血管生成素相互作用蛋白质的鉴定及其在细胞迁移中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管生成素(Angiogenin, ANG)具有促进血管生成和肿瘤细胞增殖的双重活性,与肿瘤的发生发展密切相关,但其作用的分子机制未明。由于蛋白质-蛋白质相互作用在生命活动中扮演着重要角色,因此研究ANG相互作用蛋白质是阐明ANG功能及分子机制的有效途径。
     本论文的第一部分运用免疫共沉淀与质谱技术在HeLa细胞中筛选到20个可能与ANG相互作用的蛋白质,其中包括了2个已知的ANG结合蛋白。通过对这20个蛋白质的功能注释和相互作用网络构建,发现其中4个蛋白质,即含IQ结构域的GTP酶激活蛋白(IQ motif containing GTPase activating protein 1, IQGAP1)、非肌型肌球蛋白重链(non-muscle myosin heavy chain 9, MYH9)、α-辅肌动蛋白4(alpha-actinin 4, ACTN4)及p-肌动蛋白(beta-actin, ACTB)与actin细胞骨架的调节及细胞粘附、迁移相关,并与Racl一起构成了一个与actin细胞骨架调节通路相关的ANG相互作用蛋白质子网络,提示ANG参与上述过程。随后利用免疫共沉淀技术证实,这4个蛋白质与ANG在HeLa细胞内的相互作用是真实的。
     由于actin骨架系统的运动与细胞粘附是细胞迁移的重要组成步骤,因此我们推测ANG很可能通过调节上述两个过程而调节了细胞的迁移。为了证实我们的猜想,第二部分首先利用免疫荧光技术检测了ANG与actin骨架蛋白在细胞中的共定位情况。结果表明,ANG与actin骨架蛋白结合于细胞-基质粘附所形成的黏着斑区域。随后,我们检测了ANG对细胞骨架及黏着斑形态、活性的影响。抑制内源ANG表达后,利用荧光标记的鬼笔环肽对F-actin进行染色以显示细胞骨架形态的变化;免疫荧光法标记黏着斑蛋白paxillin,检测黏着斑形态的变化;同时Western-blot法检测黏着斑激酶(FAK)磷酸化程度的改变。结果表明,ANG干扰后actin应力纤维显著增粗,黏着斑显著增大,但是数量减少,EGF促进的黏着斑激酶的活化受阻。最后,划线法实验结果表明,干扰内源ANG后EGF促进的细胞迁移速度减慢。综合以上结果,我们认为ANG很可能通过与actin骨架蛋白相互作用来调节actin骨架系统的运动与细胞粘附,最终影响细胞迁移能力。
     另一个得到验证的ANG结合蛋白为损伤DNA结合蛋白2(damage-specific DNA binding protein 2, DDB2),该蛋白在紫外诱导的DNA损伤修复中发挥作用,提示ANG也可能参与该过程。我们初步探索了紫外辐照刺激下ANG蛋白水平的变化及其对紫外诱导的细胞凋亡的影响。由于这部分结果较为初步,因此放在附呈现,进一步的研究正在进行中。
     综合研究结果,本论文创新地证明:1.ANG在HeLa细胞内与20个蛋白质有潜在的相互作用;2.ANG可在HeLa细胞内与IQGAP1、MYH9、ACTN4、ACTB及DDB2等相互作用;3.ANG与actin骨架蛋白在黏着斑位置相互作用,从而影响actin骨架和黏着斑形态及活性,促进EGF刺激的细胞迁移。
Angiogenin (ANG) is an angiogenic factor which also promotes tumor cell proliferation directly. However, the underlying molecular mechanisms remain elusive. Protein-protein interactions play crucial roles in biological processes, therefore, we reason that identifying ANG-ineracting proteins is a feasible way to elucidate ANG's biological functions and mechanism of action.
     In the first part of the thesis, we identified ANG-interacting proteins in HeLa cells using co-immunoprecipitation (Co-IP) combined with mass spectrum (MS) analysis. The results showed 20 potential ANG-binding partners, two of which had been reported. Bioinformatics analysis of the proteins, including functional annotations and constructions of protein-protein interacting (PPI) networks, revealed IQ motif containing GTPase activating protein 1 (IQGAP1), non-muscle myosin heavy chain 9 (MYH9),α-actinin 4 (ACTN4), andβ-actin (ACTB) to be involved in actin cytoskeleton regulations and cell adhesions. The four proteins also organized an actin cytoskeleton regulatory pathway-related sub-PPI network together with Rac1, indicating ANG involved in the above mentioned pathways. The interactions between the four proteins and ANG were confirmed by immunoprecipitation assay.
