吞噬凋亡中性粒细胞激活的巨噬细胞死亡和CpG-DNA在吞噬中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     中性粒细胞及巨噬细胞是气道炎症性疾病的主要效应细胞。中性粒细胞通过吞噬、释放多种生物活性物质等发挥气道防御功能。在完成其使命后中性粒细胞将走向凋亡。巨噬细胞有效地吞噬清除凋亡的中性粒细胞对急性炎症的消退、恢复机体的稳态是至关重要的。但目前对巨噬细胞吞噬凋亡中性粒细胞的动态过程以及巨噬细胞吞噬凋亡中性粒细胞后的命运转归还知之甚少。
     近年研究表明:凋亡细胞清除障碍与气道慢性炎症性疾病进行性恶化、系统性红斑狼疮以及其他一些自身免疫性疾病有关。增强巨噬细胞吞噬清除凋亡的细胞将是这些疾病治疗的新策略。CpG-寡核苷酸是人工合成的含未甲基化的CpG二核苷酸基序的寡核苷酸序列,和细菌DNA一样具有强烈的免疫刺激作用,能激活哺乳动物巨噬细胞、树突状细胞等多种免疫细胞。但激活的巨噬细胞吞噬凋亡的中性粒细胞的功能是否增强以及其机制如何目前尚不清楚。
     目的
     实时动态观察巨噬细胞吞噬凋亡中性粒细胞的全过程;明确吞噬凋亡中性粒细胞后巨噬细胞的命运转归;探寻CpG-寡核苷酸和细菌-DNA是否具有增强巨噬细胞吞噬凋亡中性粒细胞中的功能及其可能的机制。
     方法
     1.中性粒细胞的分离及凋亡诱导
     10ml肝素抗凝的正常人外周血,红细胞裂解液去除红细胞,进一步采用Percoll不连续密度梯度离心法分离中性粒细胞,培养20h后中性粒细胞自发衰老而凋亡,流式细胞术进行凋亡评估;
     2.巨噬细胞吞噬凋亡中性粒细胞及吞噬诱导激活巨噬细胞死亡的实时动态观察
     巨噬细胞接种于35mm~2培养皿中生长过夜。然后置于具有加热系统的倒置显微镜载物台上,加入凋亡中性粒细胞后采用生物显微电影术实时动态观察记录巨噬细胞吞噬凋亡中性粒细胞的全过程并追踪观察吞噬后巨噬细胞继发性形态学改变;
     3.透射电镜分析吞噬后巨噬细胞的死亡方式
     巨噬细胞与凋亡中性粒细胞相互作用60分钟后洗去未吞噬的中性粒细胞,固定收集巨噬细胞,制备电镜标本,透射电镜观察分析;
     4.激光共聚焦扫描显微镜分析吞噬后巨噬细胞的死亡
     巨噬细胞与凋亡中性粒细胞相互作用60分钟后洗去未吞噬的中性粒细胞,分别采用MDC/AO、AO及AO/EB染色,激光共聚焦扫描显微镜下分析观察巨噬细胞死亡方式并进行各种不同死亡方式计数定量分析;
     5.吞噬凋亡中性粒细胞后巨噬细胞培养上清液IL-6和TNF-a测定
     巨噬细胞与凋亡中性粒细胞相互作用60分钟后洗去未吞噬的中性粒细胞,继续培养24小时,在规定的时间点收集上清,采用放免法测定IL-6和TNF-a浓度;
     6.CpG-DNA处理前后巨噬细胞吞噬凋亡中性粒细胞的定量分析
     接种RAW264.7细胞于24孔培养板中生长过夜并用CpG-DNA处理24小时。吞噬试验前,把长满RAW264.7细胞的玻片转移到用Parafilm膜包被好的12孔板中。把凋亡的中性粒细胞悬浮到DMEM中,加入到玻片上37℃中孵育60分钟。吞噬结束后,用EDTA-PBS清洗以除去未吞噬的凋亡的中性粒细胞后,接着用4%的多聚甲醛固定,o-dianisidine进行染色,进行计数分析;
     7.MTT分析巨噬细胞活力
     接种巨噬细胞于96孔板培养板中生长过夜,CpG-DNA处理24小时后用PBS洗2次,加入180μl的新鲜培养基和20μl的MTT(5 mg/ml)继续培养4小时;吸去上清后加150μl DMSO,摇床缓慢振荡10分钟完全溶解MTT结晶,利用酶标仪测定样本在波长570nm处的光密度OD值;
     8.总TLR9表达的Western Blot分析
     2×10~6巨噬细胞接种于35mm2培养皿中生长过夜,采用CpG-DNA处理24小时后裂解细胞提取总蛋白,接着进行Western Blot分析;
     9.流式细胞术分析巨噬细胞膜表面TLR9表达
     2×10~5巨噬细胞接种于24孔培养板中生长过夜,CpG-DNA处理24小时后收集巨噬细胞,与适当浓度的TLR9抗体及相应的二抗孵育后流式细胞仪测定细胞表面相对荧光强度。
     10.统计学方法
     所有试验分3~5次独立完成,数据用均数±标准误表示。组间的差异用单因素的方差分析,而两组之间的差异用t检验,统计在SPSS10.0软件统计包中进行,P<0.05表示差异有显著性。
     结果
     1.我们首次动态观察了巨噬细胞吞噬凋亡中性粒细胞的全过程,发现巨噬细胞吞噬凋亡中性粒细胞过程也可分为识别粘附、内吞、消化和残体外排等阶段。同时观察记录了吞噬凋亡中性粒细胞后部分巨噬细胞被诱导激活死亡的动态过程,2.透射电镜、激光共聚焦扫描显微镜显示吞噬后的巨噬细胞死亡方式为自噬、凋亡和胀亡等,其中自噬率为8.00±2.00%、凋亡率为12.33±2.08%、胀亡率为3.66±1.50%,主要死亡方式为自噬和凋亡。
     3.吞噬凋亡中性粒细胞后巨噬细胞培养上清液中细胞因子IL-6、TNF-a浓度升高。
     4.同时我们发现细菌DNA和CpG-寡核苷酸具有增强巨噬细胞吞噬凋亡中性粒细胞的功能,这种增强功能可以被CpG-DNA拮抗剂—氯喹抑制;
     5.这种增强功能与巨噬细胞TLR9蛋白表达增高相一致;
     6.氯喹并不能抑制CpG-DNA刺激引起的TLR9的表达。
     结论:
     1.巨噬细胞吞噬凋亡中性粒细胞的过程可以分为识别粘附、内吞、消化、残体外排等不同的阶段;吞噬凋亡中性粒细胞也可以诱导激活巨噬细胞死亡;
     2.吞噬凋亡中性粒细胞后巨噬细胞被诱导激活有凋亡、自噬、胀亡等不同的死亡方式,吞噬凋亡中性粒细胞后的巨噬细胞死亡在免疫应答及炎症性疾病中有重要作用。
     3.细菌DNA和CpG-寡核苷酸可以通过TLR9增强巨噬细胞吞噬凋亡中性粒细胞的功能;增强巨噬细胞吞噬凋亡中性粒细胞功能同样需要内体的成熟/酸化。
Backgrounds
     Macrophages and neutrophils are now recognized as the major effector cells in the airway inflammatory diseases.By infiltrating into the bronchial mucosa,the neutrophils can effectively bind and kill microorganisms that may cause damages to tissue,and then they timely undergo a vigilantly controlled programmed cell death known as apoptosis.Clearance of these apoptotic neutrophils by macrophages is important for the successful resolution of acute inflammation and tissue homeostasis. However,the process of phagocytosis of apoptotic neutrophils by macrophages and the fates of macrophages after their ingestion have not been unveiled.
     There are growing evidences that defective handling of apoptotic cells by macrophages plays a pivotal role in the development of chronic airway inflammatory diseases,systemic lupus erythematosus(SLE) and other autoimmune diseases. Strategies to improve clearance of apoptotic neutrophils may have therapeutic significance.Bacterial genomic DNA and synthetic oligonucleotide containing unmethylated cytosine followed by guanine(CpG-ODN) have been shown to stimulate immunocompetent cells,including macrophages/monocytes,dendritic cells (DCs),and B cells.Whether they can enhance the ability of macrophages to engulf apoptotic neutrophils and the potential mechanisms are still unclear.
