无种子法合成金纳米晶及核壳结构金银纳米晶的光谱性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料因其独特的表面效应、量子尺寸效应等在力学、热学、电学、磁学、光学等方面表现出优良的性能,因此在包括高新医药生物、新型能源开发、新信息技术等新兴领域具有极大的潜在应用价值,近些年已经成为人们重点研究的热门课题。尤其是以金、银为代表的贵金属纳米材料,由于其具有独特的光学、电学、催化等性质以及良好的生物相容性,在光学、电子学、生物学、催化以及构建具有二维和三维结构新材料等诸多领域具有重要的应用价值。随着现代科学技术的飞速发展,社会对纳米材料性能的要求越来越高并且日趋多样化,单一组成的物质难以满足不同形式的需求,纳米复合材料应运而生并得到迅速的发展。特别是对于金、银这样的贵金属,将它们制备成金核银壳或者银核金壳这样的壳层结构,还可提高贵金属的利用率。以金为核或壳的核壳纳米粒子通过调节内核直径和壳层厚度的比值,能实现等离子体共振在很宽波段范围内的可调节性,因而此类核壳纳米材料能广泛应用于光学传感器、生物传感器。
     金、银纳米晶以及二者复合的纳米晶所表现出的许多独特性质与其形貌和尺寸及组成是紧密相关的。因此致力于纳米晶形貌及尺寸等方面的研究工作一直没有停过。经过人们近几十年来的不断研究和探索,已经成功的合成出各种形貌的金、银纳米晶以及金、银复合的纳米晶,如类球形、棒状、立方体、凹形立方体、二十四面体、类球形核壳结构,立方体核壳结构等。伴随着这些不同形貌纳米晶的合成,同时出现了很多不同的合成方法,目前比较常用的是种子生长法制备各种形貌各种尺寸的金、银纳米晶。
     我们正是利用种子生长法,在CTAC体系中合成了不同形貌、不同尺寸的类球形金纳米晶,产率很高,尺寸分布均一性也较好。并且以此为种子,加入到CTAC的生长溶液中继续生长,通过变化类球形金纳米晶的加入量,得到了不同银壳厚度的金核银壳结构纳米晶,为了分析金核银壳结构所表现出来的表面等离子共振性质随银壳厚度变化的规律,我们分别以粒径为9.8nm,15.2nm,22.6nm,28.2nm的类球形金纳米晶作为种子,合成金核银壳结构纳米晶。我们以金核表面等离子共振吸收峰的变化为参照,随着银壳厚度的增加,相对于类球形金纳米晶本身的吸收峰,金核的峰逐渐蓝移,且强度逐渐的减小。然而银壳所表现出来的吸收峰逐渐的增强,且总体呈现一个逐渐红移的趋势,我们在使用了四种不同粒径的球形纳米晶做种子生长银壳后,发现核壳结构所表现出的表面等离子性质以银的特征为主导时,银壳厚度是不同的。因此我们认为,核壳结构中银的吸收峰占主导时的临界范围与银壳厚度关系不大,主要与银壳厚度与核壳结构纳米晶本身半径的比有关。根据我们的分析,我们推测这个比值≥0.28时,核壳结构主要表现银的特征吸收峰。
     种子生长法是在合成纳米晶常用的一种的方法,最近,两步种子生长法简化到向生长溶液中加入NaBH4,而不是加入事先制备好的金晶种,众所周知的是,NaBH4是一种很强的还原剂,可以将Au3+直接还原成Au0,生长溶液中加入NaBH4,可以形成很小的金纳米晶,可以起到种子的作用,从而可以生长成更大的金纳米晶。然而使用无种子生长法合成的许多形貌的纳米晶产率和质量都不尽理想,不如传统种子生长法合成的好。为了解决这些难题,本文全面细致的研究了通过向生长溶液中加入NaBH4这样的无种子生长法来制备不同形貌的金纳米晶。在无种子生长法中,直接被NaBH4还原的金种子的大小约为1.5nm,有利于合成各向异性的金纳米晶。我们发现,在生长溶液中加入冰水中新配的NaBH4后,反应溶液静置生长前搅拌25-30s时,得到的纳米晶的产率和形貌均一性都较好。
     我们利用这个改良的无种子生长法成功合成了凹形立方体、立方体、三八二十四面体、棒状、类球形的金纳米晶,并且通过改变NaBH4在反应溶液中的浓度,得到了不同尺寸的金纳米晶,对其所表现出的不同表面等离子共振性质进行了研究。重点研究了AgNO3、AA浓度的变化对合成金纳米棒的影响,与传统种子生长法中得到结论是一致的,通过改变生长溶液中反应物的浓度,合成了具有相同长径比,不同尺寸(长×宽)的金纳米棒。在生物医学的实际应用中,相同长径比的金纳米棒用于在近红外照射下进行光热治疗肿瘤,纳米棒的尺寸,即长度和宽度,会对活体内的半衰期循环造成明显的影响。因此,合成出具有相同长径比但是不同长度和宽度的金纳米棒就很有意义。我们还比较了具有类似尺寸的凹形立方体和立方体金纳米晶在表面等离子共振性质上表现出的不同,凹形立方体金纳米晶显示出比具有类似尺寸的立方体金纳米晶更宽化且红移的表面等离子吸收峰,这与理论模拟是一致的,即具有凹形面的立方体金纳米晶的表面等离子共振吸收峰比具有平面的立方体的要红移,这都是由于凹形立方体纳米晶具有更尖的顶端的缘故。
     循环伏安测试常常用来表征不同形貌金纳米晶的表面活性。我们利用循环伏安测试法我们对所得到的不同形貌的金纳米晶进行了电化学性能测试,证明了像凹形立方体和三八二十四面体这样具有高指数晶面的纳米晶具有较高的化学活性,而像立方体,类球形和棒状这些具有低指数面的纳米晶的化学活性较低,同时对这几种不同形貌的纳米晶在碱性条件下进行了对甲醇的催化氧化,结果是一致的,也就是具有高指数面的纳米晶具有更好的催化性能,反之,催化性能较低。
     我们将无种子生长法扩展到银纳米晶的合成中,成功的合成出了不同尺寸的类球形银纳米晶,以及小于18nm的立方体金核银壳纳米晶,并对其表面等离子共振性质进行了表征。
     各种形貌,不同尺寸的金、银纳米晶的合成,证明了经过我们改良的无种子生长法的普遍适用性,是非常值得推广的一种方法。使用这种简单、高效、易掌握的方法来合成不同形貌的金、银纳米晶,必然会对金纳米晶在不同技术应用的研究上,提供更大的方便,具有重要的意义。
Nanomaterials show excellent property in mechanics, thermology, electrology, magnetic and optics due to the unique surface effect, quantum size effect and so on, which has important promised applications in new scientific and technological undertakings, such as biomedicine, new energy development, new information technology, has been one of the hottest topic. Nobel metals nanostructured materials such as gold, silver, which has important applications in photonics, electronics, biology, catalysis and new material with two-dimensional and three-dimensional structure owing to their unique optics, electrology, catalytic properties and biocompatibility. Because of the rapid development of modern science and technology, the requirement for the properties of nanomaterials is more and more high and variegated. It is hardly for the material with single component to satisfy various requirements, therefore, nanocomposites emerge as the times require and get rapidly developed. Especially for the gold and silver nanocrystal, the availability was raised by combining Au and Ag into a core-shell configuration. The surface plasmon resonance can be controllable in a broad range by tuning the ratio of core diameter and shell thickness, as a result, the core-shell configuration materials have promised applications in optical sensor and biosensor.