     The interaction of ANG with actin cytoskeleton proteins MYH9, ACTN4, and ACTB suggests the possibility that ANG is involved in the processes of actin cytoskeleton dynamics and cell adhesion. Since the coordination of cytoskeleton dynamics and cell-matrix adhesion is particularly important for cell migration, potential ANG functions in the two processes may explain how the protein promotes cell migration. To verify this hypothesis, in the second part of the thesis, we first identified the co-localization of ANG with actin cytoskeleton proteins and found that ANG bond to actin cytoskeleton proteins at the focal adhesion (FA) sites. Next, we stained F-actin with TRITC-conjugated phalloidin, focal adhesion with paxillin antibody, and detected phosphorylated-FAK levels using Western-blot when ANG was down-regulated. Data showed that the formation of stress fibres was enhanced, focal adhesions were enlarged, and EGF-stimulated focal adhesion kinase activation was inhibited in ANG down-regulated cells. At last, we used wound healing assay to determine the migration speed, and found that EGF-stimulated migration was retarded in ANG down-regulated cells. Altogether, our data suggested that ANG might regulate actin cytoskeleton dynamics and cell adhesion through interacting with actin cytoskeleton proteins, thus promote cell migration.
     Another identified ANG-associated protein was damage-specific DNA binding protein 2 (DDB2), which bind to the damaged DNA sites immediately after UV irradiation, indicating ANG involved in the same process. Thus, we primarily detected that ANG might response to UV irradiation by degradation and decrease UV-induced cell apoptosis in ANG down-regulated cells. These results are presented in the supplement. Much more studies are undergoing.
     According to the results above, we conclude:1. ANG interacts with 20 potential proteins in HeLa cells.2. ANG interacts with IQGAP1, MYH9, ACTN4, ACTB and DDB2 in HeLa cells; 2. ANG binds to actin cytoskeleton proteins at focal adhesions to interrupt formations and activities of stress fibres and FAs, thus to enhance EGF stimulated cell migration.
引文
[1]Zhou B B, Elledge S J. The DNA damage response:putting checkpoints in perspective [J]. Nature,2000,408 (6811).
    [2]Paules R S, Levedakou E N, Wilson S J, et al. Defective G2 checkpoint function in cells from individuals with familial cancer syndromes [J]. Cancer Res,1995,55 (8).
    [3]Kastan M B, Zhan Q, El-Deiry W S, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia [J]. Cell, 1992,71 (4).
    [4]Wright J A, Keegan K S, Herendeen D R, et al. Protein kinase mutants of human ATR increase sensitivity to UV and ionizing radiation and abrogate cell cycle checkpoint control [J]. Proc Natl Acad Sci U S A,1998,95 (13).
    [5]Liu Q, Guntuku S, Cui X S, et al. Chkl is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint [J]. Genes Dev,2000,14 (12).
    [6]Elledge S J. Cell cycle checkpoints:preventing an identity crisis [J]. Science,1996, 274 (5293).
    [7]Sancar A. DNA excision repair [J]. Annu Rev Biochem,1996,65.
    [8]Hanawalt P C. Subpathways of nucleotide excision repair and their regulation [J]. Oncogene,2002,21 (58).
    [9]Sancar A, Lindsey-Boltz L A, Unsal-Kacmaz K, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints [J]. Annu Rev Biochem, 2004,73.
    [10]Batty D, Rapic'-Otrin V, Levine a S, et al. Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites [J]. J Mol Biol, 2000,300 (2).
    [11]Fitch M E, Cross I V, Turner S J, et al. The DDB2 nucleotide excision repair gene product p48 enhances global genomic repair in p53 deficient human fibroblasts [J]. DNA Repair (Amst),2003,2 (7).
    [12]Sugasawa K, Okuda Y, Saijo M, et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex [J]. Cell,2005,121 (3).
    [13]Matsuda N, Azuma K, Saijo M, et al. DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex [J]. DNA Repair (Amst),2005,4 (5).
    [14]Bendjennat M, Boulaire J, Jascur T, et al. UV irradiation triggers ubiquitin-dependent degradation of p21(WAF1) to promote DNA repair [J]. Cell, 2003,114(5).