     Objectives
     To measure the dynamic process of phagocytosis of apoptotic neutrophils by macrophages in real time;to identify the fates of macrophages after their ingestion of apoptotic neutrophils;to investigate the role of CpG-ODN and bacterial DNA in the process of ingestion of apoptotic neutrophils by macrophages and the potential mechanisms.
     Methods
     1.Neutrophil isolation and apoptosis induction
     After removal of red blood cells using red blood cell lysis buffer,the neutrophils were isolated by the Percoll discontinuous density gradient centrifugation.Apoptosis was assessed using flow cytometry after culturing for 20 hours
     2.Live cell imaging of Raw264.7 cells engulfing apoptotic neutrophils and phagocytosis induced cell death in macrophage
     RAW264.7 Cells grown in 35 mm~2 dishes were put into a heated-plate system on the stage of an inverted microscope equipped with a CCD camera controlled by SPOT RT software.Then apoptotic neutrophils were put into the dishes and allowed them to interact with each other.The dynamic process of phagocytosis of human apoptotic neutrophils by RAW264.7 cells in real time was recorded automatically every 30 seconds for a period of 5—12h.
     3.Form of macrophage cell death analyzed by transmission electric microscope After interacting with apoptotic neutrophils for 60 minutes and washing away the non-ingested ones,the macrophages were fixed,scraped and pelleted by centrifugation.Ultrathin sections were stained with uranyl acetate and lead citrate and were observed under a transmission electron microscope
     4.Form of macrophage cell death analyzed by confocal microscope
     After interacting with apoptotic neutrophils for 60 minutes and washing away the non-ingested ones,the macrophages were stained with MDC/AO,AO,AO/EB respectively for 15min.Then the cells were scanned using confocal microscopy within 1 hour.
     5.Quantification of IL-6 and TNF-a production
     After interacting with apoptotic neutrophils for 60 minutes and washing away the non-ingested ones,the macrophages were cultured for additional 24h.The supernatants were collected at the indicated times points and IL-6 and TNF-a were assayed by radio-immuno assay(RIA).
     6.Quantification of uptake of apoptotic neutrophils by RAW264.7 cells treated with CpG-DNA
     RAW264.7 cells were grown in 24-well plates and treated with CpG-ODN in the presence or absences of chloroquine for 24h.The cover-slips with RAW264.7 cells were transferred to 12-well plates coated with parafilm membrane.Apoptotic neutrophills were added to the coverslip with RAW264.7 cells for 60 minutes.After washing away the noningested neutrophils,the ingested neutrophils were visualized by o-dianisidine staining.RAW264.7 cells were counter-stained with haematoxylin. The cells were assayed and photographed.At least 200 RAW264.7 cells were counted in randomly selected fields.The proportion that had ingested one or more neutrophils was expressed as a percentage.
     7.Cell viability assay by MTT
     RAW264.7 cells were plated in 96 wells and incubated overnight.After 24 hours stimulation of CpG-ODN and B-DNA in the presence or absences of chloroquine for 2h ahead,Cells were then washed twice in PBS,and 180μl of fresh medium and 20μl of MTT(5 mg/ml) were added to each well,followed by incubation for an additional 4 h.The supematants were removed,and 150μl of DMSO was added to each well.MTT crystals were completely solubilized with libration for 10 min and optical density(OD) was measured at wavelengths A570 nm.The percentage of cell viability was calculated.
     8.Western blot analysis of total TLR9
     Macrophages(2×10~6) were treated with CpG-ODN and B-DNA for 24h in the presence or absence of chloroquine for 2h ahead.Then the cells were harvested and lysed with lysis buffer.Cell lysates were then subjected to Western blotting for TLR9
     9.Flow cytometry analysis of surface TLR9
     For measuring surface expression of TLR9,cells were analyzed with a flow cytometry after 24 hours treatment with CpG-ODN and B-DNA in the presence or absence of 2μg/ml chloroquine for 2h ahead.The cells were incubated with the appropriately diluted anti-TLR9 mAb,followed by incubation with fluorescein isothiocyanate-conjugated secondary mAb.Then macrophages were analyzed for TLR9 on the flow cytometer
     10.Statistical analysis
     All experiments were performed for three or five independent times.Data were expressed as the means±standard error and were analyzed for significant differences by unpaired Student's t test and one-way ANOVA with SPSS 10.0.Differences were considered statistically significant if P value<0.05.
     Results
     1.We measured for the first time the dynamic process of phagocytosis of apoptotic human neutrophils by RAW264.7 cells in vitro.We staged four steps of phagocytosis as the recognition and tethering,internalization,ingestion and exocytosis steps. Furthermore,we found that after phagocytosis,some macrophages might undergo a characteristic sequence of morphological changes,beginning with cell shrinkage, followed by membrane blebbing,and ultimately concluding in cell membrane rupture.
     2.The dead macrophages consisted of autophagy,apoptosis and oncosis as revealed by transmission electron microscopy and confocal microscopy combined with specific dyes.The percentages of autophagic,apoptotic,oncotic macrophages were 8.00±2.00%,12.33±2.08%,and 3.66±1.50%respectively.
     3.The concentration of IL-6 and TNF-a in the supernatants of cultured macrophages was increased after interacting with apoptotic neutrophils.
     4.We found that the ability of macrophages to ingest apoptotic neutrophils was up-regulated by CpG-ODN and B-DNA treatment but the effect was abolished by chloroquine pre-treatment.
     5.Increased uptake of apoptotic neutrophils was consistent with up-regulation of total and surface Toll-like receptor-9 expression in macrophages.
     6.Chloroquine couldn't down-regulate the total and surface TLR9 expression in macrophages up-regulated by B-DNA and CpG-ODN treatment.
     Conclusions
     1.The phagocytosis of apoptotic neutrophils can also be divided into the recognition and tethering,internalization,digestion and exocytosis stages and the phagocytosis of apoptotic neutrophils can induce cell death in macrophages.
     2.After ingestion of apoptotic neutrophils,macrophages may undergo autophagy, apoptosis,oncosis that may play an important role in the pathogenesis and progression of inflammatory diseases.Autophagy of macrophage after ingestion of apoptotic cell may be one of the new mechanisms in immune response and inflammatory diseases.
     3.CpG-ODN and B-DNA can act through TLR9 to enhance the macrophages uptake of apoptotic neutrophils;enhancement of uptake of apoptotic neutrophils also requires endosomal maturation/acidification.
引文
1.Edwards MS,Baker CJ.Group B Streptococcal Infections in Elderly Adults.Clinical Infectious Diseases 2005;41(6):839-847.
    2.Sadikot RT,Blackwell TS,Christman JW,Prince AS.Pathogen-Host Interactions in Pseudomonas aeruginosa Pneumonia.American Journal of Respiratory and Critical Care Medicine 2005;171(11):1209-1223.
    3.Kobayashi SD,Voyich JM,Burlak C,DeLeo.FR.Neutrophils in the innate immune response.Arch Immunol Ther Exp(Warsz) 2005;53(6):505-517.
    4.Sladek Z,Rysanek D,Ryznarova H,Faldyna M.Neutrophil apoptosis during experimentally induced Staphylococcus aureus mastitis.Vet Res 2005;36(4):629-643.
    5. Watson RW, Redmond HP, Wang JH, Bouchier-Hayes D. Bacterial ingestion, tumor necrosis factor-alpha, and heat induce programmed cell death in activated neutrophils. Shock 1996; 5 (1):47-51.
    6. Tauber AI. Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol 2003; 4(11):897-901.
    7. Schagat TL, Wofford JA, Wright JR. Surfactant Protein A Enhances Alveolar Macrophage Phagocytosis of Apoptotic Neutrophils. The Journal of Immunology 2001; 166(4):2727-2733.
    8. Henson PM, Hume DA. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 2006; 27 (5):244-250.
    9. Moreira ME, Barcinski MA. Apoptotic cell and phagocyte interplay: recognition and consequences in different cell systems. An Acad Bras Cienc 2004; 76 (1):93-115.