     Gold and silver nanocrystals and their composite exhibit many unique characteristic depend on their shape, size, and composition. The work in researching the shape and size of the nanocrystal always is in progress. Under the constant researching and exploring, gold and silver nanocrystals with various shape have been synthesized, such as quasi-spherical, rod-like, cubic, concave cubic, trisoctahedral, Quasi-Spherical core-shell, cubic core-shell and so on. A lot of different methods have been used for synthesized nanocrystals with various shapes. Up to date, the seed-mediated growth method is the dominant workhorse for synthesis of Au and Ag NCs with different shapes.
     We successfully synthesize high yield and uniform quasi-spherical gold nanocrystals with different shapes and sizes by the seed-mediate growth method in the CTAC solution. Next, the prepared quasi-spherical gold nanocrystals were used as seeds for the overgrowth of thin shell of silver in the CTAC solution. The Au@Ag nanocrystal with different shell thicknesss were synthesized by varying the amount of quasi-spherical gold nanocrystals. In order to analyse the relation between the surface plasmon resonance and the varied thickness of shell, the prepared quasi-spherical gold nanocrystals with the diameter of9.8,15.2,22.6, and28.2nm were used as seeds for synthesizing Au@Ag nanocrystal. The varied surface plasmon resonance of Au core as the reference, compared with the quasi-spherical gold nanocrystals, which blue shifted as the thickness of the Ag shell increased, and the intensity of peak decreased. Howerve, the intensity of peak for Ag shell is increased and red-shifted. We use the quasi-spherical gold nanocrystals with four different diameters as the seed for the overgrowth of Ag shell, and we find that when the SPR of Ag shell dominated in the SPR of core-shell nanocrystals, the thickness of the Ag shell is different. Therefore, we believe that the critical range of the the SPR of Ag shell dominated in the SPR of core-shell nanocrystals has nothing to do with the thickness of Ag shell, but associates with the ratio of the thickness of Ag shell to the radius of the core-shell nanocrystal. Accordingly our analysis, the ratio is equal or greater than0.28.
     A broadly used strategy for preparing gold nanocrystals is a seed-mediated approach, the two-step seed-mediated growth process has been recently simplified into a seedless by adding the trace amount of NaBH4instead of preformed Au seeds into the growth solution. It is well-known that NaBH4is a very strong reducing agent and can directly reduce Au3+into Au0. The addition of NaBH4into the growth solution is expected to form very small Au NCs, which can act as seeds for growth of large Au NCs. However, the quality and production yield of Au NCs with varied shapes obtained via currently available seedless growth methods are relatively poor as compared to those obtained via conventional seed-mediated growth method. Thus, to address this challenge, the present work aims to meticulously explore the seedless growth of Au NCs via addition of NaBH4into the growth solution. Seedless method with size of about1.5nm is in favor for the synthesis of anisotropic Au NCs. We have found that after addition of freshly prepared ice-cold aqueous solution of NaBH4into growth solutions, the time of stirring the reaction mixture prior to aging at room temperature is optimized to be25-30s for producing high yield and well-defined Au NCs.
     Concave cubic, cubic, trisoctahedral, rod-like, quasi-spherical Au NCs have been synthesized by the modified seedless growth method, and the size of the resulting Au NCs increased with the decrease of NaBH4concentration in the final reaction media. The surface plasmon resonance of the resulting Au NCs has been studied meticulously. Also the influence of the concentration of AgNO3and AA on the synthesis of Au NRs has been analysed, and the result is agreement with the conventional seed mediated growth method. The Au NRs with the same aspect ratio but with the different dimensions (length×width) have been synthesized via varied the concentration of the reactant in the growth solution. In practical applications in biomedicine, for instance, when Au NRs with the same aspect ratios are utilized for photothermal tumor therapy under irradiation of near-infrared light, the dimension of the NRs, length and width, is expected to considerably affect their in vivo circulation half-life. Thus, it becomes desirable to synthesize Au NRs with varied length and width but fixed aspect ratios. Concave cubic Au NCs show a broader SPR band in comparison with those of cubic Au NCs with similar edge length. The result is in good agreement with theoretical simulation that the SPR band for cubic Au-NCs with concave surfaces is expected to red-shift into the long wavelength range as compared to that of cubic Au NCs with flat surfaces because the concave cubic NCs have sharper tips.
     Cyclic voltammetry (CV) has been commonly used to characterize the activity of the surface facets of as-prepared Au NCs with different shapes. We use the cyclic voltammetry to test the electrochemical property of the as-prepared Au NCs with different shapes. It is discovered that the concave cubic and trisoctahedral Au NCs with high-index facets have higher activity the cubic, quasi-spherical and rod-like Au NCs with the low-index facets, we further studied the electrocatalytic activity of quasi-spherical Au NCs, cubic Au NCs, Au NRs, concave cubic Au NCs, and TOH Au NCs, and by utilizing them as electrocatalysts for methanol oxidation. The test results suggests that the TOH or concave cubic Au NCs are more active for electrocatalysis of methanol oxidation, which can be easily rationalized as a result of the presence of high-index facets in the former two NCs, which are in good agreement with previous results.
