载药磷酸钙骨水泥研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸钙骨水泥在体内环境下可自凝结固化,可根据需要的形状任意塑型,是一种优良的骨填充材料。但在进行骨填充的同时,常常需给予药物预防、治疗感染,或进一步促进骨折愈合,而且在治疗的不同时期可能需要给予不同的药物进行治疗。磷酸钙骨水泥因制备过程不需要高温加热,允许多种药物和生物活性分子的载入,同时保持药物的活性和性质不变。因此磷酸钙骨水泥不仅可作为骨填充材料,而且可作为药物局部释放和控制释放的载体,应用于不同骨骼疾病的填充和治疗。本论文对符合不同临床需要的三种载药磷酸钙骨水泥进行研究。
     本论文采用Biocement D配方,即固相由α—磷酸三钙、二水磷酸氢钙、羟基磷灰石和碳酸钙按58:25:8.5:8.5的质量比混合而成,液相为磷酸氢二钠和磷酸二氢钠浓度均为0.2 mol/L的等体积混合水溶液,液固混合制备磷酸钙骨水泥。
     为促进骨愈合,本论文选用具有活血和促进骨愈合作用的香丹注射液(简称香丹)载入磷酸钙骨水泥。通过比较不同加载工艺优劣发现,香丹与原材料磷酸氢钙混合后,在70℃条件下烘干制备载香丹磷酸氢钙,这种工艺可以在较大范围调节香丹的载入量。故采用不同比例的香丹与磷酸氢钙混合烘干粉末作为磷酸钙骨水泥的起始原料之一,制备载不同浓度香丹磷酸钙骨水泥。并对载不同浓度香丹磷酸钙骨水泥进行表征和微观形貌观察,同时测定载不同浓度香丹磷酸钙骨水泥的药物释放行为。研究结果表明,磷酸钙骨水泥凝结时间随香丹浓度的增加而延长,浓度不高于0.2 mL/g的磷酸钙骨水泥凝结时间符合临床要求;抗压强度随香丹含量的增加而增加;香丹载入对磷酸钙骨水泥转化没有明显影响;但导致水化产物晶体形貌从颗粒状松散搭接转化为片状交织,且浓度越高片状晶体越多。在药物释放的最初4h,载入香丹浓度范围为0.1-0.5 mL/g的磷酸钙骨水泥释药量符合临床需要。因此,载入香丹浓度范围为0.1-0.2 mL/g的磷酸钙骨水泥凝结时间符合临床要求,比空白磷酸钙骨水泥具有更高的抗压强度,在初阶段药物释放量符合治疗需求。同时研究了香丹对磷酸钙骨水泥性能影响的机理,研究结果表明香丹载入会导致pH值下降,Zeta电位降低,钙元素与其它离子的键接作用增强。根据上述结果推测香丹导致磷酸钙骨水泥凝结时间延长的主要原因是:部分反应活性中心被覆盖和香丹中的极性基团导致流动性增强;香丹导致强度增强的原因可能是:香丹载入导致微观结构发生变化、香丹与部分钙发生键接。
     为防止磷酸钙骨水泥中抗生素长期残留而导致耐药性发生,通过添加易溶物制备快释型磷酸钙骨水泥。考察了易溶物及其含量对磷酸钙骨水泥凝结时间、抗压强度、转化程度等的影响,欲改进磷酸钙骨水泥制备快释型磷酸钙骨水泥。同时研究添加不同量易溶物对载药磷酸钙骨水泥药物释放行为的影响。通过研究发现,随易溶物添加量的增加,其凝结时间延长,抗压强度降低,药物释放速度加快;由药物释放7d后的扫描电镜照片可观察到,随易溶物添加量的增加,磷酸钙骨水泥的孔隙率和孔径增大。含20%易溶物的磷酸钙骨水泥其凝结时间基本符合临床需要。虽然其抗压强度略微偏低,但可通过一定的方法进行改进;而且药物可在7d内完全释放。故以其为例研究快释型磷酸钙骨水泥加快药物释放的机理。主要是采用沉淀滴定法和X-射线衍射考察易溶物随药物释放进行不同时间的溶出情况,并考察随药物释放进行磷酸钙骨水泥孔隙率和孔径的变化情况。通过研究发现快释型磷酸钙骨水泥中易溶物迅速溶出,其孔隙率和孔径均比普通磷酸钙骨水泥大,药物释放速率也比普通磷酸钙骨水泥中药物释放加快。通过对快释型磷酸钙骨水泥的药物释放动力学进行拟合,发现其释放机理仍然符合基质扩散型载体的药物释放模型即Higuchi模型。上述结果表明,此快释型磷酸钙骨水泥通过易溶物溶出增大其孔隙率和孔径加速了药物的扩散释放,可防止耐药性的发生,有望应用于临床。
     为实现在不同时期采用不同药物治疗的需要,本论文将载药明胶微球、另一组分药物、骨水泥原材料混合制备载双组分药物的磷酸钙骨水泥/明胶复合载体,期望实现双组分药物的先后释放。研究发现改进的乳化交联法能获得载药量较高的明胶微球。采用双波长分光光度法结合解方程的方法学可准确测定双组分药物含量。考察液/固比对载双组分药物磷酸钙骨水泥/明胶复合载体凝结成型的影响,以及不发生崩解所需液/固比。并考察载药微球加载对磷酸钙骨水泥抗压强度和转化的影响,并用双波长分光光度法测定双组分药物的释放。考察用此种方式是否可实现双组分药物的先后释放。实验结果表明,液/固比为0.85 mL/g的载双组分药物的磷酸钙骨水泥/明胶复合载体可凝结成型,置入磷酸盐缓冲溶液中也不会发生崩解,而且具有较高的抗压强度,并且微球内包裹的药物可实现进一步延迟释放,即可在一定程度上达到双组分药物先后释放的目的。
Calcium phosphate cements (CPCs) present various advantages in the repair of hard tissues, such as in vivo self-setting and the perfect fit with the implantation bed, which ensures good bone-material contact even in geometrically complex defects. In the clinical setting, at different stages after the filling of bone defects drugs are often administered at the filled site for various purposes. Antibiotics are usually administered at sufficient concentrations to prevent potential infections. Osteogenic drugs may also be administered to accelerate bone repair. The low-temperature setting of CPC allows the incorporation of a variety of drugs and biologically active molecules without deactivation or denaturalization. Therefore, in addition to serving as bone substitutes, the possibilities of using CPC as carriers for local controlled release of drugs provides attractive opportunities in the treatment of skeletal disorders. In this work, three types of drug-containing CPCs designed for different clinical requirements were studied.
     The Biocement D composition was adapted for the work in this study. The solid phase contained a-tricalcium phosphate (a-TCP, a-Ca3(PO4)2), dicalcium phosphate dehydrate (DCPD, CaHPO4.2H2O), sintered hydroxyapatite (HA, Ca5(PO4)3OH) and calcium carbonate (CaCO3) in the ratio of 58/25/8.5/8.5 (w/w/w/w). The liquid phase contained equivalent volume of disodium hydrogen phosphate (0.2 mol/L Na2HPO4) and sodium dihydrogen phosphate (0.2 mol/L NaH2PO4).