    [15]Kondo T, Kobayashi M, Tanaka J, et al. Rapid degradation of Cdtl upon UV-induced DNA damage is mediated by SCFSkp2 complex [J]. J Biol Chem,2004, 279 (26).
    [16]Ratner J N, Balasubramanian B, Corden J, et al. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase Ⅱ. Implications for transcription-coupled DNA repair [J]. J Biol Chem,1998,273 (9).
    [17]Tsuji T, Sun Y, Kishimoto K, et al. Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation [J]. Cancer Res,2005,65 (4).
    [18]Zhang Q, Yoshimatsu Y, Hildebrand J, et al. Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP[J]. Cell,2003,115(2).
    [19]Suzuki T, Tsuzuku J, Kawakami K, et al. Proteasome-mediated degradation of Tob is pivotal for triggering UV-induced apoptosis [J]. Oncogene,2009,28 (3).
    [20]Yoshioka N, Wang L, Kishimoto K, et al. A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation [J]. Proc Natl Acad Sci U S A,2006.
    [1]Balaban N Q, Schwarz U S, Riveline D, et al. Force and focal adhesion assembly:a close relationship studied using elastic micropatterned substrates [J]. Nat Cell Biol, 2001,3(5).
    [2]Vicente-Manzanares M, Choi C K, Horwitz a R. Integrins in cell migration-the actin connection [J]. J Cell Sci,2009,122 (Pt 2).
    [3]Gupton S L, Waterman-Storer C M. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration [J]. Cell,2006,125 (7).
    [4]Legate K R, Wickstrom S A, Fassler R. Genetic and cell biological analysis of integrin outside-in signaling [J]. Genes Dev,2009,23 (4).
    [5]Hemmings L, Rees D J, Ohanian V, et al. Talin contains three actin-binding sites each of which is adjacent to a vinculin-binding site [J]. J Cell Sci,1996,109 (Pt 11).
    [6]Gilmore a P, Burridge K. Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate [J]. Nature,1996,381 (6582).
    [7]Franco S J, Rodgers M A, Perrin B J, et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics [J]. Nat Cell Biol,2004,6 (10).
    [8]Xu W, Baribault H, Adamson E D. Vinculin knockout results in heart and brain defects during embryonic development [J]. Development,1998,125 (2).
    [9]Choi C K, Vicente-Manzanares M, Zareno J, et al. Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner [J]. Nat Cell Biol,2008,10 (9).
    [10]Kiosses W B, Shattil S J, Pampori N, et al. Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration [J]. Nat Cell Biol,2001,3 (3).
    [11]Zhang X, Jiang G, Cai Y, et al. Talin depletion reveals independence of initial cell spreading from integrin activation and traction [J]. Nat Cell Biol,2008,10 (9).
    [12]Galbraith C G, Yamada K M, Galbraith J A. Polymerizing actin fibers position integrins primed to probe for adhesion sites [J]. Science,2007,315 (5814).
    [13]Hynes R O. Integrins:bidirectional, allosteric signaling machines [J]. Cell,2002, 110(6).
    [14]Zaidel-Bar R, Itzkovitz S, Ma'ayan A, et al. Functional atlas of the integrin adhesome [J]. Nat Cell Biol,2007,9 (8).
    [15]Humphries M J, Newham P. The structure of cell-adhesion molecules [J]. Trends Cell Biol,1998,8(2).
    [16]Kraynov V S, Chamberlain C, Bokoch G M, et al. Localized Rac activation dynamics visualized in living cells [J]. Science,2000,290 (5490).
    [17]Jaffe a B, Hall A. Rho GTPases:biochemistry and biology [J]. Annu Rev Cell Dev Biol,2005,21.
    [18]Pollard T D. Regulation of actin filament assembly by Arp2/3 complex and formins [J]. Annu Rev Biophys Biomol Struct,2007,36.
    [19]Wang W, Eddy R, Condeelis J. The cofilin pathway in breast cancer invasion and metastasis [J]. Nat Rev Cancer,2007,7 (6).
    [20]Daub H, Gevaert K, Vandekerckhove J, et al. Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16 [J]. J Biol Chem,2001,276(3).
    [21]Mitra S K, Schlaepfer D D. Integrin-regulated FAK-Src signaling in normal and cancer cells [J]. Curr Opin Cell Biol,2006,18 (5).
    [22]Chodniewicz D, Klemke R L. Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold [J]. Biochim Biophys Acta,2004,1692 (2-3).