    10. Choi JJ, Reich CF, Pisetsky DS. The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells. Immunology 2005; 115(1):55-62.
    11. Odaka C, Mizuochi T, Yang J, Ding A. Murine Macrophages Produce Secretory Leukocyte Protease Inhibitor During Clearance of Apoptotic Cells: Implications for Resolution of the Inflammatory Response. The Journal of Immunology 2003; 171 (3):1507-1514.
    12. Lichtenberger C, Zakeri S, Baier K et al. A novel high-purity isolation method for human peripheral blood neutrophils permitting polymerase chain reaction-based mRNA studies. J Immunol Methods 1999; 227 (1-2):75-84.
    13. Tan BH, Meinken C, Bastian M et al. Macrophages Acquire Neutrophil Granules for Antimicrobial Activity against Intracellular Pathogens. The Journal of Immunology 2006; 177(3):1864-1871.
    14. Maderna P, Yona S, Perretti M, Godson C. Modulation of Phagocytosis of Apoptotic Neutrophils by Supernatant from Dexamethasone-Treated Macrophages and Annexin-Derived Peptide Ac2-26. The Journal of Immunology 2005; 174 (6):3727-3733.
    15. Hart SP, Alexander KM, Dransfield I. Immune Complexes Bind Preferentially to Fc{gamma} RIIA (CD32) on Apoptotic Neutrophils, Leading to Augmented Phagocytosis by Macrophages and Release of Proinflammatory Cytokines. The Journal of Immunology 2004; 172 (3): 1882-1887.
    16. Wang C, Wang J, Guo HF, Liu RY. Involvement of annexin I in the dexamethasone-mediated upregulation of A549 cells phagocytosis of apoptotic eosinophils. Immunol Lett 2007; 111 (2):103-110.
    17. Shi Q, King RW. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 2005; 437 (7061): 1038-1042.
    18. Vladar EK, Stearns T. Molecular characterization of centriole assembly in ciliated epithelial cells. The Journal of Cell Biology 2007; 178 (1):31-42.
    19. Manderson AP, Kay JG, Hammond LA, Brown DL, Stow JL. Subcompartments of the macrophage recycling endosome direct the differential secretion of IL-6 and TNF{alpha}. The Journal of Cell Biology 2007; 178 (1):57-69.
    20. Eils R, Athale C. Computational imaging in cell biology. The Journal of Cell Biology 2003; 161 (3):477-481.
    21. Savill JS, Wyllie AH, Henson JE et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 1989; 83 (3):865-875.
    22. Ellis RE, Jacobson DM, Horvitz HR. Genes Required for the Engulfment of Cell Corpses During Programmed Cell Death in Caenorhabditis elegans. Genetics 1991; 129 (1):79-94.
    23. Stence N, Waite M, Dailey ME. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 2001; 33 (3):256-266.
    24. Petersen MA, Dailey ME. Diverse microglial motility behaviors during clearance of dead cells in hippocampal slices. Glia 2004; 46 (2): 195-206.
    25. Shimada O, Ishikawa H, Tosaka-Shimada H, Atsumi S. Rearrangements of actin cytoskeleton during infection with Escherichia coli 0157 in macrophages. Cell Struct Funct 1999;24(5):237-246.
    26. Cvetanovic M, Mitchell JE, Patel V et al. Specific Recognition of Apoptotic Cells Reveals a Ubiquitous and Unconventional Innate Immunity. Journal of Biological Chemistry 2006; 281 (29):20055-20067.
    27. Hoffmann PR, deCathelineau AM, Ogden CA et al. Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. The Journal of Cell Biology 2001; 155 (4):649-660.
    28. deCathelineau AM, Henson PM. The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem 2003; 39:105-117.
    29. Gardai SJ, McPhillips KA, Frasch SC et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005; 123 (2):321-334.
    30. Zhang B, Hirahashi J, Cullere X, Mayadas TN. Elucidation of Molecular Events Leading to Neutrophil Apoptosis following Phagocytosis: CROSS-TALK BETWEEN CASPASE 8, REACTIVE OXYGEN SPECIES, AND MAPK/ERK ACTIVATION. Journal of Biological Chemistry 2003; 278 (31):28443-28454.
    31. McGee MP, Myrvik QN. Phagocytosis-induced injury of normal and activated alveolar macrophages. Infection and Immunity 1979; 26 (3):910-915.
    32. Kirschnek S, Ying S, Fischer SF et al. Phagocytosis-Induced Apoptosis in Macrophages Is Mediated by Up-Regulation and Activation of the Bcl-2 Homology Domain 3-Only Protein Bim. The Journal of Immunology 2005; 174 (2):671-679.
    33. Groesdonk HV, Schlottmann S, Richter F, Georgieff M, Senftleben U. Escherichia coli Prevents Phagocytosis-Induced Death of Macrophages via Classical NF-{kappa}B Signaling, a Link to T-Cell Activation. Infection and Immunity 2006; 74(10):5989-6000.
    34. Birmingham CL, Canadien V, Gouin E et al. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 2007; 3 (5):442-451.
    35. Alonso S, Pethe K, Russell DG, Purdy GE. Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proceedings of the National Academy of Sciences 2007; 104 (14):6031-6036.
    1.Carenini S,Maurer M,Werner A et al.The Role of Macrophages in Demyelinating Peripheral Nervous System of Mice Heterozygously Deficient in P0.The Journal of Cell Biology 2001;152(2):301-308.
    2.Murphy EA,Davis JM,Brown AS et al.Role of lung macrophages on susceptibility to respiratory infection following short-term moderate exercise training.AJP-Regulatory,Integrative and Comparative Physiology 2004;287(6):R1354-1358.
    3.Yang J,Reutzel-Selke A,Steier C et al.Targeting of Macrophage Activity by Adenovirus-Mediated Intragraft Overexpression of TNFRp55-Ig,IL-12p40,and vIL-10 Ameliorates Adenovirus-Mediated Chronic Graft Injury,whereas Stimulation of Macrophages by Overexpression of IFN-{gamma} Accelerates Chronic Graft Injury in a Rat Renal Allograft Model.Journal of the American Society of Nephrology 2003;14(1):214-225.
    4.Shevach EM,Rosenthal AS.FUNCTION OF MACROPHAGES IN ANTIGEN RECOGNITION BY GUINEA PIG T LYMPHOCYTES:Ⅱ.ROLE OF THE MACROPHAGE IN THE REGULATION OF GENETIC CONTROL OF THE IMMUNE RESPONSE.The Journal of Experimental Medicine 1973;135(5):1213-1229.
    5.Pluddemann A,Neyen C,Gordon S.Macrophage scavenger receptors and host-derived ligands.Methods 2007;43(3):207-217.
    6.Chen Y,Smith MR,Thirumalai K,Zychlinsky A.A bacterial invasin induces macrophage apoptosis by binding directly to ICE.EMBO J 1996;15(15):3853-3860.
    7. Orth K, Xu Z, Mudgett MB et al. Disruption of Signaling by Yersinia Effector YopJ, a Ubiquitin-Like Protein Protease. Science 2000; 290 (5496):1594-1597.
    8. Hsu LC, Park JM, Zhang K et al. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 2004; 428 (6980):341-345.
    9. Kim SO, Ono K, Tobias PS, Han J. Orphan Nuclear Receptor Nur77 Is Involved in Caspase-independent Macrophage Cell Death. The Journal of Experimental Medicine 2003; 197 (11):1441-1452.
    10. Kim SO, Ono K, Han J. Apoptosis by pan-caspase inhibitors in lipopolysaccharide-activated macrophages. AJP - Lung Cellular and Molecular Physiology 2001; 281 (5):L1095-l 105.
    11. Bursch W. Multiple cell death programs: Charon's lifts to Hades. FEMS Yeast Res 2004; 5(2): 101-110.
    12. Bredesen DE. Key Note Lecture: Toward a Mechanistic Taxonomy for Cell Death Programs. Stroke 2007; 38 (2):652-660.
    13. Lichtenberger C, Zakeri S, Baier K et al. A novel high-purity isolation method for human peripheral blood neutrophils permitting polymerase chain reaction-based mRNA studies. J Immunol Methods 1999; 227 (1-2):75-84.