     The incorporation of Xiangdan injection (Xiangdan), an accelerator of bone healing, was studied. Different incorporating techniques were compared. It was found that Xangdan could be mixed with DCPD and dried with denaturalization at 70℃. Then, the concentration of incorporated Xiangdan was extended to a relatively wide range. Xiangdan was mixed with DCPD at different ratios and dried into Xiangdan-loaded DCPD, which was then used as a raw material in the subsequent preparation of Xiangdan-loaded CPCs. The physicochemical properties of CPCs containing various Xiangdan concentrations were characterized, including the microstructures and in vitro drug release kinetics. The setting time increased with increasing Xiangdan concentration in CPC, and could meet the clinic requirement at a concentration of or below 0.2mL/g. The compressive strength also increased with increasing Xiangdan concentration. No difference in phase conversion degree was observed between hydrated CPCs with and without Xiangdan. SEM found that the morphology of crystals changed from particles to plates with the increase in Xiangdan concentration. In the first 4 h, the in vitro release of Xiangdan from CPCs with a Xiangdan concentration of 0.1-0.5ml/g could satisfy with the clinic requirement. It was concluded that both the setting time and in vitro Xiangdan release from CPC with Xiangdan concentrations of 0.1-0.2ml/g could meet the requirement of clinical applications in the initial stage. In addition, the effect of Xiangdan on the Zeta potential, pH and raw materials was studied to understand the mechanisms of the influence of Xiangdan on the properties of CPCs. The addition of Xiangdan was found to result in decreased Zeta potential, pH, and the ratio of calcium ions in the fragment ions. These findings suggested that the prolonged setting time was attributed to the coverage of reaction active center of CPC as well as the polar groups of Xiangdan, which resulted in increased CPC fluidity. The increased compressive strength was attributed to the change of microstructure of CPC and the bonding between calcium and Xiangdan.
     The long-retention of antibiotics in CPCs may induce the development of drug resistance. Fast-releasing CPC containing antibiotics (FRCPC) was proposed as a solution to this problem and studied in this work. The FRCPC containing different proportions of soluble component were prepared and characterized. The setting time, compressive strength, degree of the conversion, in vitro antibiotic release, and fractography of FRCPC were studied. The results showed that the setting time increased, the compressive strength decreased, the in vitro antibiotic release accelerated with increasing fraction of soluble component in FRCPC. SEM showed that the porosity and pore size increased with increasing fraction of soluble component. The setting time and compressive strength of FRCPCs containing 20 wt% soluble component were close to the requirements of clinic applications, and the in vitro release was completed within 7 d. The FRCPCs containing 20 wt% may be useful in clinical applications after appropriate modifications. The mechanisms of in vitro antibiotic release from these FRCPCs were studied. X-ray diffraction and titration revealed a rapid dissolution of the soluble component during the in vitro release, and SEM showed a higher porosity and larger pore size compared with the control CPC at the same time points. These findings explained an accelerated drug release. The release kinetics followed the Higuchi's diffusion-controlled model. These FRCPCs may prevent the development of drug resistance and may find applications in clinics.