    [23]Schaller M D, Parsons J T. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk [J]. Mol Cell Biol,1995,15 (5).
    [24]Reddien P W, Horvitz H R. CED-2/CrkⅡ and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans [J]. Nat Cell Biol,2000,2 (3).
    [25]Manabe R, Kovalenko M, Webb D J, et al. GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration [J]. J Cell Sci,2002,115 (Pt 7).
    [26]Manser E, Loo T H, Koh C G, et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors [J]. Mol Cell,1998,1 (2).
    [27]Nayal A, Webb D J, Brown C M, et al. Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics [J]. J Cell Biol,2006,173 (4).
    [28]Sanders L C, Matsumura F, Bokoch G M, et al. Inhibition of myosin light chain kinase by p21-activated kinase [J]. Science,1999,283 (5410).
    [29]Cox E A, Sastry S K, Huttenlocher A. Integrin-mediated adhesion regulates cell polarity and membrane protrusion through the Rho family of GTPases [J]. Mol Biol Cell,2001,12 (2).
    [30]Ren X D, Kiosses W B, Schwartz M A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton [J]. EMBO J,1999,18 (3).
    [31]Leung T, Chen X Q, Manser E, et al. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton [J]. Mol Cell Biol,1996,16 (10).
    [32]Ishizaki T, Maekawa M, Fujisawa K, et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase [J]. EMBO J,1996,15 (8).
    [33]Amano M, Ito M, Kimura K, et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase) [J]. J Biol Chem,1996,271 (34).
    [34]Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase) [J]. Science,1996,273 (5272).
    [35]Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions [J]. J Cell Biol,1996,133 (6).
    [36]Pollard T D, Borisy G G. Cellular motility driven by assembly and disassembly of actin filaments [J]. Cell,2003,112 (4).
    [37]Mattila P K, Lappalainen P. Filopodia:molecular architecture and cellular functions [J]. Nat Rev Mol Cell Biol,2008,9 (6).
    [38]Demali K A, Burridge K. Coupling membrane protrusion and cell adhesion [J]. J Cell Sci,2003,116 (Pt 12).
    [39]Alexandrova a Y, Arnold K, Schaub S, et al. Comparative dynamics of retrograde actin flow and focal adhesions:formation of nascent adhesions triggers transition from fast to slow flow [J]. PLoS One,2008,3 (9).
    [40]Hu K, Ji L, Applegate K T, et al. Differential transmission of actin motion within focal adhesions [J]. Science,2007,315 (5808).
    [1]Russell J, Zomerdijk J C. RNA-polymerase-I-directed rDNA transcription, life and works[J]. Trends Biochem Sci,2005,30(2):87-96.
    [2]Grummt I. Life on a planet of its own:regulation of RNA polymerase I transcription in the nucleolus[J]. Genes Dev,2003,17(14):1691-702.
    [3]Gorski J J, Pathak S, Panov K, et al. A novel TBP-associated factor of SL1 functions in RNA polymerase I transcription[J]. Embo J,2007,26(6):1560-8.
    [4]Hirschler-Laszkiewicz I, Cavanaugh A H, Mirza A, et al. Rrn3 becomes inactivated in the process of ribosomal DNA transcription[J]. J Biol Chem,2003,278(21): 18953-9.
    [5]Panov K I, Friedrich J K, Zomerdijk J C. A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription[J]. Mol Cell Biol,2001,21(8):2641-9.
    [6]Jansa P, Burek C, Sander E E, et al. The transcript release factor PTRF augments ribosomal gene transcription by facilitating reinitiation of RNA polymerase I[J]. Nucleic Acids Res,2001,29(2):423-9.
    [7]O'Sullivan A C, Sullivan G J, McStay B. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat[J]. Mol Cell Biol, 2002,22(2):657-68.
    [8]Mais C, Wright J E, Prieto J L, et al. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery [J]. Genes Dev,2005, 19(1):50-64.
    [9]Stefanovsky V, Langlois F, Gagnon-Kugler T, et al. Growth factor signaling regulates elongation of RNA polymerase I transcription in mammals via UBF phosphorylation and r-chromatin remodeling[J]. Mol Cell,2006,21(5):629-39.
    [10]Zhao J, Yuan X, Frodin M, et al. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth[J]. Mol Cell,2003,11(2):405-13.
    [11]Hannan K M, Brandenburger Y, Jenkins A, et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF[J]. Mol Cell Biol,2003,23(23):8862-77.
