptaazaphenalene,Tri-1,3,5,-Triazine[J]. Russian Chemical Reviews,1964,33(7):400-405
    [65] Miller D. R., Holst J. R., Gillan E. G. Nitrogen-Rich Carbon Nitride Network MaterialsVia the Thermal Decomposition of2,5,8-Triazido-S-Heptazine[J]. Inorganic Chemistry,2007,46(7):2767-2774
    [66] Hosmane R. S., Rossman M. A., Leonard N. J. Synthesis and Structure ofTri-S-Triazine[J]. Journal of the American Chemical Society,1982,104(20):5497-5499
    [67] Shahbaz M., Urano S., Lebreton P. R., et al. Tri-Trianzine-Synthesis,ChemicalBehavior,and Spectroscopic and Theoretical Probes of Valence Orbital Structure[J].Journal of the American Chemical Society,1984,106(10):2805-2811
    [68] Halpern A. M., Rossman M. A., Hosmane R. S., et al. Photophysics of the S1/S0Transition in Tri-Triazine[J]. Journal of Physical Chemistry,1984,88(19):4324-4326
    [69] Liu A. Y., Cohen M. L. Prediction of New Low Compressibility Solid[J]. Science,1989,245(4920):841-842
    [70] Teter D. M., Hemley R. J. Low-Compressibility Carbon Nitrides[J]. Science,1996,271(5245):53-55
    [71] Kroke E., Schwarz M., Horath-Bordon E., et al. Tri-S-Triazine Derivatives. Part I. FromTrichloro-Tri-S-Triazine to Graphitic C3N4Structures[J]. New Journal of Chemistry,2002,26(5):508-512
    [72] Goettmann F., Fischer A., Antonietti M., et al. Metal-Free Catalysis of SustainableFriedel-Crafts Reactions: Direct Activation of Benzene by Carbon Nitrides to Avoid theUse of Metal Chlorides and Halogenated Compounds[J]. Chemical Communications,2006(43):4530-4532
    [73] Wang Y., Wang X., Antonietti M. Polymeric Graphitic Carbon Nitride as aHeterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis toSustainable Chemistry[J]. Angewandte Chemie-International Edition2012,51(1):68-89
    [74] Niu C. M., Lu Y. Z., Lieber C. M. Experimental Realization of the Covalent SolidCarbon Nitride[J]. Science,1993,261(5119):334-337
    [75] Yu K. M., Cohen M. L., Haller E. E., et al. Observation of Crystalline C3N4[J]. PhysicalReview B,1994,49(7):5034-5037
    [76] Muhl S., Gaona-Couto A., Mendez J. M., et al. Production and Characterisation ofCarbon Nitride Thin Films Produced by a Graphite Hollow Cathode System[J]. ThinSolid Films,1997,308:228-232
    [77] Kuo C. T., Wu J. Y., Lu T. R. Synthesizing Crystalline Carbon Nitrides by Using TwoDifferent Bio-Molecular Materials[J]. Materials Chemistry and Physics,2001,72(2):251-257
    [78] Andreyev A., Akaishi M., Golberg D. Synthesis of Nanocrystalline Nitrogen-RichCarbon Nitride Powders at High Pressure[J]. Diamond and Related Materials,2002,11(12):1885-1889
    [79] Montigaud H., Tanguy B., Demazeau G., et al. Solvothermal Synthesis of the GraphiticForm of C3N4as Macroscopic Sample[J]. Diamond and Related Materials,1999,8(8-9):1707-1710
    [80] Li C., Cao C. B., Zhu H. S. Graphitic Carbon Nitride Thin Films Deposited byElectrodeposition[J]. Materials Letters,2004,58(12-13):1903-1906
    [81] Li C., Cao C. B., Zhu H. S. Preparation of Graphitic Carbon Nitride byElectrodeposition[J]. Chinese Science Bulletin,2003,48(16):1737-1740
    [82] Martingil J., Martingil F. J., Sarikaya M., et al. Evidence of a Low CompressibilityCarbon Nitride with Defect-Zincblende Structure[J]. Journal of Applied Physics,1997,81(6):2555-2559
    [83] Guo L. P., Chen Y., Wang E. G., et al. Identification of a new tetragonal C-N phase[J].Journal of Crystal Growth,1997,178(4):639-644
    [84] He J. L., Chang W. L. Preparation and characterization of RF-PECVD deposited filmscontaining β-C3N4microcrystallites[J]. Surface&Coatings Technology,1998,99(1-2):184-190
    [85] Gu Y. S., Pan L. Q., Zhao M. X., et al. Formation of β-C3N4by implantation of N+intographite[J]. Progress In Natural Science,1996,6(2):248-252
    [86] Komatsu T., Samejima M. Preparation of carbon nitride C2N by shock-wavecompression of poly(aminomethineimine)[J]. Journal of Materials Chemistry,1998,8(1):193-196
    [87] Sekine T., Kanda H., Bando Y., et al. A graphite carbon nitride[J]. Journal of materialsScience Letters,1990,9(12):1376-1378
    [88] Mishra S. K., Pathak L. C. Deposition of crystalline C-N film by arc evaporationprocess[J]. Materials Letters,2005,59(27):3481-3484
    [89] Jurgens B., Irran E., Senker J., et al. Melem (2,5,8-triamino-tri-s-triazine), an importantintermediate during condensation of melamine rings to graphitic carbon nitride:Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR,and theoretical studies[J]. Journal of The American Chemical Society,2003,125(34):10288-10300
    [90] Thomas A., Fischer A., Goettmann F., et al. Graphitic carbon nitride materials:variation of structure and morphology and their use as metal-free catalysts[J]. Journalof Materials Chemistry,2008,18(41):4893-4908
    [91] Goettmann F., Fischer A., Antonietti M., et al. Chemical Synthesis of MesoporousCarbon Nitrides Using Hard Templates and their Use as a Metal-Free Catalyst forFriedel-Crafts Reaction of Benzene[J]. Angewandte Chemie-International Edition,2006,45(27):4467-4471
    [92] Ham Y., Maeda K., Cha D., et al. Synthesis and Photocatalytic Activity ofPoly(Triazine Imide)[J]. Chemistry-An Asian Journal,2013,8(1):218-224
    [93] Schwinghammer K., Tuffy B., Mesch M. B., et al. Triazine-Based Carbon Nitrides forVisible-Light-Driven Hydrogen Evolution[J]. Angewandte Chemie-InternationalEdition,2013,52(9):2435-2439
    [94] Zhang Y., Antonietti M. Photocurrent Generation by Polymeric Carbon Nitride Solids:An Initial Step Towards a Novel Photovoltaic System[J]. Chemistry-An Asian Journal,2010,5(6):1307-1311
    [95] Komatsu T., Nakamura T. Polycondensation/Pyrolysis of Tris-S-Triazine DerivativesLeading to Graphite-Like Carbon Nitrides[J]. Journal of Materials Chemistry,2001,11(2):474-478
    [96] Yan S. C., Li Z. S., Zou Z. G. Photodegradation Performance of G-C3N4Fabricated byDirectly Heating Melamine[J]. Langmuir,2009,25(17):10397-10401