     To address the different requirements of treatment at different clinical stages, gelatin /CPCs composite containing two drug components, paracetamol and chloromycetin, were prepared to realize the temporally-ordered release of two drugs. The drug intended to be released at the late stage was encapsulated in gelatin microspheres. The drug load in microspheres was enhanced by a modified emulsion crosslink method. The concentrations of released drugs were assayed by dual-wavelength spectrophotometry. The assay was confirmed to have a high recovery, ensuring an excellent accuracy. Gelatin/CPCs composite containing two drug components were prepared by mixing CPC, free chloromycetin, and paracetamol-containing microspheres. The optimum powder:liquid ratio for the formation of CPC was studied to prevent the disintegration of gelatin/CPCs composite. The result showed that the gelatin/CPCs composite design realized the temporally-ordered release of the two drugs. At the powder:liquid ratio of 0.85g/mL, gelatin/CPCs composite containing two drug components were readily formed and could resist disintegration in aqueous solution; the compressive strength obtained at this powder:liquid ratio was within the range of the clinic applications. The delayed release of drug was realized by encapsulation in microspheres, thus successfully achieving a temporally-ordered release of two drugs from gelatin/CPCs composite.
引文
[1]Brown W, Chow L. Dental restorative cement pastes. US Patent No.4518430,1985.
    [2]Nihouannen D L. Hacking S A, Gbureck U, et al. The use of RANKL-coated brushite cement to stimulate bone remodeling [J]. Biomaterials.2008,29 (22):3253-3259.
    [3]张伟.磷酸钙骨水泥的研究与应用进展[J].国外医学生物医学工程分册.1998,21(6):350-355.
    [4]Bohner M. Calcium orthophosphates in medicine:from ceramics to calcium phosphate cements [J]. Injury, Int. J. Care Injured.2000,31 (S4):S-D37-47.
    [5]李茂红.屈树新,姚宁.等.快释型载药磷酸钙骨水泥性能及释药机理研究[J].硅酸盐学报.2009,37(9):1500-1505.
    [6]Miyamoto Y. Ishikawa K, Takechi M, et al. Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases [J]. Biomaterials.1998,19 (7-9):707-715.
    [7]Takechi M. Miyamoto Y, Ishikawa K, et al. Initial histological evaluation of anti-washout type fast-setting calcium phosphate cement following subcutaneous implantation [J]. Biomaterials.1998,19 (22):2057-2063.
    [8]Guo D G, Xu K W, Zhao X Y, et al. Development of a strontium-containing hydroxyapatite bone cement. Biomaterials [J].2005,26 (19):4073-4083.
    [9]Otsuka M, Matsuda Y, Wang Z, et al. Effect of sodium bicarbonate amount on in vitro indomethacin release from self-setting carbonated-apatite cement [J]. Pharm Res.1997,14 (4):444-449.
    [10]Mirtchi A, Lemaitre J, Munting E. Calaium phosphate cements:effect of fluoridcs on the setting and harding of beta-tricalcium phosphate-dicalcium phosphate- calcite cements [J]. Biomaterials. 1991,12 (5):505-510.
    [11]Takagi S, Chow L C, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements [J]. Biomaterials.1998.19(17):1593-1599.
    [12]郭大刚,徐可为,赵晓云等.固化条件对掺锶羟基磷灰石骨水泥凝结时间的影响[J].硅酸盐学报.2005.33(10):1292-1296.
    [13]陈德敏.磷灰石骨水泥材料的物性研究.生物医学工程学杂志[J].2000,17(1):13-1.
    [14]Khairoun I, Driessens F C M, Boltong M G, et al. Addition of cohesion promotors to calcium phosphate cements [J]. Biomaterials.1999,20 (4):393-398.
    [15]陈晓明,李世普,罗泽波,等.α-TCP骨水泥水化产物的生物相容性研究[J].中国生物医学工程学报.1996,15(3):233-238.
    [16]束红蕾,陈江.磷酸钙骨水泥的研究进展[J].口腔材料器械杂志.2000,9(4):226-228.
    [17]Karashina K. Kurita H, Kotani A, et al. Experimental cranioplasty and skeletal augmentation using an alpha2tricalcium phosphate/dicalccium phosphate dibasic/tetracalccium phosphate monoxide cement:a preliminary short-term expriment in rabbit [J]. Biomaterials.1998,19 (729):701.
    [18]Friedman C D. Costantino P D, Chow L C, et al. Hydroxyapatite cement Ⅱ. Obliteration and reconstruction of the cat frontal sinus [J]. Arch Otolaryngol Head Neck Surgery.1991,117 (4):385.