    14. Tan BH, Meinken C, Bastian M et al. Macrophages Acquire Neutrophil Granules for Antimicrobial Activity against Intracellular Pathogens. The Journal of Immunology 2006; 177 (3): 1864-1871.
    15. Maderna P, Yona S, Perretti M, Godson C. Modulation of Phagocytosis of Apoptotic Neutrophils by Supernatant from Dexamethasone-Treated Macrophages and Annexin-Derived Peptide Ac2-26. The Journal of Immunology 2005; 174 (6):3727-3733.
    16. Hart SP, Alexander KM, Dransfield I. Immune Complexes Bind Preferentially to Fc{gamma}RIIA (CD32) on Apoptotic Neutrophils, Leading to Augmented Phagocytosis by Macrophages and Release of Proinflammatory Cytokines. The Journal of Immunology 2004; 172 (3): 1882-1887.
    17. Wang C, Wang J, Guo HF, Liu RY. Involvement of annexin I in the dexamethasone-mediated upregulation of A549 cells phagocytosis of apoptotic eosinophils. Immunol Lett 2007; 111 (2): 103-110.
    18. Newman SL, Henson JE, Henson PM. Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. The Journal of Experimental Medicine 1982; 156 (2):430-442.
    19. Fadeel B, Kagan VE. Apoptosis and macrophage clearance of neutrophils: regulation by reactive oxygen species. Redox Rep 2003; 8 (3): 143-150.
    20. Fadok VA, Bratton DL, Konowal A et al. Macrophages That Have Ingested Apoptotic Cells In Vitro Inhibit Proinflammatory Cytokine Production Through Autocrine/Paracrine Mechanisms Involving TGF-beta , PGE2, and PAF. Journal of Clinical Investigation 1998; 101 (4):890-898.
    21. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. American Journal of Pathology 1995; 146 (1):3-15.
    22. Moinfar F, Mannion C, Man YG, Tavassoli FA. Mammary "comedo"-DCIS: apoptosis, oncosis, and necrosis: an electron microscopic examination of 8 cases. Ultrastruct Pathol 2000; 24 (3): 135-144.
    23. Shintani T, Klionsky DJ. Autophagy in Health and Disease: A Double-Edged Sword. Science 2004; 306 (5698):990-995.
    24. Fiorentini C, Malorni W. Exploiting cell death pathways by an E. coli cytotoxin: autophagy as a double-edged sword for the host. Autophagy 2006; 2 (4):310-311.
    25. Levin S. Apoptosis, Necrosis, or Oncosis: What Is Your Diagnosis? A Report from the Cell Death Nomenclature Committee of the Society of Toxicologic Pathologists. Toxicological Sciences 1998; 41 (2):155-156.
    26. Kalischuk LD, Inglis GD, Buret AG. Strain-dependent induction of epithelial cell oncosis by Campylobacter jejuni is correlated with invasion ability and is independent of cytolethal distending toxin. Microbiology 2007; 153 (9):2952-2963.
    27. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26 (4):239-257.
    28. Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 2005; 258 (6):479-517.
    29. McGee MP, Myrvik QN. Phagocytosis-induced injury of normal and activated alveolar macrophages. Infection and Immunity 1979; 26 (3):910-915.
    30. Kim HS LM. Essential role of STAT1 in caspase-independent cell death of activated macrophages through the p38 mitogen-activated protein kinase/STAT1/reactive oxygen species pathway. Mol cell Biol 2005; 25 (15):6821-6833.
    31. Amer AO, Swanson MS. Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 2005; 7 (6):765-778.
    32. Calveley VL, Khan MA, Yeung IW, Vandyk J, Hill RP. Partial volume rat lung irradiation: temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. Int J Radiat Biol 2005; 81 (12):887-899.
    33. Otsubo E, Irimajiri K, Takei T, Nomura M. Characterization of synthetic lung surfactant activity against proinflammatory cytokines in human monocytes. Biol Pharm Bull 2002; 25 (3):312-317.
    34. Kurosaka K, Watanabe N, Kobayashi Y. Production of Proinflammatory Cytokines by Phorbol Myristate Acetate-Treated THP-1 Cells and Monocyte-Derived Macrophages After Phagocytosis of Apoptotic CTLL-2 Cells. The Journal of Immunology 1998; 161 (11):6245-6249.
    35. Petrovski G, Zahuczky G, Majai G, Fesus L. Phagocytosis of cells dying through autophagy evokes a pro-inflammatory response in macrophages. Autophagy 2007; 3 (5):509-511.
    36. Zhou H, Kobzik L. Effect of Concentrated Ambient Particles on Macrophage Phagocytosis and Killing of Streptococcus pneumoniae. American Journal of Respiratory Cell and Molecular Biology 2007; 36 (4):460-465.
    37. Bhasin M, Wu M, Tsirka SE. Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC Immunol 2007; 8:10.
    1.Fadok VA.Clearance:the last and often forgotten stage of apoptosis.J Mammary Gland Biol Neoplasia 1999;4(2):203-211.
    2.Fadeel B.Programmed cell clearance.Cell Mol Life Sci 2003;60(12):2575-2585.
    3.Fadok VA,Bratton DL,Konowal A et al.Macrophages That Have Ingested Apoptotic Cells In Vitro Inhibit Proinflammatory Cytokine Production Through Autocrine/Paracrine Mechanisms Involving TGF-beta,PGE2,and PAF.Journal of Clinical Investigation 1998;101(4):890-898.
    4.Tassiulas I,Park-Min KH,Hu Y et al.Apoptotic cells inhibit LPS-induced cytokine and chemokine production and IFN responses in macrophages.Hum Immunol 2007;68(3):156-164.
    5.Sexton DW,Blaylock MG,Walsh GM.Human alveolar epithelial cells engulf apoptotic eosinophils by means of integrin- and phosphatidylserine receptor-dependent mechanisms:a process upregulated by dexamethasone.J Allergy Clin Immunol 2001;108(6):962-969.
    6.Tas SW,Quartier P,Botto M,Fossati-Jimack L.Macrophages from patients with SLE and rheumatoid arthritis have defective adhesion in vitro,while only SLE macrophages have impaired uptake of apoptotic cells.Annals of the Rheumatic Diseases 2006;65(2):216-221.
    7.Tokunaga T,Yamamoto T,Yamamoto S.How BCG led to the discovery of immunostimulatory DNA.Jpn J Infect Dis 1999;52(1):1-11.
    8.Krieg AM.CpG motifs in bacterial DNA and their immune effects.Annu Rev Immunol 2002; 20:709-760.
    9. Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408 (6813):740-745.
    10. Wagner H. Bacterial CpG DNA activates immune cells to signal infectious danger. Adv Immunol 1999; 73:329-368.
    11. Lichtenberger C, Zakeri S, Baier K et al. A novel high-purity isolation method for human peripheral blood neutrophils permitting polymerase chain reaction-based mRNA studies. J Immunol Methods 1999; 227 (1-2):75-84.
    12. Tan BH, Meinken C, Bastian M et al. Macrophages Acquire Neutrophil Granules for Antimicrobial Activity against Intracellular Pathogens. The Journal of Immunology 2006; 177 (3):1864-1871.
    13. Maderna P, Yona S, Perretti M, Godson C. Modulation of Phagocytosis of Apoptotic Neutrophils by Supernatant from Dexamethasone-Treated Macrophages and Annexin-Derived Peptide Ac2-26. The Journal of Immunology 2005; 174 (6):3727-3733.
    14. Hart SP, Alexander KM, Dransfield I. Immune Complexes Bind Preferentially to Fc{gamma}RIIA (CD32) on Apoptotic Neutrophils, Leading to Augmented Phagocytosis by Macrophages and Release of Proinflammatory Cytokines. The Journal of Immunology 2004; 172 (3):1882-1887.