     We expand the seedless growth method to the synthesis of Ag NCs, and quasi-spherical Ag NCs and cubic Au@Ag NCs with the size below18nm have been prepared. The surface plasmon resonance has been characterized.
     The synthesis of gold and silver nanocrystals with varied shape and size via our modified seedless growth method demonstrates its universality, which deserves to be popularized. Thus, our work opens a general, facile, efficient, and, more importantly, easily accessible strategy for the production of uniform Au NCs directly in water, which should be important for further exploitation in different technical applications.
引文
[1]Lieber, C. M. Nanoscale science and technology:Building a big future from small things. MRS Bulletin,2003,28,486-491.
    [2]Whitesides, G. M. Nanoscience, nanotechnology, and chemistry. Small 2005,1, 172-179.
    [3]Hochella, M. F. Nanoscience and technology the next revolution in the earth sciences. Earth. Planet. Sci. Lett..2002,203,593-605.
    [4]Vaia, R. A.; Benson Tolle, T. B.; Schmitt, G. F.; Imeson, D.; Jones, R. J. Nanoscience and nanotechnology:Materials revolution for the 21(st) century. Sampe Journal,2001,37,24-31.
    [5]Mirkin, C.A. The beginning of a small revolution, Small,2005,1,14-16.
    [6]Yiping, L,; Hdjinanayis, G. C.; Sorensen, C. M. Magnetic properties of fine cobalt particles prepared by metal atom reduction. J.Appl. Phys.1990,67,4502-4504.
    [7]Ball, P.; Garwin, L. Science at the atomic scale. Nature 1992,355,761-766.
    [8]Auer, S.; Frenkel, D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature,2001,413,711-713.
    [9]Klaunde, K. J.; Stark, J.; Koper, O.; Mohs, C.; Park, D.; Decker, S.; Jiang, Y.; Lag-adic, I.; Zhang, D. Nanocrystals as stoichiometric reagents with unique surface chemistry.J. Phys. Chem.1996,100,12142-12153.
    [10]Henglein, A. Small-particle researeh:physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem.Rev.1989,89,1861-1873.
    [11]Awschalom, D. D.; Mccord, M. A.; Grinstein, G. Observation of macroscopic spin phenomena in nanometer-scale magnets. Phys. Rev. Lett.1990,65,783-786.
    [12]Barbara, B.; Wernsdorfer. Quantum tunneling effect in magnetic particles. Curr, Opin. Solid State. Mater. Sci.1997,2,220-225.
    [13]Hofler, H. J.; Averback, R. S.; Hahn, H. Diffusion of bismuth and gold in Nanocrystalline copper. J. Appl. Phys.1993,74,3832-3839.
    [14]Gleiter, H. Nanostructured Materials. Acta metallurgia Sinica 1997,33,30-38.
    [15]Chokshi, A. H.; Rosen, A.; Karch, J.; Gleiter, H. On the validity of the hall-petch relationship in nanocrystalline materials. Scripta Metall.1989,23,1679-1683.
    [16]G.W.Nieman, J.R.Weertman, R.W.Siegel, Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation. Scripta Metall.1989,23, 2013-2018.
    [17]Memahon, G.; Erb, U. Synthesis of nanocrystalline Zn-Ni alloy coating. Microstructura. Sci.1989,17,447-450.
    [18]Chen, I. W.; Xue, L. A. Development of superplastic structural ceramics. J. Am.Ceram. Sci.1990,73,2585-2609.
    [19]Nishida, I.; Kimoto, K. Crystal habit and crystal structure of fine chromium particles:An electron microscope and electron diffraction study of fine metallic particles prepared by evaporation in argon at low pressures (Ⅲ). Thin. Solids.Films. 1974,23,179-189.
    [20]Yeh, T. S.; Saeks, M. D. Low-Temperature Sintering of Aluminum Oxide. J. Am.Ceram.Soe.1988,71,841-844. [21] Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci.1989,33,223-315
    [22]Liu, Y. S.; Mo, C. M..; Cai, W. L. Negative temperature coefficient of resistivity in bulk nanostructured Ag. J.Mater.Sci.Tech.2000,16,521-524.
    [23]Krauss, T. D.; Brus, L. E. Electronic properties of single semiconductor nanocrystals:optical and electrostatic force microscopy measurements. Mater. Sci. Eng. B 2000,69,289-294.
    [24]Wang, W. X.; Li, D. H. Strong piezoelectricity in nanosized silicon nitride prepared by laser-induced chemical vapor deposition. Appl. Phys. Lett.1993,62, 321.
    [25]都有为,磁记录材料[M],电子工业出版社,1992。
    [26]Fert, A.; Piraux, L. Magnetic nanowires. J. Magn. Magn. Mater.1999,200, 338-358.
    [27]Lue, J. T. A review of characterization and physical property studies of metallic nanoparticles.J. Phys. Chem.Solids,2001,62,1599-1612.
    [28]巩雄,郭永,杨宏秀,陈文驹。纳米材料及其光学特性。化学通报[J],1998,3,19-21。
    [29]Banfi, G. P.; Degiorgio, V.; Ricard, D. Non-resonant optical nonlinearities of semiconductor nanocrystals. Adv. Phys1998,47,447-510.
    [30]Baccarani, G.; Reggiani, S. Performance limits of CMOS technology and perspectives of quantum devices. Challenges in Microelectronics.2000,1,843-873.
    [31]Nakazato, K.; Blaikie, R. J.; Ahmed, H. Single-electron memory, J. Appl. Phys. 1994,75,5123-5134.
    [32]Tilke, A. T.; Simmel, F. C.; Blick, R. H.; Lorenz, H.; Kotthaus, J. P. Coulomb blockade in silicon nanostructures. Progress in Quantum Electronics.2001,25, 97-138.
    [33]Altmeyer, S.; Hofmann, K.; Hamidi, A.; Hu, S.; Spangenberg, B.; Kurz, H. Potential and challenges of single electron devices. Vacuum 1998,51,295-299.
    [34]Luryi, S.; Xu, J.; Zaslavsky, A. Future Trends in Microelectronics. John Wiley and Sons.1999,313-322.
    [35]Likharev K.K., Correlated discrete transfer of single electrons in ultrasmall tunnel junctions. IBMJ. Res. Develop.1988,32,144-157.
    [36]Davis, A. P. Nanotechnology:Synthetic molecular motors. Nature 1999,401, 120-121.