    [97] Gillan E. G. Synthesis of Nitrogen-Rich Carbon Nitride Networks From an EnergeticMolecular Azide Precursor[J]. Chemistry of Materials,2000,12(12):3906-3912
    [98] Zhang Y., Thomas A., Antonietti M., et al. Activation of Carbon Nitride Solids byProtonation: Morphology Changes, Enhanced Ionic Conductivity, and PhotoconductionExperiments[J]. Journal of the American Chemical Society,2009,131(1):50-51
    [99] Tyborski T., Merschjann C., Orthmann S., et al. Tunable Optical Transition inPolymeric Carbon Nitrides Synthesized Via Bulk Thermal Condensation[J]. Journal ofPhysics-Condensed Matter,2012,24:16220-16229
    [100] Wei W., Jacob T. Strong Excitonic Effects in the Optical Properties of GraphiticCarbon Nitride G-C3N4From First Principles[J]. Physical Review B,2013,87:085202
    [101] Pan H., Zhang Y., Shenoy V. B., et al. Ab Initio Study On a Novel Photocatalyst:Functionalized Graphitic Carbon Nitride Nanotube[J]. ACS Catalysis,2011,1(2):99-104
    [102] Ma X., Lv Y., Xu J., et al. A Strategy of Enhancing the Photoactivity of G-C3N4ViaDoping of Nonmetal Elements: A First-Principles Study[J]. Journal of PhysicalChemistry C,2012,116(44):23485-23493
    [103] Wang X., Maeda K., Thomas A., et al. A Metal-Free Polymeric Photocatalyst forHydrogen Production From Water Under Visible Light[J]. Nature Materials,2009,8(1):76-80
    [104] Zhang J., Chen X., Takanabe K., et al. Synthesis of a Carbon Nitride Structure forVisible-Light Catalysis by Copolymerization[J]. Angewandte Chemie-InternationalEdition,2010,49(2):441-444
    [105] Cui Y., Ding Z., Liu P., et al. Metal-Free Activation of H2O2by G-C3N4Under VisibleLight Irradiation for the Degradation of Organic Pollutants[J]. Physical ChemistryChemical Physics,2012,14(4):1455-1462
    [106] Chen X., Jun Y., Takanabe K., et al. Ordered Mesoporous SBA-15Type GraphiticCarbon Nitride: A Semiconductor Host Structure for Photocatalytic HydrogenEvolution with Visible Light[J]. Chemistry of Materials,2009,21(18):4093-4095
    [107] Yan H., Huang Y. Polymer Composites of Carbon Nitride and Poly(3-Hexylthiophene)to Achieve Enhanced Hydrogen Production From Water Under Visible Light[J].Chemical Communications,2011,47(14):4168-4170
    [108] Wang X., Maeda K., Chen X., et al. Polymer Semiconductors for ArtificialPhotosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride withVisible Light[J]. Journal of the American Chemical Society,2009,131(5):1680-1681
    [109] Hong J., Xia X., Wang Y., et al. Mesoporous Carbon Nitride with in Situ Sulfur Dopingfor Enhanced Photocatalytic Hydrogen Evolution From Water Under Visible Light[J].Journal of Materials Chemistry,2012,22(30):15006-15012
    [110] Niu P., Zhang L., Liu G., et al. Graphene-Like Carbon Nitride Nanosheets for ImprovedPhotocatalytic Activities[J]. Advanced Functional Materials,2012,22(22):4763-4770
    [111] Yang S., Gong Y., Zhang J., et al. Exfoliated Graphitic Carbon Nitride Nanosheets asEfficient Catalysts for Hydrogen Evolution Under Visible Light[J]. Advanced Materials,2013,25(17):2452-2456
    [112] Liu G., Niu P., Sun C., et al. Unique Electronic Structure Induced High Photoreactivityof Sulfur-Doped Graphitic C3N4[J]. Journal of the American Chemical Society,2010,132(33):11642-11648
    [113] Hou Y., Laursen A. B., Zhang J., et al. Layered Nanojunctions for Hydrogen-EvolutionCatalysis[J]. Angewandte Chemie-International Edition,2013,52(13):3621-3625
    [114] Xiao Y., Patolsky F., Katz E., et al."Plugging Into Enzymes": Nanowiring of RedoxEnzymes by a Gold Nanoparticle[J]. Science,2003,299(5614):1877-1881
    [115] Granot E., Katz E., Basnar B., et al. Enhanced Bioelectrocatalysis UsingAu-Nanoparticle/Polyaniline Hybrid Systems in Thin Films and Microstructured RodsAssembled On Electrodes[J]. Chemistry of Materials,2005,17(18):4600-4609
    [116] Qiu H., Xue L., Ji G., et al. Enzyme-Modified Nanoporous Gold-Based ElectrochemicalBiosensors[J]. Biosensors&Bioelectronics,2009,24(10):3014-3018
    [117] Qiu H., Xu C., Huang X., et al. Adsorption of Laccase On the Surface of NanoporousGold and the Direct Electron Transfer Between them[J]. Journal of Physical ChemistryC,2008,112(38):14781-14785
    [118] Qiu H., Xu C., Huang X., et al. Immobilization of Laccase On Nanoporous Gold:Comparative Studies On the Immobilization Strategies and the Particle Size Effects[J].Journal of Physical Chemistry C,2009,113(6):2521-2525
    [119] Qiu H., Li Y., Ji G., et al. Immobilization of Lignin Peroxidase On Nanoporous Gold:Enzymatic Properties and in Situ Release of H2O2by Co-Immobilized GlucoseOxidase[J]. Bioresource Technology,2009,100(17):3837-3842
    [120] Jena B. K., Raj C. R. Electrochemical Biosensor Based On Integrated Assembly ofDehydrogenase Enzymes and Gold Nanoparticles[J]. Analytical Chemistry,2006,78(18):6332-6339
    [121] Zhou N., Wang J., Chen T., et al. Enlargement of Gold Nanoparticles On the Surface ofa Self-Assembled Monolayer Modified Electrode: A Mode in Biosensor Design[J].Analytical Chemistry,2006,78(14):5227-5230
    [122] Sanz V. C., Mena M. L., Gonzalez-Cortes A., et al. Development of a TyrosinaseBiosensor Based On Gold Nanoparticles-Modified Glassy Carbon Electrodes-Application to the Measurement of a Bioelectrochemical Polyphenols Index inWines[J]. Analytica Chimica Acta,2005,528(1):1-8
    [123] Carralero V., Mena M. L., Gonzalez-Cortes A., et al. Development of a High AnalyticalPerformance-Tyrosinase Biosensor Based On a Composite Graphite-Teflon ElectrodeModified with Gold Nanoparticles[J]. Biosensors&Bioelectronics,2006,22(5):730-736
    [124] Zuo X., He S., Li D., et al. Graphene Oxide-Facilitated Electron Transfer ofMetalloproteins at Electrode Surfaces[J]. Langmuir,2010,26(3):1936-1939
    [125] Karyakin A. A., Gitelmacher O. V., Karyakina E. E. Prussian Blue BasedFirst-Generation Biosensor-A Sensitive Amperometric Electrode for Glucose[J].Analytical Chemistry,1995,67(14):2419-2423