    15. Wang C, Wang J, Guo HF, Liu RY. Involvement of annexin I in the dexamethasone-mediated upregulation of A549 cells phagocytosis of apoptotic eosinophils. Immunol Lett 2007; 111 (2):103-110.
    16. Newman SL, Henson JE, Henson PM. Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. The Journal of Experimental Medicine 1982; 156 (2):430-442.
    17. Fadeel B, Kagan VE. Apoptosis and macrophage clearance of neutrophils: regulation by reactive oxygen species. Redox Rep 2003; 8 (3):143-150.
    18. Spitzer MS, Wallenfels-Thilo B, Sierra A et al. Antiproliferative and cytotoxic properties of bevacizumab on different ocular cells. British Journal of Ophthalmology 2006; 90 (10):1316-1321.
    19. Wang J, Zhou H, Zheng J et al. The Antimalarial Artemisinin Synergizes with Antibiotics To Protect against Lethal Live Escherichia coli Challenge by Decreasing Proinflammatory Cytokine Release. Antimicrobial Agents and Chemotherapy 2006; 50 (7):2420-2427.
    20. Li J, Shen J, Beuerman RW. Expression of toll-like receptors in human limbal and conjunctival epithelial cells. Mol Vis 2007; 13:813-822.
    21. Osawa Y, Iho S, Takauji R et al. Collaborative Action of NF-{kappa}B and p38 MAPK Is Involved in CpG DNA-Induced IFN-{alpha} and Chemokine Production in Human Plasmacytoid Dendritic Cells. The Journal of Immunology 2006; 177 (7):4841-4852.
    22. Rossi AG, McCutcheon JC, Roy N et al. Regulation of Macrophage Phagocytosis of Apoptotic Cells by cAMP. The Journal of Immunology 1998; 160 (7):3562-3568.
    23. Vernon-Wilson EF, Aurade F, Brown SB. CD31 promotes {beta}l integrin-dependent engulfment of apoptotic Jurkat T lymphocytes opsonized for phagocytosis by fibronectin. Journal of Leukocyte Biology 2006; 79 (6):1260-1267.
    24. Norsworthy PJ, Fossati-Jimack L, Cortes-Hernandez J et al. Murine CD93 (C1qRp) Contributes to the Removal of Apoptotic Cells In Vivo but Is Not Required for C1q-Mediated Enhancement of Phagocytosis. The Journal of Immunology 2004; 172 (6):3406-3414.
    25. Vachon E, Martin R, Plumb J et al. CD44 is a phagocytic receptor. Blood 2006; 107(10):4149-4158.
    26. Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature 2000; 407 (6805):810-816.
    27. Murphy FJ, Seery LT, Hayes I. Therapeutic approaches to the modulation of apoptosis. Essays Biochem 2003; 39:131-153.
    28. Klinman DM, Verthelyi D, Takeshita F, Ishii KJ. Immune recognition of foreign DNA: a cure for bioterrorism? Immunity 1999; 11 (2):123-129.
    29. Hacker H, Mischak H, Miethke T et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 1998; 17 (21):6230-6240.
    30. Lim EJ, Lee SH, Lee JG et al. Toll-like receptor 9 dependent activation of MAPK and NF-kB is required for the CpG ODN-induced matrix metalloproteinase-9 expression. Exp Mol Med 2007; 39 (2):239-245.
    31. Zou W, Amcheslavsky A, Bar-Shavit Z. CpG Oligodeoxynucleotides Modulate the Osteoclastogenic Activity of Osteoblasts via Toll-like Receptor 9. Journal of Biological Chemistry 2003; 278 (19): 16732-16740.
    32. Utaisincharoen P, Kespichayawattana W, Anuntagool N et al. CpG ODN enhances uptake of bacteria by mouse macrophages. Clin Exp Immunol 2003; 132 (1):70-75.
    1.Kerr JF,Wyllie AH,Currie AR.Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br J Cancer 1972;26(4):239-257.
    2.Fadeel B,Orrenius S.Apoptosis:a basic biological phenomenon with wide-ranging implications in human disease.J Intern Med 2005;258(6):479-517.
    3.Wyllie AH.Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation.Nature 1980;284(5756):555-556.
    4.Thomas N,Bell PA.Glucocorticoid-induced cell-size changes and nuclear fragility in rat thymocytes.Mol Cell Endocrinol 1981;22(1):71-84.
    5.Benson RS,Heer S,Dive C,Watson AJ.Characterization of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis.AJP-Cell Physiology 1996;270(4):C1190-1203.
    6.Klassen NV,Walker PR,Ross CK,Cygler J,Lach B.Two-stage cell shrinkage and the OER for radiation-induced apoptosis of rat thymocytes.Int J Radiat Biol 1993; 64 (5):571-581.
    7. Beauvais F, Michel L, Dubertret L. Human eosinophils in culture undergo a striking and rapid shrinkage during apoptosis. Role of K+ channels. Journal of Leukocyte Biology 1995; 57 (6):851-855.
    8. Lee MK, Kang SJ, Poncz M, Song KJ, Park KS. Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp Mol Med 2007; 39 (3):376-384.
    9. Cui Y, Yang H, Wu S et al. Molecular mechanism of damage and repair of mouse thymus lymphocytes induced by radiation. Chin Med J (Engl) 2002; 115 (7): 1070-1073.
    10. Watjen W, Haase H, Biagioli M, Beyersmann D. Induction of apoptosis in mammalian cells by cadmium and zinc. Environ Health Perspect 2002; 110 Suppl 5:865-867.
    11. Sardao VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB. Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide—characterization of morphological features of cell death. BMC Cell Biol 2007; 8:11.
    12. Ashkenazi A, Dixit VM. Death Receptors: Signaling and Modulation. Science 1998; 281 (5381):1305-1308.
    13. Chicheportiche Y, Bourdon PR, Xu H et al. TWEAK, a New Secreted Ligand in the Tumor Necrosis Factor Family That Weakly Induces Apoptosis. Journal of Biological Chemistry 1997; 272 (51):32401-32410.
    14. Peter ME, Krammer PH. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 1998; 10 (5):545-551.
    15. Suliman A, Lam A, Datta R, Srivastava RK. Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene 2001; 20 (17):2122-2133.
    16. Rubio-Moscardo F, Blesa D, Mestre C et al. Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes. Blood 2005; 106 (9):3214-3222.
    17. Wesche-Soldato DE, Swan RZ, Chung CS, Ayala A. The apoptotic pathway as a therapeutic target in sepsis. Curr Drug Targets 2007; 8 (4):493-500.
    18. Janeway CA, Jr. Inaugural Article: How the immune system works to protect the host from infection: A personal view. Proceedings of the National Academy of Sciences 2001; 98 (13):7461-7468.
    19. Brakebusch C, Nophar Y, Kemper O, Engelmann H, Wallach D. Cytoplasmic truncation of the p55 tumour necrosis factor (TNF) receptor abolishes signalling, but not induced shedding of the receptor. EMBO J 1992; 11 (3):943-950.
    20. Roth E, Pircher H. IFN-{gamma} Promotes Fas Ligand- and Perforin-Mediated Liver Cell Destruction by Cytotoxic CD8 T Cells. The Journal of Immunology 2004; 172(3): 1588-1594.
    21. Muzio M, Chinnaiyan AM, Kischkel FC et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death—inducing signaling complex. Cell 1996; 85 (6):817-827.
    22. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 1996; 85 (6):803-815.
    23. Scaffidi C, Fulda S, Srinivasan A et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17 (6): 1675-1687.
    24. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94 (4):481 -490.
    25. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94 (4):491-501.
    26. Duan H, Dixit VM. RAIDD is a new 'death' adaptor molecule. Nature 1997; 385 (6611):86-89.
    27. Pitti RM, Marsters SA, Ruppert S et al. Induction of Apoptosis by Apo-2 Ligand, a New Member of the Tumor Necrosis Factor Cytokine Family. Journal of Biological Chemistry 1996; 271 (22):12687-12690.
    28. Wiley SR; Schooley K, Smolak PJ et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3 (6):673-682.
    29. Cha SS, Kim MS, Choi YH et al. 2.8 A resolution crystal structure of human TRAIL, a cytokine with selective antitumor activity. Immunity 1999; 11 (2):253-261.