    [37]Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemannt, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    [38]Litter, M. Heterogeneous photocatalysis:transition metal ions in photocatalytic systems. Applied Catalysis B:Environmental 1999,23,89-114.
    [39]Fujishima, A.; Rao, T. N.; Tryk, D. A. Titanium dioxide photocatalysis. J. photoch. photobio. C 2000,1,1-21.
    [40]Jean-Marie Hernnann, Heterogeneous Photoeatalysis:fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999,53,115-129.
    [41]Ollis, D. F. Photocatalytic purification and remediation of contaminated air and water. Surface chemisty and catalytics 2000,3,405-411.
    [42]Dillon, A. C; Parilla, P. A.; Alleman, J. L.; Perkins, J. D.; Heben, M. J. Controlling single-wall nanotube diameters with variation in laser pulse power. Chem. Phys.Lett.1999,316,11-15.
    [43]Maciiwain, C. Nanotech thinks big. Nature 2000,405,730-732.
    [44]Tan, W.; Krishnaraj, R.; Desai, T. A. Evaluation of nanostructured composite collagen chitosan matrices for tissue engineering. Tissue Engineering,2001,7, 203-220.
    45] Hartgerink, T. D.; Beniash, E.; Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001,294,1684-1688.
    [46]Ha, J. M.; Solovyov, A.; Katz, A. Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles. Langmuir,2009,25, 10548-10553.
    [47]Crooks, R. M.; Zhao, M. Q.; Sun, L.; Chechik, V.; Yeung, L. K. Dendrimer-encapsulated metal nanoparticles:Synthesis, characterization, and applications to catalysis. Acc. Chem. Res.2001,34,181-190.
    [48]Chen, P.; Zhang, X.; Miao, Z.; Han, B.; An, G.; Liu Z. In-situ synthesis of noble metal nanoparticles in alginate solution and their application in catalysis. J. Nanosci. Nanotechnol.2009,9,2628-2633.
    [49]Kamat, P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 2002,106,1129-1144.
    [50]Emory, S. R.; Nie, S. Screening and enrichment of metal nanoparticles with novel optical properties. J. Phys. Chem. B 1998,102,493-497.
    [51]Prikulis, J.; Svedberg, F.; Kall, M.; Enger, J.; Ramser, K.; Goksor, Mattias.; Hanstorp, Dag. Optical spectroscopy of single trapped metal nanoparticles in solution, Nano Lett.,2004,4,115-118.
    [52]Yan, C. L.; Xue, D. F. A modified electroless deposition route to dendritic Cu metal nanostructures. Cryst. Growth Des.2008,8,1849-1854.
    [53]Brown, L. O.; Doom, S. K. Optimization of the preparation of glass-coated, dye-tagged metal nanoparticles as SERS substrates. Langmuir 2008,24,2178-2185.
    [54]Lu, Y.; Liu, G.; Lee, L. P. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett.,2005,5,5-9.
    [55]Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. Nanoscale optical biosensor:Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 2004,108,6961-6968.
    [56]Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. A nanoscale optical biosensor:The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 2004,108,109-116.
    [57]Kamins, T. I.; Sharma, S.; Yasseri, A. A.; Li, Z.; Straznicky, J. Metal-catalysed, bridging nanowires as vapour sensors and concept for their use in a sensor system. Nanotechnology.2006,17, S291-S297.
    [58]Xia, Y; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics. Angew. Chem. Inf. Ed. 2009,48,60-103.
    [59]Munro, C. H.; Smith, W. E.; Garner, M.; Clarkson, J.; White, P. C. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir,1995,11, 3712-3720.
    [60]Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. Plasmonics-A Route to Nanoscale Optical Devices. Adv. Mater.,2001, 13,1501-1505.
    [61]Yang, Y.; Nogami, M.; Shi, J. L.; Chen, H.; Ma, G.; Tang, S. Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties.Appl. Phys. Lett.2006,88,8.
    [62]Sanders A. W.; Routenberg, D. A.; Wiley, B. J.; Xia, Y.; Dufresne, E. R; Reed, M. A. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett.2006,6,1822-1826.
    [63]Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Scanometric DNA array detection with nanoparticle probes. Science,2000,289,1757-1760.
    [64]Cao Y.; Jin, R.; Mirkin, C. A. DNA-modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc.2001,123,7961-7962.
    [65]Tkachenko, A. G.; Xie, H.; Coleman, D. Glomm, W.; Ryan, J.; Anderson M. F.; Franzen, S.; Feldheim, D. L. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J. Am. Chem. Soc.2003,125,4700-4701.
    [66]Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. Y; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X. D.; Xia Y. Gold nanocages:Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett.,2005,5,473-477.
    [67]Zhang, X.; Young, M. A.; Lyanders, O.; van Duyne, R. P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc.2005, 127,4484-4489.
    [68]Skrabalak, S. E.; Chen, J.; Au, L.; Lu, X.; Li, X.; Xia, Y. Gold nanocages for biomedical applications. Adv. Mater.2007,19,3177-3184.
    [69]Jain, P. K.; Huang, X.; El-sayed, I. H.; El-sayed, M. A. Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Ace. Chem. Res.2008,41,1578-1586.
    [70]Lewis, L. N. Chemical catalysis by colloids and clusters. Chem. Rev.1993,93, 2693-2730.
    [71]Xiong, Y.; Wiley, B.; Xia, Y. Nanocrystals with unconventional shapes-A class of promising catalysts. Angew.2007,46,7157-7159.
    [72]Xu, X.; Rosi, N. L.; Wang, Y; Huo, F.; Mirkin, C. A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc.2006, 128,9286-9287.
    [73]Si, S.; Mandal, T. K. pH-controlled reversible assembly of peptide-functionalized gold nanoparticles. Langmuir 2007,23,190-195.
    [74]Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003,107,668-677.
    [75]Mie, G. Beitrage zur Optik Truber Medien. Ann. Phys.1908,25:329.
    [76]Fleischnann, M.; Hendra, P. J.; Macquillan, A. Raman spectra of pyridine Adsorbed at a silver Electrode. Chem. Phys. Lett.1974,26,163-166.
    [77]Cao Y. C.; Jin, R. C.; Nam J. M.; Thaxton, C. S.; Mirkin, C. A. Raman dye-labeled nanoparticle probes for proteins. J. Am. Chem. Soc.2003,125, 14676-14677.