    [126] Zhao Z., Qiao M., Yin F., et al. Amperometric Glucose Biosensor Based OnSelf-Assembly Hydrophobin with High Efficiency of Enzyme Utilization[J].Biosensors&Bioelectronics,2007,22(12):3021-3027
    [127] Liu Q., Lu X., Li J., et al. Direct Electrochemistry of Glucose Oxidase andElectrochemical Biosensing of Glucose On Quantum Dots/Carbon NanotubesElectrodes[J]. Biosensors&Bioelectronics,2007,22(12):3203-3209
    [128] Wisitsoraat A., Karuwan C., Wong-Ek K., et al. High Sensitivity ElectrochemicalCholesterol Sensor Utilizing a Vertically Aligned Carbon Nanotube Electrode withElectropolymerized Enzyme Immobilization[J]. Sensors,2009,9(11):8658-8668
    [129] Jiang L., Zhang W. Electroanalysis of Dopamine at RuO2Modified Vertically AlignedCarbon Nanotube Electrode[J]. Electroanalysis,2009,21(16):1811-1815
    [130] Jiang L., Zhang W. A Highly Sensitive Nonenzymatic Glucose Sensor Based On CuONanoparticles-Modified Carbon Nanotube Electrode[J]. Biosensors&Bioelectronics,2010,25(6):1402-1407
    [131] Li X., Yao J., Liu F., et al. Nickel/Copper Nanoparticles Modified TiO2Nanotubes forNon-Enzymatic Glucose Biosensors[J]. Sensors and Actuators B-Chemical,2013,181:501-508
    [132] Zheng X., Zhou X., Ji X., et al. Simultaneous Determination of Ascorbic Acid,Dopamine and Uric Acid Using Poly(4-Aminobutyric Acid) Modified Glassy CarbonElectrode[J]. Sensors and Actuators B-Chemical,2013,178:359-365
    [133] Xi F., Zhao D., Wang X., et al. Non-Enzymatic Detection of Hydrogen Peroxide Usinga Functionalized Three-Dimensional Graphene Electrode[J]. ElectrochemistryCommunications,2013,26:81-84
    [134] Sim H., Kim J., Lee S., et al. High-Sensitivity Non-Enzymatic Glucose BiosensorBased On Cu(OH)2Nanoflower Electrode Covered with Boron-Doped NanocrystallineDiamond Layer[J]. Thin Solid Films,2012,520(24):7219-7223
    [135] Won Y., Huh K., Stanciu L. A. Au Nanospheres and Nanorods for Enzyme-FreeElectrochemical Biosensor Applications[J]. Biosensors&Bioelectronics,2011,26(11):4514-4519
    [136] Lee K. K., Loh P. Y., Sow C. H., et al. Coooh Nanosheet Electrodes: SimpleFabrication for Sensitive Electrochemical Sensing of Hydrogen Peroxide andHydrazine[J]. Biosensors&Bioelectronics,2013,39(1):255-260
    [137] Reitz E., Jia W., Gentile M., et al. CuO Nanospheres Based Nonenzymatic GlucoseSensor[J]. Electroanalysis,2008,20(22):2482-2486
    [138] Cao X., Wang N., Wang L., et al. A Novel Non-Enzymatic Hydrogen PeroxideBiosensor Based On Ultra long Manganite MnooH Nanowires[J]. Sensors andActuators B-Chemical,2010,147(2):730-734
    [139] Xi L., Ren D., Luo J., et al. Electrochemical Analysis of Ascorbic Acid Using CopperNanoparticles/Polyaniline Modified Glassy Carbon Electrode[J]. Journal ofElectroanalytical Chemistry,2010,650(1):127-134
    [140] Gao H., Xiao F., Ching C. B., et al. One-Step Electrochemical Synthesis of PtNiNanoparticle-Graphene Nanocomposites for Nonenzynnatic Amperometric GlucoseDetection[J]. ACS Applied Materials&Interfaces,2011,3(8):3049-3057
    [141] Huang Y., Cheng C., Tian X., et al. Low-potential amperometric detection of dopaminebased on MnO2nanowires/chitosan modified gold electrode[J]. Electrochimica Acta,2013,89:832-839
    [1] Fujishima A., Honda K. Electrochemical Photolysis of Water at a SemiconductorElectrode[J]. Nature,1972,238(5358):37-38
    [2] Kumar A., Madaria A. R., Zhou C. Growth of Aligned Single-Crystalline Rutile TiO2Nanowires On Arbitrary Substrates and their Application in Dye-Sensitized SolarCells[J]. Journal of Physical Chemistry C,2010,114(17):7787-7792
    [3] Shankar K., Basham J. I., Allam N. K., et al. Recent Advances in the Use of TiO2Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry[J]. Journal ofPhysical Chemistry C,2009,113(16):6327-6359
    [4] Feng X., Shankar K., Varghese O. K., et al. Vertically Aligned Single Crystal TiO2Nanowire Arrays Grown Directly On Transparent Conducting Oxide Coated Glass:Synthesis Details and Applications[J]. Nano Letters,2008,8(11):3781-3786
    [5] Khan S., Sultana T. Photoresponse of N-TiO2Thin Film and Nanowire Electrodes[J].Solar Energy Materials and Solar Cells,2003,76:211-221
    [6] Liu M., Snapp N. D. L., Park H. Water Photolysis with a Cross-Linked Titanium DioxideNanowire Anode[J]. Chemical Science,2011,2(1):80-87
    [7] Lee J., Choi J., Lee J., et al. Electrostatic Capacitance of TiO2Nanowires in a PorousAlumina Template[J]. Nanotechnology,2005,16(9):1449-1453
    [8] Shankar K., Mor G. K., Prakasam H. E., et al. Highly-Ordered TiO2Nanotube Arrays Upto220μm in Length: Use in Water Photoelectrolysis and Dye-Sensitized Solar Cells[J].Nanotechnology,2007,18(0657076)
    [9] Liu B., Aydil E. S. Growth of Oriented Single-Crystalline Rutile TiO2Nanorods OnTransparent Conducting Substrates for Dye-Sensitized Solar Cells[J]. Journal of theAmerican Chemical Society,2009,131(11):3985-3990
    [10] Linsebigler A. L., Lu G. Q., Yates J. T. Photocatalysis On TiO2Surfaces-Principles,Mechanisms, and Selected Results[J]. Chemical Reviews,1995,95(3):735-758
    [11] Hendry E., Koeberg M., O'Regan B., et al. Local Field Effects On Electron Transport inNanostructured TiO2Revealed by Terahertz Spectroscopy[J]. Nano Letters,2006,6(4):755-759
    [12] Salvador P. Hole Diffusion Length in N-TiO2Single-Crystal and SinteredElectrodes-Photoelectrochemical Determination and Comparative-Analysis[J]. Journalof Applied Physics,1984,55(8):2977-2985
    [13] Berger T., Sterrer M., Diwald O., et al. Light-Induced Charge Separation in AnataseTiO2Particles[J]. Journal of Physical Chemistry B,2005,109(13):6061-6068
    [14] Kumar S., Fedorov A. G., Gole J. L. Photodegradation of Ethylene Using Visible LightResponsive Surfaces Prepared From Titania Nanoparticle Slurries[J]. Applied CatalysisB-Environmental,2005,57(2):93-107
    [15] Irie H., Watanabe Y., Hashimoto K. Nitrogen-Concentration Dependence OnPhotocatalytic Activity of TiO2-xNxPowders[J]. Journal of Physical Chemistry B,2003,107(23):5483-5486