    [19]Costantino P D, Friedman C D, Chow L C, et al. Experimental hydroxyapatite cement cranioplasty [J]. Plast Reconstr Surg.1992,90 (2):17.
    [20]Ginebra M P. Traykova T. Planell J A. Calcium phosphate cements as bone drug delivery systems:a review [J]. J Control Release.2006,113 (2):102-110.
    [21]Liu C S, Wang W, Shen W, et al. Evaluation of the biocompatibility of a nonceramic hydroxyapatite [J]. J Endon.1997,23 (8):490-493.
    [22]Yuan H P, Li Y B, Bruijn J, et al. Tissue responses of calcium phosphate cement:a study in dogs [J]. Biomaterials.2000,21 (12):1283-1290.
    [23]Real R P, Wolke J G C, Vallet-Reg M, et al. A new method to produce macropores in calcium phosphate cements [J]. Biomaterials.2002,23 (17):3673-3680.
    [24]Doi Y, Shimizu Y, Moriwaki Y, et al. Development of a new calcium phosphate cement that contains sodium calcium phosphate [J]. Biomaterials,2001.22 (8):847-854.
    [25]Ginebra M P, F.C.M. Driessens, J.A. Planell. Effect of the particle size on the micro and nanostructural features of calcium phosphate cement:a kinetic analysis [J]. Biomaterials.2004,25 (17):3453-3462.
    [26]Gbureck U, Grolms O, Barralet J E, et al. Mechanical activation and cement formation of β-TCP [J]. Biomaterials.2003.24 (23):4123-4131.
    [27]Liu C S, Shao H F, Chen F Y, et al. Effects of the granularity of raw materials on the hydration and hardening process of calcium phosphate cement [J]. Biomaterials.2003,24 (23):4103-4113.
    [28]Yang Q Z, Troczynski T, Liu D M. Influence of apatite seeds on the systhesis of calcium phosphate cement [J]. Biomaterials,2002; 23 (13):2751-2760.
    [29]Liu C S, Shen W, Chen J G Solution property of calcium phosphate cement hardening body [J]. Materials Chemistry and Physics.1999,58 (1):78-83
    [30]Queiroz A C, Santos J D, Monteiro F J, et al. Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite composites [J]. Biomaterials.2001,22 (11):1393-1400.
    [31]Ginebra M P, Traykova T, Planell J A. Calcium phosphate cements:Competitive drug carriers for the musculoskeletal system? [J]. Biomaterials.2006,27 (10):2171-2177.
    [32]Ratiera A, Freche M, Lacout J L. et al. Behaviour of an injectable calcium phosphate cement with added tetracycline [J]. Int J Pharm.2004.274 (1-2):261-268.
    [33]Tamimi F, Torres J, Bettini R, et al. Doxycycline sustained release from brushite cements for the treatment of periodontal diseases [J]. J Biomed Mater Res.2008,85A:707-714.
    [34]苗军,王继芳,郝利波,等.磷酸钙骨水泥复合去甲万古霉素后理化性质改变及药物释放规律的研究[J].中华创伤骨科杂志.2004.6(6):648-656.
    [35]Lebuglea A, Rodriguesa A, Bonnevialleb P, et al. Study of implantable calcium phosphate systems for the slow release of methotrexate [J]. Biomaterials.2002,23 (16):3517-3522.
    [36]林建华,张文明,戴伯川,等.阿霉素—磷酸钙骨水泥缓释体系的制备及体外药物释放试验[J].中国骨肿瘤骨病.2003,2(4):209-239.
    [37]Link D P, Dolder J V D. Beucken J J V D, et al. Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-β1 loaded gelatin microparticles [J]. Biomaterials.2008,29 (6):675-682.
    [38]Otsuka M. Matsuda Y. Suw Y. A Novel Skeletal Drug-Delivery System Using Self-setting Calcium Phosphate Cement.3. Physicochemical Properties and Drug-Release Rate of Bovine Insulin and Bovine Albumin [J]. J Pharm Sci.1994,83 (2):255-258.
    [39]Otsuka M, MatsudaY, Baig A A. Calcium-level responsive controlled drug delivery from implant dosage forms to treat osteoporosis in an animal model [J]. Advan Drug Delivery Rev.2000,42 (3): 249-258.
    [40]余晓鸣.李万万.孙康.磷酸钙骨水泥的新进展.生物骨科材料与临床研究[J].2007.4(1):44-48.
    [41]陈华江,贾连顺,肖建如,等.抗肿瘤药物复合磷酸钙骨水泥的理化性质研究[J].第二军医大学学报.2007,28(3):250-253.
    [42]郜成莹.叶建东.磷酸钙骨水泥负载庆大霉素的制备与性能[J].材料导报.2008.22(3):151-154.
    [43]郜成莹,叶建东.添加剂和载药方法对庆大霉素/磷酸钙骨水泥载药体系性能及药物体外释放的影响[J].硅酸盐通报.2008.27(2):225-235.
    [44]黄粤.刘昌胜,邵慧芳,等.妥布霉素对磷酸钙骨水泥性能的影响[J].中国生物医学工程学报.2002.21(5):417-429.