    [78]Michaels, A. M.; Jiang, J.; Brus, L. Ag nanocrystal junctions as the site for surface-enhanced raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 2000,104,11965-11971.
    [79]Itoh, K.; Nishizawa, T.; Yamagata, J.; Fujii, M.; Osaka, N.; Kudryashov, I. Raman microspectroscopic study on polymerization and degradation processes of a diacetylene derivative at surface enhanced Raman scattering active substrates.1. Reaction kinetics. J. Phys. Chem. B,2005,109,264-270.
    [80]Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Surface-enhanced Raman spectroscopy of self-assembled monolayers:Sandwich architecture and nanoparticle shape dependence. Anal. Chem.2005,77,3261-3266.
    [81]Anderson, D. J.; Moskovits, M. A. SERS-active system based on silver nanoparticles tethered to a deposited silver film. J. Phys. Chem. B.2006,110, 13722-13727.
    [82]Zhao, L. L.; Jensen, L.; Schatz, G. C. Surface-enhanced Raman scattering of pyrazine at the junction between two Ag-20 nanoclusters. Nano Lett.2006,6, 1229-1234.
    [83]Dieringer, J. A.; Lettan, R. B.; Scheidt, K. A.; van Duyne, R. P. A frequency domain existence proof of single-molecule surface-enhanced raman spectroscopy. J. Am. Chem. Soc.2007,129,16249-16256.
    [84]Olson, T. Y.; Schwartzberg, A. M.; Orme, C. A.; Talley, C. E.; O'connell, B.; Zhang J. Z. Hollow gold-silver double-shell nanospheres:Structure, optical absorption, and surface-enhanced raman scattering. J. Phys. Chem. C.2008,112, 6319-6329.
    [85]Camded, J. P.; Dieringer, J. A.; Wang, Y. M.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; van Duyne, R. P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc.2008,130,12616.
    [86]Vlckova, B.; Moskovits, M.; Pavel, I.; Siskova, K.; Sladkova, M.; Slouf, M. Single-molecule surface-enhanced Raman spectroscopy from a molecularly-bridged silver nanoparticle dimer. Chem. Phys. Lett.2008,455,131-134.
    [87]Ma, Y.; Kuang, Q.; Jiang, Z.; Xie, Z.; Huang, R.; Zheng, L. Synthesis of Trisoctahedral Gold Nanocrystals with Exposed High-Index Facets by a Facile Chemical Method. Angew. Chem. Int. Ed.2008,47,8901-8904.
    [88]Zhang, J.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S.; Mirkin, C. A. Concave Cubic Gold Nanocrystals with High-Index Facets. J. Am. Chem. Soc.2010, 132,14012-14014.
    [89]N. R. Jana,L. Gearheart and C. J. Murphy. Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles. Langmuir 2001.17,6782-6786.
    [90]Rodriguez-Fernandez, J.; Perez-Juste, J.; de Abajo, J. G.; Liz-Marzan, L. M. Seeded Growth of Submicron Au Colloids with Quadrupole Plasmon Resonance Modes Langmuir 2006,22,7007-7010.
    [91]Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996,382,607-609.
    [92]Nikhil R. Jana, Latha Gearheart, and Catherine J. Murphy. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. J. Phys. Chem. B 2001, 105,4065-4067.
    [93]Tapan K. Sau and Catherine J. Murphy. Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution. Langmuir 2004,20,6414-6420.
    [94]Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B. Using Binary Surfactant Mixtures To Simultaneously Improve the Dimensional Tunability and Monodispersity in the Seeded Growth of Gold Nanorods. Nano Lett.2013,13,765-771.
    [95]Oyelere, A. K.; Chen, P. C.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Peptide-conjugated goldnanorods for nuclear targeting. Bioconjugate Chem,2007,18, 1490-1497.
    [96]Marinakos, S. M.; Chen, S. H.; Chilkoti, A. Plasmonic detection of amodel analyte in serum by a gold nanorod sensor. Anal Chem.2007,79,5278-5283.
    [97]Yu, C. X.; Irudayaraj, J. Multiplex Biosensor using gold nanorods. Anal Chem, 2007,79,572-579.
    [98]Xiang, Y.; Wu, X.; Liu, D.; Feng, L.; Zhang, K.; Chu, W.; Zhou, W.; Xie, S. Tuning the Morphology of Gold Nanocrystals by Switching the Growth of{110} Facets from Restriction to Preference. J. Phys. Chem. C2008,112,3203-3208.
    [99]Grzelczak, M.; Sanchez-Iglesias, A.; Rodriguez-Gonzalez, B.; Alvarez-Puebla, R.; Perez-Juste, J.; Liz-Marzan, L. M. Influence of Iodide Ions on the Growth of Gold Nanorods:Tuning Tip Curvature and Surface Plasmon Resonance. Adv. Funct. Mater.2008,18,3780-3786.
    [100]Jiao, Z.; Xia, H.; Tao, X. Modulation of Localized Surface Plasmon Resonance of Nanostructured Gold Crystals by Tuning Their Tip Curvature with Assistance of Iodide and Silver(I) Ions. J. Phys. Chem. C 2011,115 (16),7887-7895.
    [101]Niu, W.; Zheng, S.; Wang, D.; Liu, X.; Li, H.; Han, S.; Chen, J.; Tang, Z.; Xu, G. Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals. J. Am. Chem. Soc.2009,131,697-703.
    [102]Ma, Y.; Kuang, Q.; Jiang, Z.; Xie, Z.; Huang, R.; Zheng, L. Synthesis of Trisoctahedral Gold Nanocrystals with Exposed High-Index Facets by a Facile Chemical Method. Angew. Chem. Int. Ed.2008,47,8901-8904.
    [103]Yu, Y.; Zhang Q.; Lu, X.; Lee, J. Y. Seed-Mediated Synthesis of Monodisperse Concave Trisoctahedral Gold Nanocrystals with Controllable Sizes.J. Phys. Chem. C 2010,114,11119-11126.
    [104]Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L.; Wang, J.; Yan, C. Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets. J. Am. Chem. Soc.2009, 131,16350-16351.
    [105]Li, H.; Xia, H.; Wang, D.; Tao, X. Simple synthesis of monodisperse, quasi-spherical, citrate-stabilized silver nanocrystals in water, Langmuir 2013,29, 5074-5079.
    [106]Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun.,2001,617-618.