    [16] Xiang Q., Yu J., Jaroniec M. Nitrogen and Sulfur Co-Doped TiO2Nanosheets withExposed {001} Facets: Synthesis, Characterization and Visible-Light PhotocatalyticActivity[J]. Physical Chemistry Chemical Physics,2011,13(11):4853-4861
    [17] Mohapatra S. K., Misra M., Mahajan V. K., et al. Design of a Highly EfficientPhotoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application ofTio2-xCxNanotubes as a Photoanode and Pt/TiO2Nanotubes as a Cathode[J]. Journal ofPhysical Chemistry C,2007,111(24):8677-8685
    [18] Nada A. A., Barakat M. H., Hamed H. A., et al. Studies On the Photocatalytic HydrogenProduction Using Suspended Modified TiO2Photocatalysts[J]. International Journal ofHydrogen Energy,2005,30(7):687-691
    [19] Baker D. R., Kamat P. V. Photosensitization of TiO2Nanostructures with CdS QuantumDots: Particulate Versus Tubular Support Architectures[J]. Advanced FunctionalMaterials,2009,19(5):805-811
    [20] Asahi R., Morikawa T., Ohwaki T., et al. Visible-Light Photocatalysis inNitrogen-Doped Titanium Oxides[J]. Science,2001,293(5528):269-271
    [21] Wu Z., Dong F., Zhao W., et al. Visible Light Induced Electron Transfer Process OverNitrogen Doped TiO2Nanocrystals Prepared by Oxidation of Titanium Nitride[J].Journal of Hazardous Materials,2008,157(1):57-63
    [22] Rattanakam R., Supothina S. Visible-Light-Sensitive N-Doped TiO2PhotocatalystsPrepared by a Mechanochemical Method: Effect of a Nitrogen Source[J]. Research OnChemical Intermediates,2009,35(3):263-269
    [23] Dong F., Zhao W., Wu Z., et al. Band Structure and Visible Light Photocatalytic Activityof Multi-Type Nitrogen Doped TiO2Nanoparticles Prepared by ThermalDecomposition[J]. Journal of Hazardous Materials,2009,162(2-3):763-770
    [24] Li Y., Ma G., Peng S., et al. Boron and Nitrogen Co-Doped Titania with EnhancedVisible-Light Photocatalytic Activity for Hydrogen Evolution[J]. Applied SurfaceScience,2008,254(21):6831-6836
    [25] Mitoraj D., Kisch H. The Nature of Nitrogen-Modified Titanium Dioxide PhotocatalystsActive in Visible Light[J]. Angewandte Chemie-International Edition,2008,47(51):9975-9978
    [26] Wang J. S., Yin S., Komatsu M., et al. Photo-Oxidation Properties of Nitrogen DopedSrtio3Made by Mechanical Activation[J]. Applied Catalysis B-Environmental,2004,52(1):11-21
    [27] Reyes-Gil K. R., Sun Y., Reyes-Garcia E., et al. Characterization of Photoactive Centersin N-Doped In2O3Visible Photocatalysts for Water Oxidation[J]. Journal of PhysicalChemistry C,2009,113(28):12558-12570
    [28] Li X., Kikugawa N., Ye J. Nitrogen-Doped Lamellar Niobic Acid with VisibleLight-Responsive Photocatalytic Activity[J]. Advanced Materials,2008,20(20):3816
    [29] Li X., Kikugawa N., Ye J. A Comparison Study of Rhodamine B Photodegradation OverNitrogen-Doped Lamellar Niobic Acid and Titanic Acid Under Visible-LightIrradiation[J]. Chemistry-A European Journal,2009,15(14):3538-3545
    [30] Li G., Yang N., Wang W., et al. Synthesis, Photophysical and Photocatalytic Propertiesof N-Doped Sodium Niobate Sensitized by Carbon Nitride[J]. Journal of PhysicalChemistry C,2009,113(33):14829-14833
    [31] Wang X., Maeda K., Thomas A., et al. A metal-free polymeric photocatalyst forhydrogen production from water under visible light[J]. Nature Materials,2009,8(1):76-80
    [32] Yan S. C., Li Z. S., Zou Z. G. Photodegradation Performance of G-C3N4Fabricated byDirectly Heating Melamine[J]. Langmuir,2009,25(17):10397-10401
    [33] Zhang Y., Thomas A., Antonietti M., et al. Activation of Carbon Nitride Solids byProtonation: Morphology Changes, Enhanced Ionic Conductivity, and PhotoconductionExperiments[J]. Journal of the American Chemical Society,2009,131(1):50-52
    [34] Liu L., Ma D., Zheng H., et al. Synthesis and Characterization of Microporous CarbonNitride[J]. Microporous and Mesoporous Materials,2008,110(2-3):216-222
    [35] Gao Y. F., Masuda Y., Peng Z. F., et al. Room Temperature Deposition of a TiO2ThinFilm From Aqueous Peroxotitanate Solution[J]. Journal of Materials Chemistry,2003,13(3):608-613
    [36] Benkara S Z. S. Preparation and Characterization of ZnO Nanorods Grown Into AlignedTiO2Nanotube Array[Z]. Journal of Materials and Environmental Science,2010:1,173-188
    [37] Sathish M., Viswanathan B., Viswanath R. P., et al. Synthesis, Characterization,Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2Nanocatalyst[J]. Chemistry of Materials,2005,17(25):6349-6353
    [38] Sun Y., Li C., Xu Y., et al. Chemically Converted Graphene as Substrate forImmobilizing and Enhancing the Activity of a Polymeric Catalyst[J]. ChemicalCommunications,2010,46(26):4740-4742
    [39] Saha N. C., Tompkins H. G. Titanium Nitride Oxidation Chemistry-an X-RayPhotoelectron-Spectroscopy Study[J]. Journal of Applied Physics,1992,72(7):3072-3079
    [40] Guillot J., Jouaiti A., Imhoff L., et al. Nitrogen Plasma Pressure Influence On theComposition of TiNxOySputtered Films[J]. Surface and Interface Analysis,2002,33(7):577-582
    [41] Saison T., Chemin N., Chaneac C., et al. Bi2O3, BiVO4, and Bi2WO6: Impact of SurfaceProperties on Photocatalytic Activity under Visible Light[J]. Journal of PhysicalChemistry C,2011,115(13):5657-5666
    [42] Zhang X., Ai Z., Jia F., et al. Generalized one-pot synthesis, characterization, andphotocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J].Journal of Physical Chemistry C,2008,112(3):747-753
    [43] Khabashesku V. N., Zimmerman J. L., Margrave J. L. Powder synthesis andcharacterization of amorphous carbon nitride[J]. Chemistry of Materials,2000,12(11):3264-3270
    [1] Liang C. H., Terabe K., Hasegawa T., et al. Ionic-electronic conductor nanostructures:Template-confined growth and nonlinear electrical transport[J]. Small,2005,1(10):971-975