    [45]苗军,刘春蓉,王继芳,等.复合抗生素对磷酸钙骨水泥理化性质影响作用的研究[J].中国矫形外科杂志.2004,12(3、4):230-232.
    [46]黄粤,刘昌胜,邵慧芳,等.萘普生钠/磷酸钙骨水泥药物缓释体系的研究[J].药学学报.2000,35(1):44-47.
    [47]Panzavolta S, Torricelli P, Bracci B, et al. Alendronate and Pamidronate calcium phosphate bone cements:Setting properties and in vitro response of osteoblast and osteoclast cells [J]. J inorg biochem.2009,103 (1):101-106.
    [48]Bohner M, Lenaitre J, Landuyt P V, et al. Gentamicin-loaded hydraulic calcium phosphate bone cement as antibiotic delivery system [J]. J Pharm Sci.1997,86 (5):565-572.
    [49]张进军,李兵仓,陈青,等.磷酸钙骨水泥承载头孢哌酮钠后对其理化特性的影响[J].生物医学工程学杂志.2000,17(4):400-402.
    [50]Takechi M, Miyamoto Y, Ishikawa K, et al. Effects of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement [J]. J Biomed Mater Res.1998,39:308-316.
    [51]Young A M, Poon Y J, Gbureck U. Characterization of chlorhexidine-releasing, fast-setting. brushite bone cements [J]. Acta Biomater.2008,4 (4):1081-1088.
    [52]Otsuka M, Matsuda Y, Kokubo T, et al. A novel skeletal drug delivery system using self-setting bioactive glass bone cement III:the in vitro drug release from bone cement containing indomethacin and its physicochemical properties [J]. J Control Release.1994,31:111-119.
    [53]Ginebra M P, Rilliard A, Fernandez E, et al. Mechanical and rheological improvement of a calcium phosphate cement by the addition of a polymeric drug [J]. J Biomed Mater Res,2001,57:113-118.
    [54]任鹏宇,刘娟,刘彦宁,等.丹红注射液-磷酸钙骨水泥释放体系的力学性能、显微结构及体外释放.中国组织工程研究与临床康复[J].2009.13(3):487-492.
    [55]宋志国,周大利.尹光福.等.含盐酸四环素α-TCP骨水泥的理化性能[J].功能材料.2004,35(1):111-113.
    [56]孙明林,胡蕴玉,雷伟,等.磷酸钙骨水泥/BMP复合人工骨的理化性能及缓释作用.第三军医大学学报[J].2001,23(7):800-802
    [57]Ratier A, Gibson I, Best S, et al. Setting characteristics and mechanical behaviour of a calcium phosphate bone cement containing tetracycline [J]. Biomaterials.2001,22 (9):897-901.
    [58]Joostena U, Joist A, Frebel T, et al. Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin in the treatment of chronic osteomyelitis:Studies in vitro and in vivo. Biomaterials [J].2004,25 (18):4287-4295.
    [59]Otsuka M, Nakahigashi Y, Matsuda Y, et al. A novel skeletal drug delivery system using self-setting calcium phosphate cement VIII:the relationship between in vitro and in vivo drug release from indomethacin-containing cement [J]. J Control Release.1997,43 (2-3):115-122.
    [60]Otsuka M, Matsuda Y, Fox J L, et al. A Novel Skeletal Drug Delivery System Using Self-setting Calcium Phosphate Cement.9:Effects of the Mixing Solution Volume on Anticancer Drug Release from Homogeneous Drug-Loaded Cement [J]. J Pharm Sci.1995,84 (6):733-736.
    [61]Otsuka M, Matsuda Y, Suw Y, et al. A Novel Skeletal Drug-Delivery System Using Self-setting Calcium Phosphate Cement.4. Effects of the Mixing Solution Volume on the Drug-Release Rate of Heterogeneous Aspirin-Loaded Cement [J]. J Pharm Sci.1994,83 (2):259-263.
    [62]Akashi A, Matsuya Y, Unemori M, et al. Release profile of antimicrobial agents from a-tricalcium phosphate cement [J]. Biomaterials.2001,22 (20):2713-2717.
    [63]Otsuka M, Nakahigashi Y, Matsuda Y, et al. Effect of geometrical cement size on in vitro and in vivo indomethacin release from self-setting apatite cement [J]. J Control Release.1998,52 (3):281-289.
    [64]Otsuka M, Matsuda Y, Suw Y, et al. A Novel Skeletal Drug Delivery System Using Self-setting Calcium Phosphate Cement.2. Physicochemical Properties and Drug Release Rate of the Cement-Containing Indomethacin [J]. J Pharm Sci.1994,83 (5):611-615.
    [65]Otsuka M, Nakahigashi Y, Matsuda Y, et al. Novel Skeletal Drug Delivery System Using Self-setting Calcium Phosphate Cement.7. Effect of Biological Factors on Indomethacin Release from the Cement Loaded on Bovine Bone [J]. J Pharm Sci.1994.83 (11):1569-1573.