    [107]Hu, J. Q.; Chen, Q.; Xie, Z. X.; Han, G. B.; Wang, R. H.; Ren, B.; Zhang, Y. Yang, Z. L.; Tian, Z. Q., A simple and effective route for the synthesis of crystalline silver nanorods and nanowires, Adv. Funct. Mater.2004,14,183-189.
    [108]Zhang, Q.; Li, W.; Moran, C.; Zeng, J.; Chen, J.; Wen, L. P.; Xia, Y. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30-200 nm and Comparison of Their Optical Properties. J. Am. Chem. Soc. 2010,132,11372-11378.
    [109]Wang, Y.; Zheng, Y.; Huang, C. Z.; Xia, Y. Synthesis of Ag Nanocubes 18-32 nm in Edge Length:The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility. J. Am. Chem. Soc.2013,135,1941-1951.
    [1]Drygin, Y. F.; Blintsov, A. N.; Osipov, A. P.; Grigorenko, V. G.; Andreeva, I. P.; Uskov, A. I.; Varitsev, Y. A.; Anisimov, B. V.; Novikov, V. K.; Atabekov, J. G. High-sensitivity express immunochromatographic method for detection of plant infection by tobacco mosaic virus. Biochemislry-Moscow.2009,74,986-993.
    [2]Naja, G.; Hrapovic, S.; Male, K.; Bouvrette, P.; Luong, J. H. T. Rapid detection of microorganisms with nanoparticles and electron microscopy. Microsc. Res. Tech. 2008,71,742-748.
    [3]Wang, G.; Stender, A. S.; Sun, W.; Fang, N. Optical imaging of non-fluorescent nanoparticle probes in live cells. Analyst.2010,135,215-221.
    [4]Sokolov, K.; Follen, M.; Aaron, J.; Pavlova, I.; Malpica, A.; Lotan, R.; Richards-Kortum, R. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res.2003,63,1999-2UU4.
    [5]Kho, K. W.; Kah, J. C. Y.; Lee, C. G. L.; Sheppard, C. J. R.; Shen, Z. X.; Soo, K. C.; Olivo, M. C. Applications of gold nanoparticles in the early detection of cancer. J. Mech. Med. Biol.2007,7,1-17.
    [6]Stoschek, C. M. Protein assay sensitive at nanogram levels. Anal. Biochem.1987, 160,301-305.
    [7]Deelder A. M.; Dozy, M. H. Applicability of sol particle immunoassay (SPIA) for detection of Schistosoma mansoni circulating antigens. Acta Leiden.1982,48,17-22.
    [8]Wielaard, F.; Denissen, A.; van der Veen, L.; Rutjes,1. A sol-particle immunoassay for determination of anti-rubella antibodies; development and clinical validation. J. Virol Methods 1987,17,149-158.
    [9]Zharov, V. P.; Galitovsky, V.; Viegas, M. Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl. Phys. Lett.2003,83,4897-4899.
    [10]Pitsillides, C. M.; Joe, E. K.; Wei, X.; Anderson, R. R.; Lin, C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J.2003,84, 4023-4032.
    [11]Khlebtsov, B.; Melnikov, A.; Zharov, V.; and Khlebtsov, N. Absorption and scattering of light by a dimer of metal nanospheres:comparison of dipole and multipole approaches. Nanotechnology 2006,17:1437-1445.
    [12]Huang, X.; Qian, W.; El-Sayed, I. H.; El-Sayed, M. A. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg. Med.2007,39,747-753.
    [13]Duncan, B.; Kim, C.; Rotello, V. M. Gold nanoparticle platforms as drug and biomacromolecule delivery systems, J. Controlled Release 2010,148,122-127.
    [14]Pissuwan, D.; Niidome, T.; Cortie, M. B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Controlled Release 2011,149, 65-71.
    [15]Llevot, A.; Astruc, D. Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem. Soc. Rev.2012,41,242-257.
    [16]Yang, Y.; Matsubara, S.; Nogami, M; Shi, J.; Huang, W. One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties. Nanotechnology 2006,17,2821-2827.
    [17]Yang, M.; Chen, G.; Zhao, Y.; Silber, G.; Wang, Y; Xing, S.; Han, Y; Chen, H. Mechanistic investigation into the spontaneous linear assembly of gold nanospheres. Phys. Chem. Chem. Phys.2010,12,11850-11860.
    [18]Sardar, R.; Shumaker-Parry, J. S. Asymmetrically functionalized gold nanoparticles organized in one-dimensional chains. Nano Lett.2008,8,731-736.
    [19]Dong, A.; Ye, X.; Chen, J.; Murray, C. B. Two-dimensional binary and ternary nanocrystal superlattices:the case of monolayers and bilayers. Nano Lett.2011.11, 1804-1809.
    [20]Que, R.; Shao, M.; Zhuo, S.; Wen, C.; Wang, S.; Lee, S. T. Highly reproducible surface-enhanced raman scattering on a capillarity-assisted gold nanoparticle assembly. Adv. Funct. Mater.2011,21,3337-3343.
    [21]Park, Y K.; Park, S. H. Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface. Chem. Mater.2008,20,2388-2393.
    [22]Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 2006,439,55-59.
    [23]Shevchenko, E. V.; Kortright, J.; Talapin, D. V.; Aloni, S.; Alivisatos, A. P. Quasi-ternary nanoparticle superlattices through nanoparticle design. Adv. Mater. 2007,79,4183-4188.
    [24]Fan, H.; Wright, A.; Gabaldon, J.; Rodriguez, A.; Brinker. C. J.; Jiang, Y. B. Three-Dimensionally Ordered Gold Nanocrystal/Silica Superlattice Thin Films Synthesized via Sol-Gel Self-Assembly. Adv. Fund. Mater.2006,16,891-895.
    [25]Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, nature physical science.1973,241,20-22.
    [26]Xia, H.; Bai, S.; Hartmann, J.; Wang, D. Synthesis of Monodisperse Quasi-Spherical Gold Nanoparticles in Water via Silver(Ⅰ)-Assisted Citrate Reduction. Langmuir 2010,26 (5),3585-3589.
    [27]Perrault, S. D.; Chan, W. C. W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. J. Am. Chem. Soc.2009, 131,17042-17043.
    [28]Huang Y.; Kim, D. H. Synthesis and self-assembly of highly monodispersed quasi-spherical gold nanoparticles. Langmuir 2011,27,13861-13867.