    [2] Dong W., Dong H., Wang Z. L., et al. Ordered array of gold nanoshells interconnectedwith gold nanotubes fabricated by double templating[J]. Advanced Materials,2006,18(6):755-759
    [3] Matsumoto F., Harada M., Nishio K., et al. Nanometer-scale patterning of DNA incontrolled intervals on a gold-disk array fabricated using ideally ordered anodic porousalumina[J]. Advanced Materials,2005,17(13):1609-1612
    [4] Taylor K. M. L., Kim J. S., Rieter W. J., et al. Mesoporous silica nanospheres as highlyefficient MRI contrast agents[J]. Journal of the American Chemical Society,2008,130(7):2154-2155
    [5] Min Y. S., Bae E. J., Jeong K. S., et al. Ruthenium oxide nanotube arrays fabricated byatomic layer deposition using a carbon nanotube template[J]. Advanced Materials,2003,15(12):1019-1022
    [6] Kim W., Lee M. Fabrication of a porous polyimide membrane using a silicon nanowirearray as a emplate[J]. Materials Letters,2009,63(11):933-936
    [7] Tao F., Guan M., Jiang Y., et al. An easy way to construct an ordered array of nickelnanotubes: The triblock-copolymer-assisted hard-template method[J]. AdvancedMaterials,2006,18(16):2161-2164
    [8] Lu M., Song J., Lu M., et al. ZnO-ZnS Heterojunction and ZnS Nanowire Arrays forElectricity Generation[J]. ACS Nano,2009,3(2):357-362
    [9] Qin Y., Yang R., Wang Z. L. Growth of Horizonatal ZnO Nanowire Arrays on AnySubstrate[J]. Journal of Physical Chemistry C,2008,112(48):18734-18736
    [10] Xu S., Lao C., Weintraub B., et al. Density-controlled growth of aligned ZnO nanowirearrays by seedless chemical approach on smooth surfaces[J]. Journal of MaterialsResearch,2008,23(8):2072-2077
    [11] Yang X., Wolcott A., Wang G., et al. Nitrogen-Doped ZnO Nanowire Arrays forPhotoelectrochemical Water Splitting[J]. Nano Letters,2009,9(6):2331-2336
    [12] Martinson A. B. F., Elam J. W., Hupp J. T., et al. ZnO nanotube based dye-sensitizedsolar cells[J]. Nano Letters,2007,7(8):2183-2187
    [13] Hwang Y. J., Hahn C., Liu B., et al. Photoelectrochemical Properties of TiO2NanowireArrays: A Study of the Dependence on Length and Atomic Layer Deposition Coating[J].Acs Nano,2012,6(6):5060-5069
    [14] Ameen S., Akhtar M. S., Kim Y. S., et al. Controlled synthesis and photoelectrochemicalproperties of highly ordered TiO2nanorods[J]. RSC Advances,2012,2(11):4807-4813
    [15] Mor G. K., Shankar K., Paulose M., et al. Use of highly-ordered TiO2nanotube arrays indye-sensitized solar cells[J]. Nano Letters,2006,6(2):215-218
    [16] Shankar K., Mor G. K., Prakasam H. E., et al. Highly-ordered TiO2nanotube arrays up to220μm in length: use in water photoelectrolysis and dye-sensitized solar cells[J].Nanotechnology,2007,18:065707
    [17] Liu B., Aydil E. S. Growth of Oriented Single-Crystalline Rutile TiO2Nanorods onTransparent Conducting Substrates for Dye-Sensitized Solar Cells[J]. Journal of theAmerican Chemical Society,2009,131(11):3985-3990
    [18] Law M., Greene L. E., Johnson J. C., et al. Nanowire dye-sensitized solar cells[J]. NatureMaterials,2005,4(6):455-459
    [19] She G., Zhang X., Shi W., et al. Electrochemical/chemical synthesis of highly-orientedsingle-crystal ZnO nanotube arrays on transparent conductive substrates[J].Electrochemistry Communications,2007,9(12):2784-2788
    [20] Yan S. C., Li Z. S., Zou Z. G. Photodegradation Performance of g-C3N4Fabricated byDirectly Heating Melamine[J]. Langmuir,2009,25(17):10397-10401
    [21] Thomas A., Fischer A., Goettmann F., et al. Graphitic carbon nitride materials: variationof structure and morphology and their use as metal-free catalysts[J]. Journal of MaterialsChemistry,2008,18(41):4893-4908
    [22] Zhang Y., Thomas A., Antonietti M., et al. Activation of Carbon Nitride Solids byProtonation: Morphology Changes, Enhanced Ionic Conductivity, and PhotoconductionExperiments[J]. Journal of the American Chemical Society,2009,131(1):50-51
    [23] Liu L., Ma D., Zheng H., et al. Synthesis and characterization of microporous carbonnitride[J]. Microporous and Mesoporous Materials,2008,110(2-3):216-222
    [24] Gillan E. G. Synthesis of nitrogen-rich carbon nitride networks from an energeticmolecular azide precursor[J]. Chemistry of Materials,2000,12(12):3906-3912
    [25] Music S., Popovic S., Maljkovic M., et al. Influence of synthesis procedure on theformation and properties of zinc oxide[J]. Journal of Alloys and Compounds,2002,(347):324-332
    [26] Zhang X., Ai Z., Jia F., et al. Generalized one-pot synthesis, characterization, andphotocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J].Journal of Physical Chemistry C,2008,112(3):747-753
    [27] Wang X., Maeda K., Thomas A., et al. A metal-free polymeric photocatalyst forhydrogen production from water under visible light[J]. Nature Materials,2009,8(1):76-80
    [28] Khabashesku V. N., Zimmerman J. L., Margrave J. L. Powder synthesis andcharacterization of amorphous carbon nitride[J]. Chemistry of Materials,2000,12(11):3264-3270
    [29] Fabregat-Santiago F., Garcia-Belmonte G., Bisquert J., et al. Mott-Schottky analysis ofnanoporous semiconductor electrodes in dielectric state deposited on SnO2(F)conducting substrates[J]. Journal of the Electrochemical Society,2003,150(6):E293-E298
    [1] Ko S. H., Lee D., Kang H. W., et al. Nanoforest of Hydrothermally Grown HierarchicalZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell[J]. Nano Letters,2011,11(2):666-671
    [2] Wang Z., Gong J., Su Y., et al. Six-Fold-Symmetrical Hierarchical ZnO NanostructureArrays: Synthesis, Characterization, and Field Emission Properties[J]. Crystal Growth&Design,2010,10(6):2455-2459
    [3] Xia X., Tu J., Zhang Y., et al. High-Quality Metal Oxide Core/Shell Nanowire ArraysOn Conductive Substrates for Electrochemical Energy Storage[J]. ACS Nano,2012,6(6):5531-5538
    [4] Xu F., Dai M., Lu Y., et al. Hierarchical ZnO Nanowire-Nanosheet Architectures forHigh Power Conversion Efficiency in Dye-Sensitized Solar Cells[J]. Journal of PhysicalChemistry C,2010,114(6):2776-2782