    [66]Bohner M, Lemaitre J, Merkle H P, et al. Control Of Gentamicin Release From a Calcium Phosphate Cement by Admixed Poly(acrylic acid) [J]. J Pharm Sci.2000,89 (10):1262-1270.
    [67]龙子江,李宝泉,王元勋.骨伤补颗粒接骨续损、抗炎镇痛的实验研究[J].中医正骨.2000,12(2):5-7.
    [68]周强.骨碎补在骨伤科临床上的应用[J].中医正骨.2003,15(11):59.
    [69]丁寅等,相马骏一,山本照子.等.丹参对成骨细胞株MC3T3-E1细胞碱性磷酸酶活性及 DNA合成影响的实验研究[J].华西口腔医学杂志.1996,14(2):104-107.
    [70]晏媛.郑萍.续断的药理学研究进展[J].中医药研究.2002.18(5):53-54.
    [71]周铜水.刘晓东.周荣汉.骨碎补对大鼠实验性骨损伤愈合的影响[J].中草药.1994.25(5):249-250.
    [72]王超,高峰,郑桐斌.三七总皂甙治疗骨关节病67例[J].中医研究.1998,11(4):32-33.
    [73]王本祥,马金凯,邓文龙.现代中药药理与临床[M].第1版.天津科学技术出版社,1997:885-886.
    [74]刘柏龄,樊春洲.中国骨伤科学(卷三治疗学)[M].第1版.广西科学技术出版社,1987:30.
    [75]何世超,邱寿良.临床中医骨科学[M].第1版.中国医药科技出版社.2007:53.
    [76]邓友章,何洪阳.中西医临床骨科学[M].第1版.中国医药科技出版社.2002:86.
    [77]李逸平.科学的魅力[M].第1版.上海科学普及出版社,2004:268.
    [78]Carl A. Kirker-Head. Potential applications and delivery strategies for bone morphogenetic proteins [J]. Advan Drug Delivery Rev.2000,43 (1):65-92.
    [79]Wong R W K, Rabie A B M. Traditional Chinese Medicines and Bone Formation-A Review [J]. J Oral Maxillofac Surg.2006,64 (5):828-837.
    [80]Oreffo R O C, Driessens F C M, Planell J A, et al. Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements [J]. Biomaterials.1998,19 (20): 1845-1854.
    [81]李维峰 王玉蓉 杜守颖.热分析法鉴别丹参药材及其提取物.北京中医药大学学报,2007.30(11):778-783.
    [82]Santos L A D, Olibeira L C D, Rigo E CS. Influence of Polymeric Additives on the Mechanical Properties of α-Tricalcium Phosphate Cement [J]. Bone,1999; 25 (2Suppl):99S-102S.
    [83]潘强,王世岭,贾立华,等.喷雾干燥制备康复欣胶囊颗粒的影响因素[J].中国药业,2004.13(3):52-53.
    [84]潘春跃,邝志清,黄可龙,等.磷酸钙骨水泥水化机理研究进展[J].化学研究与应用.2000,12(4):365-369.
    [85]Lin F H, Dong G C, Chen K S, et al. Immobilization of Chinese herbal medicine onto the surface-modified calcium hydrogenphosphate [J]. Biomaterials.2003,24 (13):2413-2422.
    [86]Barroug A, Glimcher M J. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro [J]. J Orthopaed Res.2002,20 (2):274-280.
    [87]Matsumotoa T, Okazaki M, Inoue M, et al. Takahashi Hydroxyapatite particles as a controlled release carrier of protein [J]. Biomaterials.2004,25 (17):3807-3812.
    [88]Ueno Y, Futagawa H, Takagi Y, et al. Drug-incorporating calcium carbonate nanoparticles for a new delivery system [J]. J Control Release.2005,103 (1):93-98.
    [89]Khairoun I, Driessens F C M, Boltong M G, et al. Addition of cohesion promotors to calcium phosphate cements [J]. Biomaterials.1999,20(4):393-398.
    [90]潘英妮,袁丹,付文卫.HPLC法测定丹参类注射液中4种水溶性成分含量[J].沈阳药科大学学报.2004,21(3):196-200.
    [91]Xu J W, Butler 1 S. Gilson D F R. FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate (CaHPO4·2H2O) and anhydrous dicalcium phosphate (CaHPO4) [J]. Spectrochimica Acta Part A.1999,55(14):2801-2809.
    [92]Zhang H Q. Wang Y F, Yan Y H, et al. Precipitation of biocompatible hydroxyapatite whisks from moderately acid solution [J]. Ceramics International.2003.29:413-418.
    [93]李朝霞,王地.丹参水溶性成分的研究进展[J].北京中医.2004,23(3):176-178.
    [94]简洋辉,徐国钧,金蓉莺,等.中药丹参类的质量研究[J].中国药科大学学报.1989,20(1):5-9.