    [29]Bastus, N. G.; Comenge, J.; Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 run:size focusing versus ostwald ripening. Langmuir 2011,27,11098-11105.
    [30]Ziegler, C.; Eychmuller, A. Seeded growth synthesis of uniform gold nanoparticles with diameters of 15-300 nm. J. Phys. Chem. C 2011,115,4502-4506.
    [31]Schneider, S.; Halbig, P.; H. Grau, Nickel, U. Reproducible preparation of silver sols with uniform particle size for application in surface-enhanced raman spectroscopy. Photochem. Photobiol.1994,60,605-610.
    [32]Watzky, M. A.; Finke, R. G. Nanocluster size-control and "magic number" investigations. Experimental tests of the "living-metal polymer" concept and of mechanism-based size-control predictions leading to the syntheses of iridium(O) nanoclusters centering about four sequential magic numbers. Chem. Mater.1997,9, 3083-3095.
    [33]Brown, K. R.; Natan, M. J. Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces. Langmuir 1998,14,726-728.
    [34]Brown, K. R.; Walter, D. G.; Natan, M. J. Seeding of colloidal Au nanoparticle solutions.2. improved control of particle size and shape. Chem. Mater.2000,12, 306-313.
    [35]Henglein, A.; Giersig, M. Formation of colloidal silver nanoparticles:capping action of citrate. J. Phys. Chem. B 1999,103,9533-9539.
    [36]Henglein A. Radiolytic preparation of ultra fine colloidal gold particles in aqueous solution:optical spectrum controlled growth, and some chemical reactions. Langmuir 1999,15,6738-6744.
    [37]Teranishi, T.; Miyake, M. Size control of palladium nanoparticles and their crystal structures. Chem. Mater.1998,10,594-600.
    [38]Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B 1999,103,3818-3827.
    [39]Teo, B. K.; Keating, K.; Kao, Y. H. Observation of Plasmon frequency in the optical spectrum of Au18Ag20 cluster:The beginning of the collective phenomenon characteristics of the bulk? J. Am. Chem. Soc.1987,109,3494-3495.
    [40]Toshima, N.; Harada, M.; Yamazaki, Y.; Asakura, K. Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride. J. Phys. Chem.1992,96,9927-9933.
    [41]Itakura, T.; Torigoe, K.; Esumi, K. Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator. Langmuir 1995,11, 4129-4134.
    [42]Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. Nanoengineering of optical resonances. J. Chem. Phys. Lett.1998,288,243-247.
    [43]Aliev, F.G.; Correa-Duarte, M. A.; Mamedov, A.; Ostrander, J. W.; Giersig, M.; Liz-Marzan, L.M.; Kotov, N. A. Layer-by-layer assembly of core-shell magnetite nanoparticles:effect of silica coating on interparticle interactions and magnetic properties. Adv. Mater.1999,11,1006-1010. [44] Caruso, F. Nanoengineering of particle surfaces. Adv. Mater.2001,13,11-22
    [45]孙聆东,付雪峰,钱程,廖春生,严纯华。水热法合成CdS/ZnO核壳结构纳米微粒。高等学校化学学报[J]2001,22,879-882。
    [46]刘志平,黄慧民,邓淑华。一步水热法制备核壳型纳米粉体。化工新型材料[J],2005,33,35-36。
    [47]Kamat, P. V.; Flumiani, M.; Dawson, A. Metal-metal and metal-semiconductor composite nanoclusters. Colloids Surf. A:Physicochem. Eng. Aspects 2002,202, 269-279
    [48]Selby, K.; Vollmer, M.; Masui, J.; Kresin, V.; de Heer, W. A.; Knight, W. D. Surface plasma resonances in free metal clusters. Phys. Rev. B 1989,40,5417
    [49]Lim, Y. T.; Park, O. O.; Jung, H. T. Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method:near infrared responsive materials. J. Colloid Interface Sci.2003,263,449-453
    [50]Dhas, N. A.; Zaban, A.; Gedanken, A. Surface Synthesis of Zinc Sulfide Nanoparticles on Silica Microspheres:Sonochemical Preparation, Characterization, and Optical Properties. Chem. Mater.1999,11,806-813.
    [51]Gu, S.; Kondo, T.; Mine, E.; Nagao, D.; Kobayashi, Y.; Konno, M. Fabrication of sub-micrometer-sized jingle bell-shaped hollow spheres from multilayered core-shell particles. J. Colloid Interface Sci.2004,279,281-283.
    [52]Zhang, K.; Zhang, X.; Chen, H.; Chen, X.; Zheng, L.; Zhang, J.; Yang, B. Hollow titania spheres with movable silica spheres inside. Langmuir 2004,20,11312-11314.
    [53]Lu, L.; Wang, H.; Zhou, Y.; Xi, S.; Zhang, H.; Hu, J.; Zhao, B. Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. Chem. Commun.2002,144-145
    [54]Sanchez-Iglesias, A.; Carbo-Argibay, E.; Glaria, A.; Rodriguez-Gonzalez, B.; Perez-Juste, Jorge.; Pastoriza-Santos, I.; Liz-Marzan, L. M. Rapid epitaxial growth of Ag on Au nanoparticles:from Au nanorods to core-shell Au@Ag octahedrons. Chem. Eur. J.2010,16,5558-5563
    [55]Ma, Y.; Li, W.; Cho, E. C; Li, Z.; Yu, T.; Zeng, J.; Xie, Z.; Xia, Y. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACSNano 2010,4,6725-6734.
    [56]Liz-Marzan, L. M.; Philipse, A. P. Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolite fibers. J. Phys. Chem.1995,99, 15120-15128.
    [57]Torigoe, K.; Esumi, K. Preparation of bimetallic silver-palladium colloids from silver(I) bis(oxalato) palladate(II). Langmuir 1993,9,1664-1667.
    [58]Schmid, G.; West, H.; Mehles, H.; Lehnert, A. Hydrosilation reactions catalyzed by supported bimetallic colloids. Inorg. Chem.1997,36,891-895.
    [59]Schmid, G.; Lehnert, A.; Malm, J. O.; Bovin, J. O. Ligandstabilized bimetallic colloids identified by HRTEM and EDX. Angew. Chem., Int. Ed.1991,30,874-876.
    [60]Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles:synthesis, assembly, and optical applications. J. Phys. Chem. B 2005,109,13857-13870.