    [5] Cheng H., Chiu W., Lee C., et al. Formation of Branched ZnO Nanowires FromSolvothermal Method and Dye-Sensitized Solar Cells Applications[J]. Journal ofPhysical Chemistry C,2008,112(42):16359-16364
    [6] Sarkar S. K., Burla N., Bohannan E. W., et al. Enhancing Enantioselectivity ofElectrodeposited CuO Films by Chiral Etching[J]. Journal of the American ChemicalSociety,2007,129(29):8972-8973
    [7] Hsu Y., Yu C., Lin H., et al. Template Synthesis of Copper Oxide Nanowires forPhotoelectrochemical Hydrogen Generation[J]. Journal of Electroanalytical Chemistry,2013,704:19-23
    [8] Teng F., Yao W., Zheng Y., et al. Synthesis of Flower-Like CuO Nanostructures as aSensitive Sensor for Catalysis[J]. Sensors and Actuators B-Chemical,2008,134(2):761-768
    [9] Xu L., Sithambaram S., Zhang Y., et al. Novel Urchin-Like Cuo Synthesized by a FacileReflux Method with Efficient Olefin Epoxidation Catalytic Performance[J]. Chemistryof Materials,2009,21(7):1253-1259
    [10] Park J. C., Kim J., Kwon H., et al. Gram-Scale Synthesis of Cu2O Nanocubes andSubsequent Oxidation to Cuo Hollow Nanostructures for Lithium-Ion Battery AnodeMaterials[J]. Advanced Materials,2009,21(7):803
    [11] Zhang Y., Wang S. T., Qian Y. T., et al. Complexing-Reagent Assisted Synthesis ofHollow CuO Microspheres[J]. Solid State Sciences,2006,8(5):462-466
    [12] Zou G. F., Li H., Zhang D. W., et al. Well-Aligned Arrays of CuO Nanoplatelets[J].Journal of Physical Chemistry B,2006,110(4):1632-1637
    [13] Zhou Y., Kamiya S., Minamikawa H., et al. Aligned Nanocables: Controlled Sheathingof CuO Nanowires by a Self-Assembled Tubular Glycolipid[J]. Advanced Materials,2007,19(23):4194
    [14] Wang Z. L., Song J. H. Piezoelectric Nanogenerators Based On Zinc Oxide NanowireArrays[J]. Science,2006,312(5771):242-246
    [15] Huang M. H., Mao S., Feick H., et al. Room-Temperature Ultraviolet NanowireNanolasers[J]. Science,2001,292(5523):1897-1899
    [16] Gargas D. J., Toimil-Molares M. E., Yang P. Imaging Single ZnO Vertical NanowireLaser Cavities Using Uv-Laser Scanning Confocal Microscopy[J]. Journal of theAmerican Chemical Society,2009,131(6):2125
    [17] Suh D. I., Lee S. Y., Kim T. H., et al. The Fabrication and Characterization ofDye-Sensitized Solar Cells with a Branched Structure of ZnO Nanowires[J]. ChemicalPhysics Letters,2007,442(4-6):348-353
    [18] Pradhan B., Batabyal S. K., Pal A. J. Vertically Aligned ZnO Nanowire Arrays in RoseBengal-Based Dye-Sensitized Solar Cells[J]. Solar Energy Materials and Solar Cells,2007,91(9):769-773
    [19] Suliman A. E., Tang Y., Xu L. Preparation of ZnO Nanoparticles and Nanosheets andtheir Application to Dye-Sensitized Solar Cells[J]. Solar Energy Materials and SolarCells,2007,91(18):1658-1662
    [20] Law M., Greene L. E., Johnson J. C., et al. Nanowire Dye-Sensitized Solar Cells[J].Nature Materials,2005,4(6):455-459
    [21] Goncalves A. M. B., Campos L. C., Ferlauto A. S., et al. On the Growth and ElectricalCharacterization of CuO Nanowires by Thermal Oxidation[J]. Journal of AppliedPhysics,2009,106:034303
    [22] Kargar A., Jing Y., Kim S. J., et al. ZnO/CuO Heterojunction Branched Nanowires forPhotoelectrochemical Hydrogen Generation[J]. Acs Nano,2013,7(12):11112-11120
    [1] Schrier J., Demchenko D. O., Wang L. Optical Properties of ZnO/ZnO and ZnO/ZnTeHeterostructures for Photovoltaic Applications[J]. Nano Letters,2007,7(8):2377-2382
    [2] Chao H. Y., Cheng J. H., Lu J. Y., et al. Growth and Characterization of Type-ⅡZnO/ZnTe Core-Shell Nanowire Arrays for Solar Cell Applications[J]. Superlattices andMicrostructures,2010,47(1):160-164
    [3] Chen P., Gu L., Cao X. From Single ZnO Multipods to Heterostructured ZnO/ZnS,ZnO/ZnSe, Zno/Bi2S3and Zno/Cu2S Multipods: Controlled Synthesis and TunableOptical and Photoelectrochemical Properties[J]. Crystengcomm,2010,12(11):3950-3958
    [4] Meng X., Wu F., Huang S., et al. Influence of Shell Thickness On the Raman Properties ofZnO/ZnS Core/Shell Nanowires[M]2011:694,175-179
    [5] Lu M., Song J., Lu M., et al. ZnO-ZnS Heterojunction and ZnS Nanowire Arrays forElectricity Generation[J]. ACS Nano,2009,3(2):357-362
    [6] Ahmad M., Yan X., Zhu J. Controlled Synthesis, Structural Evolution, andPhotoluminescence Properties of Nanoscale One-Dimensional Hierarchical ZnO/ZnSHeterostructures[J]. Journal of Physical Chemistry C,2011,115(5):1831-1837
    [7] Yu L., Yu X., Qiu Y., et al. Nonlinear Photoluminescence of ZnO/ZnS Nanotetrapods[J].Chemical Physics Letters,2008,465(4-6):272-274
    [8] Wang K., Chen J. J., Zeng Z. M., et al. Synthesis and Photovoltaic Effect of VerticallyAligned ZnO/ZnS Core/Shell Nanowire Arrays[J]. Applied Physics Letters,2010,96:123105
    [9] Wu Z., Zhang Y., Zheng J., et al. An All-Inorganic Type-Ⅱ Heterojunction Array withNearly Full Solar Spectral Response Based On ZnO/ZnSe Core/Shell Nanowires[J].Journal of Materials Chemistry,2011,21(16):6020-6026
    [10] Consonni V., Rey G., Bonaime J., et al. Synthesis and Physical Properties of ZnO/CdTeCore Shell Nanowires Grown by Low-Cost Deposition Methods[J]. Applied PhysicsLetters,2011,98:111906
    [11] Han S., Zhang D. H., Zhou C. W. Synthesis and Electronic Properties of ZnO/CoZnOCore-Shell Nanowires[J]. Applied Physics Letters,2006,88:133109
    [12] Marcu A., Yanagida T., Nagashima K., et al. Crucial Role of Interdiffusion On MagneticProperties of in Situ Formed MgO/Fe(3-σ)O4Heterostructured Nanowires[J]. AppliedPhysics Letters,2008,92:173119
    [13] Plank N. O. V., Snaith H. J., Ducati C., et al. A Simple Low Temperature SynthesisRoute for ZnO-MgO Core-Shell Nanowires[J]. Nanotechnology,2008,19:465603
    [14] Ahn C. H., Mohanta S. K., Kong B. H., et al. Enhancement of Band-Edge Emission ofZnO From One-Dimensional ZnO/MgZnO Core/Shell Nanostructures[J]. Journal ofPhysics D-Applied Physics,2009,42:115106