    [95]Liu Y R, Qu S X, Maitz M F, et al. The effect of the major components of Salvia Miltiorrhiza Bunge on bone marrow cells [J]. J Ethnopharmacol.2007.111 (2):573-583.
    [96]夏苗芬,周双林.紫外分光光度法测定香丹注射液中水溶性酚和酚酸的总含量[J].科技通报.2004.20(6):549-551.
    [97]易生富,张静.香丹注射液在四种输液中的稳定性考察[J].中国药业.2001,10(2):28-29.
    [98]林树吕曾泳淮.分析化学(仪器分析部分)(第一版).高等教育出版社,1994,114
    [99]邓芹英,刘岚,邓惠敏.波谱分析教程[M].第1版.科学出版社,2003:24.
    [100]华中师范大学.分析化学[M].第2版.高等教育出版社,1996:472,436-438.
    [101]时述山,胥少汀.实用骨与软骨移植[M].第1版.人民军医出版社,2002:189.
    [102]黄兆胜,华碧春,冼建春.骨伤中草药与验方[M].第1版.福建科学技术出版社,2004:6-182.
    [103]刘向前.骨伤科常用中药配伍运用[M].第1版.人民军医出版社,2007:251-318.
    [104]姜红江,黄相杰,谭远超,等.磷酸钙骨水泥复方丹参缓释体的制备及性能评价[J].中国修复重建外科杂志,2007;21(10):1113-1117.
    [105]刘玉荣.多孔磷酸钙骨水泥及丹参/磷酸钙复合物的研究.西南交通大学硕士学位论文.2006:104-108.
    [106]程伟.生物化学基础[M].第1版.郑州大学出版社,2007:231.
    [107]国家药典委员会.中华人民共和国药典(第二部)[M].化学工业出版社,2005:177-303.
    [108]Cui W G, Li X H, Zhu X L, et al. Investigation of Drug Release and Matrix Degradation of Electrospun Poly(-lactide) Fibers with Paracetanol Inoculation [J]. Biomacromolecules.2006,7 (5): 1623-1629.
    [109]Ginebra M P, Femkndez E, Boltong M G, et al. Compliance of an apatitic calcium phosphate short-term cement with the short-time clinical requirments in bone surgery, orthopaedics and dentistry [J]. Clin Mater.1994,17:99-104.
    [110]Carey L E, Xu H H K, Simon J C G, et al. Premixed rapid-setting calcium phosphate composites for bone repair [J]. Biomaterials.2005,26 (24):5002-5014.
    [111]季欧,李玉桂.质谱分析法(下册)[M].第1版.原子能出版社,1988:1-2.
    [112]Takechi M, Miyamoto Y, Ishikawa K, et al. Effects of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement [J]. J Biomed Mater Res,1998,39 (2): 308-311.
    [113]浙江大学化学系分析化学教研室.分析化学手册第一分册[M].第1版.化学工业出版社,1979:55.
    [114]Doi Y, Shimizu Y, Moriwaki Y, et al. Development of a new calcium phosphate cement that contains sodium calcium phosphate [J]. Biomaterials,2001.22 (8):847.
    [115]Yokoyama A, Yamamoto S, Kawasaki T. et al. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials [J]. Biomaterials,2002,23 (4):1091-1101.
    [116]邵慧芳.刘昌盛,黄粤.等.羟基磷灰石晶种的形貌控制及其对磷酸钙骨水泥的原位增强研究[J].无机材料学报.2001,16(5):933.
    [117]王文魁.王继扬.赵珊茸.晶体形貌学[M].第1版.中国地质大学出版社.2001:120.
    [118]Queiroz A C. Santos J D. Monteiro F J. et al. Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite composites [J]. Biomaterials.2001,22: 1393-1400.
    [119]Sadat U, Chaudhuri A, Hayes P D, et al. Five day antibiotic prophylaxis for major lower limb amputation reduces wound infection rates and the length of in-hospital stay [J]. Eur J Vasc Endovasc Surg.2008.35 (1):75-78.
    [120]张斯时.我院269例骨科手术患者抗菌药物应用合理性分析[J].海峡药学.2006,18(5):209-211.
    [121]Hamanishi C, Kitamoto K, Tanaka S, et al. A self-setting TTCP-DCPD apatite cement for release of vancomycin [J]. J Biomed Mater Res.1996,33 (3):139-143.
    [122]汤光.实用外科药物手册[M].第1版.中国医药科技出版社,2001:69-97.
    [123]林雪松,韩德文,张悦.医用生物化学[M].第1版.科学出版社,2001:210-215.
    [124]武汉大学主编.分析化学实验[M].第4版.高等教育出版社,1999:217-219,358,445-446.
    [125]Hochin H K X. Janet B Q. Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity [J]. Biomaterials.2002,23 (1):193-202.
    [126]Pina S. Olhero S M, Gheduzzi S, et al. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement [J]. Acta Biomater.2009,5 (4): 1233-1240.