    [12]Mayer C, Zhao J, Yuan X, et al. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability[J]. Genes Dev,2004, 18(4):423-34.
    [13]Mayer C, Bierhoff H, Grummt I. The nucleolus as a stress sensor:JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis[J]. Genes Dev, 2005,19(8):933-41.
    [14]Meraner J, Lechner M, Loidl A, et al. Acetylation of UBF changes during the cell cycle and regulates the interaction of UBF with RNA polymerase I[J]. Nucleic Acids Res,2006,34(6):1798-806.
    [15]Hannan K M, Hannan R D, Smith S D, et al. Rb and p130 regulate RNA polymerase I transcription:Rb disrupts the interaction between UBF and SL-1[J]. Oncogene,2000,19(43):4988-99.
    [16]Pelletier G, Stefanovsky V Y, Faubladier M, et al. Competitive recruitment of CBP and Rb-HDAC regulates UBF acetylation and ribosomal transcription[J]. Mol Cell, 2000,6(5):1059-66.
    [17]Muth V, Nadaud S, Grummt I, et al. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription[J]. Embo J,2001,20(6): 1353-62.
    [18]Voit R, Hoffmann M, Grummt I. Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF[J]. Embo J,1999,18(7): 1891-9.
    [19]Voit R, Grummt I. Phosphorylation of UBF at serine 388 is required for interaction with RNA polymerase I and activation of rDNA transcription[J]. Proc Natl Acad Sci U S A,2001,98(24):13631-6.
    [20]Macaluso M, Montanari M, Giordano A. Rb family proteins as modulators of gene expression and new aspects regarding the interaction with chromatin remodeling enzymes[J]. Oncogene,2006,25(38):5263-7.
    [21]Ayrault O, Andrique L, Seite P. Involvement of the transcriptional factor E2F1 in the regulation of the rRNA promoter[J]. Exp Cell Res,2006,312(7):1185-93.
    [22]Ciarmatori S, Scott P H, Sutcliffe J E, et al. Overlapping functions of the pRb family in the regulation of rRNA synthesis[J]. Mol Cell Biol,2001,21(17): 5806-14.
    [23]Zhai W, Comai L. Repression of RNA polymerase I transcription by the tumor suppressor p53[J]. Mol Cell Biol,2000,20(16):5930-8.
    [24]Ayrault O, Andrique L, Larsen C J, et al. Human Arf tumor suppressor specifically interacts with chromatin containing the promoter of rRNA genes[J]. Oncogene, 2004,23(49):8097-104.
    [25]Ayrault O, Andrique L, Fauvin D, et al. Human tumor suppressor pl4(ARF) negatively regulates rRNA transcription and inhibits UBF1 transcription factor phosphorylation[J]. Oncogene,2006,25(58):7577-86
    [26]Grandori C, Gomez-Roman N, Felton-Edkins Z A, et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I[J]. Nat Cell Biol,2005,7(3):311-8.
    [27]Arabi A, Wu S, Ridderstrale K, et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription[J]. Nat Cell Biol,2005,7(3):303-10.
    [28]Iben S, Tschochner H, Bier M, et al. TFIIH plays an essential role in RNA polymerase I transcription[J]. Cell,2002,109(3):297-306.
    [29]Bradsher J, Auriol J, Proietti de Santis L, et al. CSB is a component of RNA pol I transcription[J]. Mol Cell,2002,10(4):819-29.
    [30]Philimonenko V V, Zhao J, Iben S, et al. Nuclear actin and myosin I are required for RNA polymerase I transcription[J]. Nat Cell Biol,2004,6(12):1165-72.
    [31]Zhang C, Comai L, Johnson D L. PTEN represses RNA Polymerase I transcription by disrupting the SL1 complex[J]. Mol Cell Biol,2005,25(16):6899-911.
    [32]Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription[J]. Genes Dev,2006,20(9):1075-80.
    [33]Bullwinkel J, Baron-Luhr B, Ludemann A, et al. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells[J]. J Cell Physiol, 2006,206(3):624-35.
    [34]Sheng Z, Liang Y, Lin C Y, et al. Direct regulation of rRNA transcription by fibroblast growth factor 2[J]. Mol Cell Biol,2005,25(21):9419-26.
    [35]Xu Z P, Tsuji T, Riordan J F, et al. Identification and characterization of an angiogenin-binding DNA sequence that stimulates luciferase reporter gene expression[J]. Biochemistry,2003,42(1):121-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700