    [15] Titova L. V., Hoang T. B., Jackson H. E., et al. Temperature Dependence ofPhotoluminescence From Single Core-Shell Gaas-Algaas Nanowires[J]. Applied PhysicsLetters,2006,89:173126
    [16] Steigerwald M. L., Brus L. E. Synthesis, Stabilization, and Electronic-Structure ofQuantum Semiconductor Nanoclusters[J]. Annual Review of Materials Science,1989,19:471-495
    [17] Haase M., Weller H., Henglein A. Photochemistry and Radiation-Chemistry of ColloidalSemiconductors.23. Electron Storage On ZnO Particles and Size Quantization[J].Journal of Physical Chemistry,1988,92(2):482-487
    [18] Steigerwald M. L., Brus L. E. Semiconductor Crystallites-a Class of Large Molecules[J].Accounts of Chemical Research,1990,23(6):183-188
    [19] Duan X. F., Lieber C. M. General Synthesis of Compound Semiconductor Nanowires[J].Advanced Materials,2000,12(4):298-302
    [20] Kim H. W., Shim S. H. Study of ZnO-Coated SnO2Nanostructures Synthesized by aTwo-Step Process[J]. Applied Surface Science,2006,253(2):510-514
    [21] Hsu C. L., Lin Y. R., Chang S. J., et al. Vertical ZnO/ZnGa2O4Core-Shell NanorodsGrown On ZnO/Glass Templates by Reactive Evaporation[J]. Chemical Physics Letters,2005,411(1-3):221-224
    [22] Wang K., Chen J., Zhou W., et al. Direct Growth of Highly Mismatched Type ⅡZnO/ZnSe Core/Shell Nanowire Arrays On Transparent Conducting Oxide Substratesfor Solar Cell Applications[J]. Advanced Materials,2008,20(17):3248
    [23] Hsu Y., Yu C., Lin H., et al. Template Synthesis of Copper Oxide Nanowires forPhotoelectrochemical Hydrogen Generation[J]. Journal of Electroanalytical Chemistry,2013,704:19-23
    [24] Musa A. O., Akomolafe T., Carter M. J. Production of Cuprous Oxide, a Solar CellMaterial, by Thermal Oxidation and a Study of its Physical and Electrical Properties[J].Solar Energy Materials and Solar Cells,1998,51(3-4):305-316
    [25] Poizot P., Laruelle S., Grugeon S., et al. Nano-Sized Transition-Metaloxides asNegative-Electrode Materials for Lithium-ion Batteries[J]. Nature,2000,407(6803):496-499
    [26] Barreca D., Fornasiero P., Gasparotto A., et al. The Potential of Supported Cu2O andCuO Nanosystems in Photocatalytic H2Production[J]. Chemsuschem,2009,2(3):230-233
    [27] Paracchino A., Laporte V., Sivula K., et al. Highly Active Oxide Photocathode forPhotoelectrochemical Water Reduction[J]. Nature Materials,2011,10(6):456-461
    [28] Ho J., Huang M. H. Synthesis of Submicrometer-Sized Cu2O Crystals withMorphological Evolution From Cubic to Hexapod Structures and their ComparativePhotocatalytic Activity[J]. Journal of Physical Chemistry C,2009,113(32):14159-14164
    [29] Kuo C., Huang M. H. Facile Synthesis of Cu2O Nanocrystals with Systematic ShapeEvolution From Cubic to Octahedral Structures[J]. Journal of Physical Chemistry C,2008,112(47):18355-18360
    [30] Zheng Z., Huang B., Wang Z., et al. Crystal Faces of Cu2O and their Stabilities inPhotocatalytic Reactions[J]. Journal of Physical Chemistry C,2009,113(32):14448-14453
    [31] Zhang J. T., Liu J. F., Peng Q., et al. Nearly Monodisperse Cu2O and CuO Nanospheres:Preparation and Applications for Sensitive Gas Sensors[J]. Chemistry of Materials,2006,18(4):867-871
    [32] Zhang H., Zhu Q., Zhang Y., et al. One-Pot Synthesis and Hierarchical Assembly ofHollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and theirGas-Sensing Properties[J]. Advanced Functional Materials,2007,17(15):2766-2771
    [1] Clark L. C., Lyons C. Electrode Systems for Continuous Monitoring in CardiovascularSurgery[J]. Annals of the New York Academy of Sciences,1962,102(1):29-45
    [2] Fang B., Gu A., Wang G., et al. Silver Oxide Nanowalls Grown On Cu Substrate as anEnzymeless Glucose Sensor[J]. Acs Applied Materials&Interfaces,2009,1(12):2829-2834
    [3] Lawrence N. S., Deo R. P., Wang J. Biocatalytic Carbon Paste Sensors Based On aMediator Pasting Liquid[J]. Analytical Chemistry,2004,76(13):3735-3739
    [4] Wilson R., Turner A. Glucose-Oxidase-an Ideal Enzyme[J]. Biosensors&Bioelectronics,1992,7(3):165-185
    [5] Zhu Y., Zhu H., Yang X., et al. Sensitive Biosensors Based On (Dendrimer EncapsulatedPt Nanoparticles)/Enzyme Multilayers[J]. Electroanalysis,2007,19(6):698-703
    [6] Kurniawan F., Tsakova V., Mirsky V. M. Gold Nanoparticles in NonenzymaticElectrochemical Detection of Sugars[J]. Electroanalysis,2006,18(19-20):1937-1942
    [7] Liu Y., Teng H., Hou H., et al. Nonenzymatic Glucose Sensor Based On RenewableElectrospun Ni Nanoparticle-Loaded Carbon Nanofiber Paste Electrode[J]. Biosensors&Bioelectronics,2009,24(11):3329-3334
    [8] Yuan J. H., Wang K., Xia X. H. Highly Ordered Platinum-Nanotubule Arrays forAmperometric Glucose Sensing[J]. Advanced Functional Materials,2005,15(5):803-809
    [9] Shi W., Ma Z. Amperometric Glucose Biosensor Based On a Triangular SilverNanoprisms/Chitosan Composite Film as Immobilization Matrix[J]. Biosensors&Bioelectronics,2010,26(3):1098-1103
    [10] Jena B. K., Raj C. R. Enzyme-Free Amperometric Sensing of Glucose by Using GoldNanoparticles[J]. Chemistry-A European Journal,2006,12(10):2702-2708
    [11] Cheng T., Huang T., Lin H., et al.(110)-Exposed Gold Nanocoral Electrode as LowOnset Potential Selective Glucose Sensor[J]. Acs Applied Materials&Interfaces,2010,2(10):2773-2780
    [12] Wang J., Thomas D. F., Chen A. Nonenzymatic Electrochemical Glucose Sensor BasedOn Nanoporous PtPb Networks[J]. Analytical Chemistry,2008,80(4):997-1004
    [13] Li L., Zhang W., Ye J. Electrocatalytic Oxidation of Glucose at Carbon NanotubesSupported Ptru Nanoparticles and its Detection[J]. Electroanalysis,2008,20(20):2212-2216
    [14] Qiu H., Huang X. Effects of Pt Decoration On the Electrocatalytic Activity ofNanoporous Gold Electrode Toward Glucose and its Potential Application forConstructing a Nonenzymatic Glucose Sensor[J]. Journal of Electroanalytical Chemistry,2010,643(1-2):39-45