    30. Hymowitz SG, Christinger HW, Fuh G et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 1999; 4 (4):563-571.
    31. Hymowitz SG, O'Connell MP, Ultsch MH et al. A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry 2000; 39 (4):633-640.
    32. Kim Y, Seol DW. TRAIL, a mighty apoptosis inducer. Mol Cells 2003; 15 (3):283-293.
    33. MacFarlane M, Ahmad M, Srinivasula SM et al. Identification and Molecular Cloning of Two Novel Receptors for the Cytotoxic Ligand TRAIL. Journal of Biological Chemistry 1997; 272 (41):25417-25420.
    34. Pan G, Ni J, Wei Y-F et al. An Antagonist Decoy Receptor and a Death Domain-Containing Receptor for TRAIL. Science 1997; 277 (5327):815-818.
    35. Pan G, O'Rourke K, Chinnaiyan AM et al. The Receptor for the Cytotoxic Ligand TRAIL. Science 1997; 276 (5309):111-113.
    36. Sheridan JP, Marsters SA, Pitti RM et al. Control of TRAIL-Induced Apoptosis by a Family of Signaling and Decoy Receptors. Science 1997; 277 (5327):818-821.
    37. Mongkolsapaya J, Cowper AE, Xu X-N et al. Cutting Edge: Lymphocyte Inhibitor of TRAIL (TNF-Related Apoptosis-Inducing Ligand): A New Receptor Protecting Lymphocytes from the Death Ligand TRAIL. The Journal of Immunology 1998; 160 (1):3-6.
    38. Marsters SA, Sheridan JP, Pitti RM et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 1997; 7 (12):1003-1006.
    39. Pan G, Ni J, Yu G, Wei YF, Dixit VM. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 1998; 424 (1-2):41-45.
    40. Truneh A, Sharma S, Silverman C et al. Temperature-sensitive Differential Affinity of TRAIL for Its Receptors. DR5 IS THE HIGHEST AFFINITY RECEPTOR. Journal of Biological Chemistry 2000; 275 (30):23319-23325.
    41. Kischkel FC, Lawrence DA, Chuntharapai A et al. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000; 12 (6):611-620.
    42. Sprick MR, Weigand MA, Rieser E et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 2000; 12 (6):599-609.
    43. Miyazaki T, Reed JC. A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nat Immunol 2001; 2 (6):493-500.
    44. Kischkel FC, Lawrence DA, Tinel A et al. Death Receptor Recruitment of Endogenous Caspase-10 and Apoptosis Initiation in the Absence of Caspase-8. Journal of Biological Chemistry 2001; 276 (49):46639-46646.
    45. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An Induced Proximity Model for Caspase-8 Activation. Journal of Biological Chemistry 1998; 273 (5):2926-2930.
    46. Salvesen GS, Dixit VM. Caspase activation: The induced-proximity model. Proceedings of the National Academy of Sciences 1999; 96 (20): 10964-10967.
    47. Zhou H, Wertz I, O'Rourke K et al. Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 2004; 427 (6970):167-171.
    48. Gibson S, Widmann C, Johnson GL. Differential Involvement of MEK Kinase 1?MEKK1) in the Induction of Apoptosis in Response to Microtubule-targeted Drugs versus DNA Damaging Agents. Journal of Biological Chemistry 1999; 274 (16):10916-10922.
    49. Arch RH, Thompson CB. Lymphocyte survival—the struggle against death. Annu Rev Cell Dev Biol 1999; 15:113-140.
    50. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104 (4):487-501.
    51. Boldin MP, Varfolomeev EE, Pancer Z et al. A Novel Protein That Interacts with the Death Domain of Fas/APO1 Contains a Sequence Motif Related to the Death Domain. Journal of Biological Chemistry 1995; 270 (14):7795-7798.
    52. Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81 (4):505-512.
    53. Arch RH, Thompson CB. 4-1BB and Ox40 Are Members of a Tumor Necrosis Factor (TNF)-Nerve Growth Factor Receptor Subfamily That Bind TNF Receptor-Associated Factors and Activate Nuclear Factor kappa B. Molecular and Cellular Biology 1998; 18 (1):558-565.
    54. Gedrich RW, Gilfillan MC, Duckett CS, Van Dongen JL, Thompson CB. CD30 Contains Two Binding Sites with Different Specificities for Members of the Tumor Necrosis Factor Receptor-associated Factor Family of Signal Transducing Proteins. Journal of Biological Chemistry 1996; 271 (22):12852-12858.
    55. Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptor-associated factors (TRAFs)—a family of adapter proteins that regulates life and death. Genes and Development 1998; 12 (18):2821-2830.
    56. Baichwal VR, Baeuerle PA. Activate NF-kappa B or die? Curr Biol 1997; 7 (2):R94-96.
    57. Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997; 9 (2):240-246.
    58. Pimentel-Muinos FX, Seed B. Regulated commitment of TNF receptor signaling: a molecular switch for death or activation. Immunity 1999; 11 (6):783-793.
    59. Graier WF, Frieden M, Malli R. Mitochondria and Ca(2+) signaling: old guests, new functions. Pflugers Arch 2007; 455 (3):375-396.
    60. Felty Q, Roy D. Estrogen, mitochondria, and growth of cancer and non-cancer cells. JCarcinog 2005; 4 (1):1.
    61. Vande Velde C, Cizeau J, Dubik D et al. BNIP3 and Genetic Control of Necrosis-Like Cell Death through the Mitochondrial Permeability Transition Pore. Molecular and Cellular Biology 2000; 20 (15):5454-5468.
    62. Ghobrial IM, Witzig TE, Adjei AA. Targeting Apoptosis Pathways in Cancer Therapy. CA: A Cancer Journal for Clinicians 2005; 55 (3):178-194.
    63. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984; 226 (4678): 1097-1099.
    64. Reed JC. Bcl-2 and the regulation of programmed cell death. The Journal of Cell Biology 1994; 124(1): 1-6.
    65. Reed JC. Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 1997; 34 (4 Suppl 5):9-19.
    66. Huang DC, Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 2000; 103 (6):839-842.
    67. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86 (1):147-157.
    68. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407 (6805):770-776.
    69. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102 (1):33-42.
    70. Verhagen AM, Ekert PG, Pakusch M et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102 (1):43-53.
    71. Chai J, Du C, Wu JW et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 2000; 406 (6798):855-862.
    72. Liu Z, Sun C, Olejniczak ET et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 2000; 408 (6815):1004-1008.
    73. Wu G, Chai J, Suber TL et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000; 408 (6815): 1008-1012.
    74. Srinivasula SM, Hegde R, Saleh A et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001; 410(6824):112-116.
    75. Susin SA, Lorenzo HK, Zamzami N et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397 (6718):441-446.
    76. Miramar MD, Costantini P, Ravagnan L et al. NADH Oxidase Activity of Mitochondrial Apoptosis-inducing Factor. Journal of Biological Chemistry 2001; 276 (19):16391-16398.
    77. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412 (6842):95-99.
    78. Cote J, Ruiz-Carrillo A. Primers for mitochondrial DNA replication generated by endonuclease G. Science 1993; 261 (5122):765-769.
    79. Liu X, Li P, Widlak P et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proceedings of the National Academy of Sciences 1998; 95 (15):8461-8466.
    80. Wang X. The expanding role of mitochondria in apoptosis. Genes and Development 2001; 15 (22):2922-2933.
    81. Adrain C, Martin SJ. The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 2001; 26 (6):390-397.
    82. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8 (9):741-752.
    83. Opipari AW, Jr., Tan L, Boitano AE et al. Resveratrol-induced Autophagocytosis in Ovarian Cancer Cells. Cancer Research 2004; 64 (2):696-703.
    84. Ashford TP, Porter KR. CYTOPLASMIC COMPONENTS IN HEPATIC CELL LYSOSOMES. Journal of Cell Biology 1962; 12 (1):198-202.