    [127]Rodnguez L L M. Ferreira J M F. Development of porous ceramic bodies for applications in tissue engineering and drug delivery systems [J]. Mater Res Bull.2004,39 (1):83-91.
    [128]高申.钟延强.丁雪鹰.等.现代药物新剂型新技术[M].人民军医出版社.2002:117.
    [129]毕殿洲.药剂学[M].第4版.人民卫生出版社,2002:45,113,127,222,461.
    [130]邹良,肖国民,钱林法.等.胸腺肽明胶微球的制备和体外释药的特性[J].中国医院药学杂志.2004.24(9):524-526.
    [131]Esposito E. Pastesini C. Cortesi R, et al. Controlled release of 1-/3-D-arabinofuranosylcytosine (ara-C) from hydrophilic gelatin microspheres:in vitro studies [J]. Int J Pharm.1995,117 (2):151-158.
    [132]Rokhade A P, Agnihotri S A, Patil S A, et.al. Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine [J]. Carbohyd Polym.2006.65 (3):243-252.
    [133]Cortesi R. Nastruzzi C. Davis S S. Sugar cross-linked gelatin for controlled release:microspheres and disks [J]. Biomaterials.1998.19 (18):1641-1649.
    [134]杨云霞,包定元.曾昭贤,等.肺靶向制剂——硫酸链霉素明胶微球的药理学研究[J].中国抗生素杂志.1998,23(3):205-208.
    [135]曾凡彬,陆彬,杨红,等.盐酸川芎嗪肺靶向微球的研究[J].药学学报.1996,31(2):132-137.
    [136]陈庆华,陆伟根,葛庆华,等.靶向给药系统——甲氨蝶呤肝动脉栓塞微球特征及其对大鼠肝癌的实验治疗[J].药学学报.1991.26(4):293-298.
    [137]Vandelli M A, Rivasi F, Guerra P, et al. Gelatin microspheres crosslinked with D, L-glyceraldehyde as a potential drug delivery system:preparation, characterisation, in vitro and in vivo studies [J]. Int J Pharm.2001,215(1-2):175-184.
    [138]Morimoto K, Katsumata H, Yabuta T, et al. Evaluation of gelatin microspheres for nasal and intramuscular administrations of salmon calcitonin [J]. Eur J Pharm Sci.2001,13 (2):179-185.
    [139]Wei H J, Yang H S, Chen C H, et al. Gelatin microspheres encapsulated with a nonpeptide angiogenic agent, ginsenoside Rgl, for intramyocardial injection in a rat model with infarcted myocardium [J]. J Control Release.2007,120 (1-2):27-34.
    [140]Nakaoka R, Tabata Y, Ikada Y, et al. Potentiality of gelatin microsphere as immunological adjuvant [J]. Vaccine.1995,13 (7):653-661.
    [141]刘琳娜,李欣,梅其炳,等.尼莫地平明胶微球的制备及其性质研究[J].华西药学杂志.2006,21(3):243-245.
    [142]詹国平,韩彦江,谢恩伟.阿霉素明胶微球的制备及体外释药特性[J].中国医学工程.2005,13(5):483-488.
    [143]许宏琳.肺靶相利福平缓释微球的研究.沈阳药科大学硕士学位论文[M].2003:31.
    [144]Lu B, Zhang J Q, Yang H. Lung-targeting microspheres of carboplatin [J]. Int J Pharm.2003,265 (1-2):1-11.
    [145]Kawai K, Suzuki S, Tabata Y, et al. Accelerated tissue regeneration through incorporation of basic Fibroblast growth factor-impregnated gelatin microspheres into articial dermis [J]. Biomaterials. 2000,21 (5):489-499
    [146]曹丰亮,席延伟,唐琳,等.姜黄素肺靶向明胶微球的制备及性质研究[J].2009,32(3):423-426.
    [147]刘文英主编.药物分析[M].第5版.人民卫生出版社.2001:118-119.
    [148]曾昭琼主编.有机化学(上册)[M].第3版.高等教育出版社,1993:295,320.
    [149]李海刚,王东凯,赵鹏.扑热息痛缓释微丸的制备[J].沈阳药科大学学报.2007,24(4):204-219.
    [150]Esposito E, Cortesi R, Nastruzzi C. Gelatin microspheres:influence of preparation parameters and thermal treatment on chemico-physical and biopharmaceutical properties [J]. Biomaterials.1996,17 (20):2009-2020.
    [151]Schnieders J, Gbureck U, Thull R, et al. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement [J]. Biomaterials.2006,27 (23):4239-4249.
    [152]Ruhe P Q, Boerman O C, Russel F G M, et al. Controlled release of rhBMP-2 loaded poly(dl-lactic- co-glycolic acid)/calcium phosphate cement composites in vivo [J]. J Control Release.2005.106 (1-2):162-171.
    [153]Hofmann M P. Mohammed A R. Perrie Y. et al. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities [J]. Acta Biomater.2009,5 (1):43-49.
    [154]焦俊.陈绪光.骨发育与骨龄测评[M].第1版.贵州科技出版社,2004:6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700