    [15] Holt-Hindle P., Nigro S., Asmussen M., et al. Amperometric Glucose Sensor Based OnPlatinum-Iridium Nanomaterials[J]. Electrochemistry Communications,2008,10(10):1438-1441
    [16] Qiu R., Zhang X. L., Qiao R., et al. Cuni Dendritic Material: Synthesis, MechanismDiscussion, and Application as Glucose Sensor[J]. Chemistry of Materials,2007,19(17):4174-4180
    [17] Xiao F., Zhao F., Mei D., et al. Nonenzymatic Glucose Sensor Based OnUltrasonic-Electrode Position of Bimetallic PtM(M=Ru, Pd and Au) Nanoparticles OnCarbon Nanotubes-Ionic Liquid Composite Film[J]. Biosensors&Bioelectronics,2009,24(12):3481-3486
    [18] Miao F., Tao B., Sun L., et al. Amperometric Glucose Sensor Based On3D OrderedNickel-Palladium Nanomaterial Supported by Silicon MCP Array[J]. Sensors andActuators B-Chemical,2009,141(1):338-342
    [19] Park S., Boo H., Chung T. D. Electrochemical Non-Enzymatic Glucose Sensors[J].Analytica Chimica Acta,2006,556(1):46-57
    [20] Ernst S., Heitbaum J., Hamann C. H. Electrooxidation of Glucose in Phosphate BufferSolutions.1. Reactivity and Kinetics Below350MV-RHE[J]. Journal ofElectroanalytical Chemistry,1979,100(1-2):173-183
    [21] Tominaga M., Nagashima M., Nishiyama K., et al. Surface Poisoning DuringElectrocatalytic Monosaccharide Oxidation Reactions at Gold Electrodes in AlkalineMedium[J]. Electrochemistry Communications,2007,9(8):1892-1898
    [22] Chen J., Zhang W., Ye J. Nonenzymatic Electrochemical Glucose Sensor Based OnMnO2/MWCNTs nanocomposite[J]. Electrochemistry Communications,2008,10(9):1268-1271
    [23] Zhang X., Wang G., Zhang W., et al. Fixure-Reduce Method for the Synthesis ofCu2O/MWCNTs Nanocomposites and its Application as Enzyme-Free Glucose Sensor[J].Biosensors&Bioelectronics,2009,24(11):3395-3398
    [24] Jiang L., Zhang W. A Highly Sensitive Nonenzymatic Glucose Sensor Based On CuONanoparticles-Modified Carbon Nanotube Electrode[J]. Biosensors&Bioelectronics,2010,25(6):1402-1407
    [25] Du H., Wang J., Hu Z., et al. Prediction of Relative Sensitivity of the Olfactory andNasal Trigeminal Chemosensory Systems for a Series of the Volatile OrganicCompounds Based On Local Lazy Regression Method[J]. Sensors and ActuatorsB-Chemical,2009,138(1):55-63
    [26] Zhou M., Gao Y., Wang B., et al. Carbonate-Assisted Hydrothermal Synthesis ofNanoporous CuO Microstructures and their Application in Catalysis[J]. EuropeanJournal of Inorganic Chemistry,2010(5):729-734
    [27] Sukhorukov Y. P., Loshkareva N. N., Samokhvalov A. A., et al. Magnetic PhaseTransitions in Optical Spectrum of Magnetic Semiconductor CuO[J]. Journal ofMagnetism and Magnetic Materials,1998,183(3):356-358
    [28] Hu Y., Huang X., Wang K., et al. Kirkendall-Effect-Based Growth of Dendrite-ShapedCuO Hollow Micro/Nanostructures for Lithium-Ion Battery Anodes[J]. Journal of SolidState Chemistry,2010,183(3):662-667
    [29] Bedi R. K., Singh I. Room-Temperature Ammonia Sensor Based On CationicSurfactant-Assisted Nanocrystalline Cuo[J]. Acs Applied Materials&Interfaces,2010,2(5):1361-1368
    [30] Song M., Hwang S. W., Whang D. Non-Enzymatic Electrochemical CuO NanoflowersSensor for Hydrogen Peroxide Detection[J]. Talanta,2010,80(5):1648-1652
    [31] Zheng X. G., Xu C. N., Tomokiyo Y., et al. Observation of Charge Stripes in CupricOxide[J]. Physical Review Letters,2000,85(24):5170-5173
    [32] You T. Y., Niwa O., Tomita M., et al. Characterization and Electrochemical Properties ofHighly Dispersed Copper Oxide/Hydroxide Nanoparticles in Graphite-Like CarbonFilms Prepared by Rf Sputtering Method[J]. Electrochemistry Communications,2002,4(5):468-471
    [33] Wang W., Li Z., Zheng W., et al. Electrospun Palladium (Iv)-Doped Copper OxideComposite Nanofibers for Non-Enzymatic Glucose Sensors[J]. ElectrochemistryCommunications,2009,11(9):1811-1814
    [34] Reitz E., Jia W., Gentile M., et al. CuO Nanospheres Based Nonenzymatic GlucoseSensor[J]. Electroanalysis,2008,20(22):2482-2486
    [35] Wei H., Sun J., Guo L., et al. Highly Enhanced Electrocatalytic Oxidation of Glucoseand Shikimic Acid at a Disposable Electrically Heated Oxide Covered CopperElectrode[J]. Chemical Communications,2009(20):2842-2844
    [36] Marioli J. M., Kuwana T. Electrochemical Characterization of Carbohydrate Oxidation atCopper Electrodes[J]. Electrochimica Acta,1992,37(7):1187-1197
    [37] Zhuang Z., Su X., Yuan H., et al. An Improved Sensitivity Non-Enzymatic GlucoseSensor Based On a CuO Nanowire Modified Cu Electrode[J]. Analyst,2008,133(1):126-132
    [38] Cherevko S., Chung C. The Porous CuO Electrode Fabricated by Hydrogen BubbleEvolution and its Application to Highly Sensitive Non-Enzymatic Glucose Detection[J].Talanta,2010,80(3):1371-1377
    [39] Wei H., Sun J., Guo L., et al. Highly enhanced electrocatalytic oxidation of glucose andshikimic acid at a disposable electrically heated oxide covered copper electrode[J].Chemical Communications,2009(20):2842-2844
    [40] Wang X., Hui C., Liu H., et al. Synthesis of CuO Nanostructures and their Applicationfor Nonenzymatic Glucose Sensing[J]. Sensors and Actuators B-Chemical,2010,144(1):220-225
    [41] Kang X., Mai Z., Zou X., et al. A Sensitive Nonenzymatic Glucose Sensor in AlkalineMedia with a Copper Nanocluster/Multiwall Carbon Nano Tube-Modified GlassyCarbon Electrode[J]. Analytical Biochemistry,2007,363(1):143-150
    [42] Lu L., Zhang L., Qu F., et al. A Nano-Ni Based Ultrasensitive NonenzymaticElectrochemical Sensor for Glucose: Enhancing Sensitivity through a Nanowire ArrayStrategy[J]. Biosensors&Bioelectronics,2009,25(1):218-223
    [43] Safavi A., Maleki N., Farjami E. Fabrication of a Glucose Sensor Based On a NovelNanocomposite Electrode[J]. Biosensors&Bioelectronics,2009,24(6):1655-1660
    [44] Wang J., Sun X., Cai X., et al. Nonenzymatic Glucose Sensor Using FreestandingSingle-Wall Carbon Nanotube Films[J]. Electrochemical and Solid State Letters,2007,10(5): J58-J

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700