    85. Klionsky DJ, Cuervo AM, Dunn WA et al. How shall I eat thee? Autophagy 2007; 3(5):413-416.
    86. Samara C, Tavernarakis N. Autophagy and cell death in Caenorhabditis elegans. Curr Pharm Des 2008; 14 (2):97-115.
    87. Bursch W. Multiple cell death programs: Charon's lifts to Hades. FEMS Yeast Res 2004;5(2):101-110.
    88. Lleo A, Invernizzi P, Selmi C et al. Autophagy: highlighting a novel player in the autoimmunity scenario. J Autoimmun 2007; 29 (2-3):61-68.
    89. Saka HA, Gutierrez MG, Bocco JL, Colombo MI. The autophagic pathway: a cell survival strategy against the bacterial pore-forming toxin Vibrio cholerae cytolysin. Autophagy 2007; 3 (4):363-365.
    90. Alonso S, Pethe K, Russell DG, Purdy GE. Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proceedings of the National Academy of Sciences 2007; 104 (14):6031-6036.
    91. Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. Journal of Cell Science 2001; 114 (20):3619-3629.
    92. Klionsky DJ. The molecular machinery of autophagy: unanswered questions. Journal of Cell Science 2005; 118 (1):7-18.
    93. Reggiori F, Wang C-W, Nair U et al. Early Stages of the Secretory Pathway, but Not Endosomes, Are Required for Cvt Vesicle and Autophagosome Assembly in Saccharomyces cerevisiae. Molecular Biology of the Cell 2004; 15 (5):2189-2204.
    94. Simonsen A, Birkeland HCG, Gillooly DJ et al. Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. Journal of Cell Science 2004; 117 (18):4239-4251.
    95. Crotzer VL, Blum JS. Autophagy and mtracellular surveillance: Modulating MHC class II antigen presentation with stress. Proceedings of the National Academy of Sciences 2005; 102 (22):7779-7780.
    96. Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol 2004; 14 (2):70-77.
    97. Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ 2005; 12 Suppl 2:1542-1552.
    98. Cuervo AM, Dice JF. A Receptor for the Selective Uptake and Degradation of Proteins by Lysosomes. Science 1996; 273 (5274):501-503.
    99. Salvador N, Aguado C, Horst M, Knecht E. Import of a Cytosolic Protein into Lysosomes by Chaperone-mediated Autophagy Depends on Its Folding State. Journal of Biological Chemistry 2000; 275 (35):27447-27456.
    100. Agarraberes FA, Terlecky SR, Dice JF. An Intralysosomal hsp70 Is Required for a Selective Pathway of Lysosomal Protein Degradation. The Journal of Cell Biology 1997; 137 (4):825-834.
    101. Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 1989; 246 (4928):382-385.
    102. Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 2004; 36 (12):2435-2444.
    103. Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 2004; 313 (2):453-458.
    104. Feng Z, Hu W, de Stanchina E et al. The Regulation of AMPK {beta}1, TSC2, and PTEN Expression by p53: Stress, Cell and Tissue Specificity, and the Role of These Gene Products in Modulating the IGF-1-AKT-mTOR Pathways. Cancer Research 2007; 67 (7):3043-3053.
    105. Kisfalvi K, Rey O, Young SH, Sinnett-Smith J, Rozengurt E. Insulin Potentiates Ca2+ Signaling and Phosphatidylinositol 4,5-Bisphosphate Hydrolysis Induced by Gq Protein-Coupled Receptor Agonists through an mTOR-Dependent Pathway. Endocrinology 2007; 148 (7):3246-3257.
    106. Dennis PB, Jaeschke A, Saitoh M et al. Mammalian TOR: A Homeostatic ATP Sensor. Science 2001; 294 (5544): 1102-1105.
    107. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic Acid-Mediated Mitogenic Activation of mTOR Signaling. Science 2001; 294 (5548):1942-1945.
    108. Tee AR, Fingar DC, Manning BD et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proceedings of the National Academy of Sciences 2002; 99 (21):13571-13576.
    109. Li Y, Inoki K, Yeung R, Guan K-L. Regulation of TSC2 by 14-3-3 Binding. Journal of Biological Chemistry 2002; 277 (47):44593-44596.
    110.Nakao T, Shiota M, Tatemoto Y, Izumi Y, Iwao H. Pravastatin Induces Rat Aortic Endothelial Cell Proliferation and Migration via Activation of PI3K/Akt/mTOR/p70 S6 Kinase Signaling. J Pharmacol Sci 2007; 105 (4):334-341.
    111. Li Y, Inoki K, Guan K-L. Biochemical and Functional Characterizations of Small GTPase Rheb and TSC2 GAP Activity. Molecular and Cellular Biology 2004; 24 (18):7965-7975.
    112.O'Connor PMJ, Kimball SR, Suryawan A et al. Regulation of neonatal liver protein synthesis by insulin and amino acids in pigs. AJP - Endocrinology and Metabolism 2004; 286 (6):E994-1003.
    113.Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124 (3):471-484.
    114.Talvas J, Obled A, Fafournoux P, Mordier S. Regulation of Protein Synthesis by Leucine Starvation Involves Distinct Mechanisms in Mouse C2C12 Myoblasts and Myorubes. Journal of Nutrition 2006; 136 (6) :1466-1471.
    115.Botti J, Djavaheri-Mergny M, Pilatte Y, Codogno P. Autophagy signaling and the cogwheels of cancer. Autophagy 2006; 2 (2):67-73.
    116.von RF. Untersuchungen uber Rachitis und Osteomalacie. 1910.
    117.Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. American Journal of Pathology 1995; 146 (1):3-15.
    118.Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 1999; 9 (17):967-970.
    119.Sapunar D, Vilovic K, England M, Saraga-Babic M. Morphological diversity of dying cells during regression of the human tail. Ann Anat 2001; 183 (3):217-222.
    120. Hein S, Arnon E, Kostin S et al. Progression From Compensated Hypertrophy to Failure in the Pressure-Overloaded Human Heart: Structural Deterioration and Compensatory Mechanisms. Circulation 2003; 107 (7):984-991.
    121. Kalischuk LD, Inglis GD, Buret AG Strain-dependent induction of epithelial cell oncosis by Campylobacter jejuni is correlated with invasion ability and is independent of cytolethal distending toxin. Microbiology 2007; 153 (9):2952-2963.
    122. Van Cruchten S, Van Den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 2002; 31 (4):214-223.
    123. Elsasser A, Suzuki K, Schaper J. Unresolved issues regarding the role (?) apoptosis in the pathogenesis of ischemic injury and heart failure. J Mol Cell Cardiol 2000; 32 (5):711-724.
    124. Dacheux D, Toussaint B, Richard M et al. Pseudomonas aeruginosa Cystic Fibrosis Isolates Induce Rapid, Type III Secretion-Dependent, but ExoU-Independent, Oncosis of Macrophages and Polymorphonuclear Neutrophils. Infection and Immunity 2000; 68 (5):2916-2924.
    125. Gonzalez VM, Fuertes MA, Alonso C, Perez JM. Is Cisplatin-Induced Cell Death Always Produced by Apoptosis? Molecular Pharmacology 2001; 59 (4):657-663.
    126. Ohno M, Takemura G, Ohno A et al. "Apoptotic" Myocytes in Infarct Area in Rabbit Hearts May Be Oncotic Myocytes With DNA Fragmentation : Analysis by Immunogold Electron Microscopy Combined With In Situ Nick End-Labeling. Circulation 1998; 98 (14): 1422-1430.
    127. Ma F, Zhang C, Prasad KVS, Freeman GJ, Schlossman SF. Molecular cloning of Porimin, a novel cell surface receptor mediating oncotic cell death. Proceedings of the National Academy of Sciences 2001; 98 (17):9778-9783.
    128. Zhang C, Xu Y, Gu J, Schlossman SF. A cell surface receptor defined by a mAb mediates a unique type of cell death similar to oncosis. Proceedings of the National Academy of Sciences 1998; 95 (11):6290-6295.
    129. Barros LF, Stutzin A, Calixto A et al. Nonselective cation channels as effectors of free radical-induced rat liver cell necrosis. Hepatology 2001; 33 (1):114-122.
    130. Walisser JA, Thies RL. Poly(ADP-ribose) polymerase inhibition in oxidant-stressed endothelial cells prevents oncosis and permits caspase activation and apoptosis. Exp Cell Res 1999; 251 (2):401-413.
    131. Davidson WF, Haudenschild C, Kwon J, Williams MS. T Cell Receptor Ligation Triggers Novel Nonapoptotic Cell Death Pathways That Are Fas-Independent or Fas-Dependent. The Journal of Immunology 2002; 169 (11):6218-6230.
    132. Liu X, Van Vleet T, Schnellmann RG. The role of calpain in oncotic cell death.Annu Rev Pharmacol Toxicol 2004;44:349-370.
    133.Cummings BS,McHowat J,Schnellmann RG.Phospholipase A2s in Cell Injury and Death.Journal of Pharmacology And Experimental Therapeutics 2000;294(3):793-799.
    134.Sperandio S,de Belle I,Bredesen DE.An alternative,nonapoptotic form of programmed cell death.Proceedings of the National Academy of Sciences 2000;97(26):14376-14381.
    135.Asher E,Payne CM,Bernstein C.Evaluation of cell death in EBV-transformed lymphocytes using agarose gel electrophoresis,light microscopy and electron microscopy.Ⅱ.Induction of non-classic apoptosis("para-apoptosis") by tritiated thymidine.Leuk Lymphoma 1995;19(1-2):107-119.
    136.Tome ME,Baker AF,Powis G,Payne CM,Briehl MM.Catalase-overexpressing Thymocytes Are Resistant to Glucocorticoid-induced Apoptosis and Exhibit Increased Net Tumor Growth.Cancer Research 2001;61(6):2766-2773.
    137.孙红振,王正国,朱佩芳.CDEs在细胞程序化死亡中作用的研究进展.创伤外科杂志 2006;8(3):284-286.
    138.Barenberg P,Strahlendorf H,Strahlendorf J.Hypoxia induces an excitotoxic-type of dark cell degeneration in cerebellar Purkinje neurons.Neurosci Res 2001;40(3):245-254.
    139.Kitanaka C,Kuchino Y.Caspase-independent programmed cell death with necrotic morphology.Cell Death Differ 1999;6(6):508-515.
    140.Lorenzen J,Thiele J,Fischer R.The mummified Hodgkin cell:cell death in Hodgkin's disease.J Pathol 1997;182(3):288-298.
    141.Wang Y,Li X,Wang L et al.An alternative form of paraptosis-like cell death,triggered by TAJ/TROY and enhanced by PDCD5 overexpression.Journal of Cell Science 2004;117(8):1525-1532.
    142.Migheli A,Piva R,Wei J et al.Diverse cell death pathways result from a single missense mutation in weaver mouse.American Journal of Pathology 1997;151(6):1629-1638.
    143. Gilloteaux J, Jamison JM, Venugopal M, Giammar D, Summers JL. Scanning electron microscopy and transmission electron microscopy aspects of synergistic antitumor activity of vitamin C - vitamin K3 combinations against human prostatic carcinoma cells. Scanning Microsc 1995; 9 (1):159-173.
    144. Gilloteaux J, Jamison JM, Arnold D et al. Cancer cell necrosis by autoschizis: synergism of antirumor activity of vitamin C: vitamin K3 on human bladder carcinoma T24 cells. Scanning 1998; 20 (8):564-575.
    145. Gilloteaux J, Jamison JM, Arnold D et al. Autoschizis of human ovarian carcinoma cells: scanning electron and light microscopy of a new cell death induced by sodium ascorbate: menadione treatment. Scanning 2003; 25 (3):137-149.
    146. 胡佳,陈代伦。. 简介一种新的细胞坏死—胞体割裂. 电子显微学报 2004;4(23):339-341.
    147. Jamison JM, Gilloteaux J, Taper HS, Calderon PB, Summers JL. Autoschizis: a novel cell death. Biochem Pharmacol 2002; 63 (10):1773-1783.
    148. Taper HS, Jamison JM, Gilloteaux J, Summers JL, Calderon PB. Inhibition of the development of metastases by dietary vitamin C:K3 combination. Life Sci 2004; 75 (8):955-967.
    149. Verrax J, Cadrobbi J, Delvaux M et al. The association of vitamins C and K3 kills cancer cells mainly by autoschizis, a novel form of cell death. Basis for their potential use as coadjuvants in anticancer therapy. Eur J Med Chem 2003; 38 (5):451-457.
    150. Zakeri Z, Bursch W, Tenniswood M, Lockshin RA. Cell death: programmed, apoptosis, necrosis, or other? Cell Death Differ 1995; 2 (2):87-96.
    151. Denecker G, Vercammen D, Declercq W, Vandenabeele P. Apoptotic and necrotic cell death induced by death domain receptors. Cell Mol Life Sci 2001; 58 (3):356-370.
    152. Moinfar F, Mannion C, Man YG, Tavassoli FA. Mammary "comedo"-DCIS: apoptosis, oncosis, and necrosis: an electron microscopic examination of 8 cases. Ultrastruct Pathol 2000; 24 (3): 135-144.
    153. Shintani T, Klionsky DJ. Autophagy in Health and Disease: A Double-Edged Sword. Science 2004; 306 (5698):990-995.
    154. Fiorentini C, Malorni W. Exploiting cell death pathways by an E. coli cytotoxin: autophagy as a double-edged sword for the host. Autophagy 2006; 2 (4):310-311.
    
    155. Levin S. Apoptosis, Necrosis, or Oncosis: What Is Your Diagnosis? A Report from the Cell Death Nomenclature Committee of the Society of Toxicologic Pathologists. Toxicological Sciences 1998; 41 (2):155-156.
    156. Degterev A, Huang Z, Boyce M et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005; 1 (2):112-119.
    157. Teng X, Degterev A, Jagtap P et al. Structure-activity relationship study of novel necroptosis inhibitors. Bioorg Med Chem Lett 2005; 15 (22):5039-5044.
    158. Wang K, Li J, Degterev A et al. Structure-activity relationship analysis of a novel necroptosis inhibitor, Necrostatin-5. Bioorg Med Chem Lett 2007; 17 (5):1455-1465.
    159. Degterev A HJ, Germscheid M, Ch'en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008; pub ahead of print
    160. Clarke PG Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 1990; 181 (3):195-213.
    161. Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Teratology 1973; 7 (3):253-266.
    162. Soti C, Sreedhar AS, Csermely P. Apoptosis, necrosis and cellular senescence: chaperone occupancy as a potential switch. Aging Cell 2003; 2 (1):39-45.
    163. Papucci L, Formigli L, Schiavone N et al. Apoptosis shifts to necrosis via intermediate types of cell death by a mechanism depending on c-myc and bcl-2 expression. Cell Tissue Res 2004; 316 (2): 197-209.
    164. Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 2004; 16 (6):663-669.
    165. Chang SH, Phelps PC, Berezesky IK, Ebersberger ML, Jr., Trump BF. Studies on the Mechanisms and Kinetics of Apoptosis Induced by Microinjection of Cytochrome c in Rat Kidney Tubule Epithelial Cells (NRK-52E). American Journal of Pathology 2000; 156 (2):637-649.
    166. Yasuhara S, Asai A, Sahani ND, Martyn JA. Mitochondria, endoplasmic reticulum, and alternative pathways of cell death in critical illness. Crit Care Med 2007; 35 (9 Suppl):S488-495.
    167. Kostin S, Pool L, Elsasser A et al. Myocytes Die by Multiple Mechanisms in Failing Human Hearts. Circulation Research 2003; 92 (7):715-724.
    168. Koshibu-Koizumi J, Akazawa M, Iwamoto T et al. Antitumor activity of a phenoxazine compound, 2-amino-4,4alpha-dihydro-4alpha,7-dimethyl-3H-phenoxazine-3-one against human B cell and T cell lymphoblastoid cell lines: induction of mixed types of cell death, apoptosis, and necrosis. J Cancer Res Clin Oncol 2002; 128 (7):363-368.
    169. Broker LE, Kruyt FAE, Giaccone G. Cell Death Independent of Caspases: A Review. Clinical Cancer Research 2005; 11 (9):3155-3162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700