    [61]Zhang, J.; Liu, H.; Wang, Z.; Ming, N. Shape-Selective Synthesis of Gold Nanoparticles with Controlled Sizes, Shapes, and Plasmon Resonances. Adv. Funct. Mater.2007,17,3295-3303.
    [62]Wiley, B. J.; Im, S. H.; Li, Z.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. J. Phys. Chem. B 2006,110,15666-15675.
    [63]Tao, A.; Sinsermsuksakul, P.; Yang, P. Polyhedral Silver Nanocrystals with Distinct Scattering Signatures. Angew. Chem., Int. Ed.2006,45,4597-4601.
    [64]Smith, G. B.; Pustovit, V. N. Coupled multipolar interactions in clusters of nanoparticles with metal shells. Opt. Comm.2002,211,197-204.
    [65]Prodan, E.; Lee, A.; Nordlander, P. The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells. Chem. Phys. Lett.2002,360, 325-332
    [66]Prodan, E.; Nordlander, P.; Halas, N. J. Effects of dielectric screening on the optical properties of metallic nanoshells. Chem. Phys. Lett.2003,368,94-101
    [67]Prodan, E.; Nordlander, P.; Halas, N. J. Electronic structure and optical properties of gold nanoshells. Nano lett.2003,3,1411-1415.
    [68]Prodan, E.; Nordlander, P. Electronic structure and polarizability of metallic nanoshells. Chem. Phys. Lett.2002,352,140-146.
    [69]Oldenburg, S. J.; Jackson, J. B.; Westcott, S. L.; Halas, N. J. Infrared extinction properties of gold nanoshells. Appl.Phys.Lett.1999,75,2897-2899.
    [70]Jackson, J. B.; Halas, N. J. Silver nanoshells:variations in morphologies and optical properties. J. Phys. Chem.2001,105,2743-2746.
    [71]Jiang, Z. J.; Liu, C. Y. Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere. J. Phys. Chem. B 2003,107,12411-12415.
    [72]彭剑淳,刘晓达,丁晓萍,付占江,王全立。可见光光谱法评价胶体金粒径及分布。军事医学学院院刊[J],2000,24,211-212。
    [73]Hayat, M. A. Methods for synthesis of colloidal gold.Colloidal Gold.Colloidal Gold:principles,Methods and Application. J Academic Press San Diego.1989,1-39.
    [74]吴维明,蔡强,陈裕泉。纳米金在生物检测中的应用。国外医学生物医学工程分册[J],2003,26,193-197。
    [75]Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Gold nanostructures:engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev.2006,35,1084-1094.
    [76]Ying, Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C. Gold nanorods: electroehemical synthesis and optical properties. J. Phys. Chem. B 1997,101, 6661-6664.
    [77]Link, S.; Mohamed, M. B.; El-Sayed, M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 1999,103,3073-3077.
    [78]van der Zande, B. M. I.; Bohmer, M. R.; Fokkink, L. G. J.; Schonenberger, C.Aqueous gold sols of rod-shaped particles. J. Phys. Chem. B 1997,101,852-854.
    [79]Mohamed, M. B.; Ismael, K. Z.; Link, S. El-Sayed, M. A. Thermal reshaping of gold nanorods in micelles. J. Phys. Chem. B 1998,102,9370-9374.
    [80]Jin, R.; Cao, Y.; Mirkin, C. A. Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001,294, 1901-1903.
    [81]Maillard, M.; Giorgio, S.; Pileni, M. Silver nanodisks. Adv. Mater.2002,14, 1084-1806.
    [82]Callegari, A.; Tonti, D.; Chergui, M. Photochemiclly grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett.2003,3,1565-1568.
    [83]Hao, E.; Kelly, K. L.; Hupp, J. T.; Schatz, G. C. Synthesis of silver nanodisks using polystyrene mesospheres as templates. J. Am. Chem. Soc.2002,124, 15182-15183.
    [84]Sun, Y.; Mayers, B.; Xia, Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett.2003,3,675-679.
    [85]Aden, A. L.; Kerker, M. Scattering of electromagnetic waves from concentric spheres. J. Appl. Phys.1951,22,1242-1246.
    [86]Oldenburg, S. J.; Averitt, S. L.; Halas, N. J. Nanoengineering of optical resonances. Chem. Phys. Lett.1998,288,243-247.
    [87]Xu, H.; Kall, M. Surface-enhanced Raman scattering-physics and applications, Topics Appl. Phys.2006,103,87-104.
    [88]vande Htllst, H. C. Light scattering by small particle. New York:dover publications.1981,114-131.
    [89]Mie, G. Contributions to the Optics of Turbid Media, Particularly of Colloidal Metal Solutions. Ann. Phys.1908,25,377-445.
    [1]Ha, J. M.; Solovyov, A.; Katz, A. Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles. Langmuir 2009,25, 10548-10553.
    [2]Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. Dendrimer-encapsulated metal nanoparticles:Synthesis, characterization, and applications to catalysis. Acc. Chem. Res.2001,34,181-190.
    [3]Chen, P.; Zhang, X.; Miao, Z.; Han, B.; An, G.; Liu, Z. In-situ synthesis of noble metal nanoparticles in alginate solution and their application in catalysis. J Nanosci Nanotechnol.2009,9,2628-2633.
    [4]Kamat, P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 2002,106,7729-7744.
    [5]Emory, S. R.; Nie, S. Screening and enrichment of metal nanoparticles with novel optical properties. J. Phys. Chem. B 1998,102,493-497.
    [6]Prikulis, J.; Svedberg, F.; Kall, M.; Enger, J.; Ramser, K.; Goksor, M.; Hanstorp, D. Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Lett. 2004,4,115-118.
    [7]Yan, C.; Xue, D. A modified electroless deposition route to dendritic Cu metal nanostructures. Cryst. Growth Des.2008,8,1849-1854.
    [8]Brown, L. O.; Doom, S. K. Optimization of the preparation of glass-coated, dye-tagged metal nanoparticles as SERS substrates. Langmuir 2008,24,2178-2185.
    [9]Lu, Y.; Liu, G. L.; Lee, L. P. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett.2005,5,5-9.
    [10]Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 2004,108,6961-6968.
    [11]Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. A nanoscale optical biosensor:the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 2004,108,109-116.
    [12]Kamins, T. I.; Sharma, S.; Yasseri, A. A.; Li, Z.; Straznicky, J. Metal-catalysed, bridging nanowires as vapour sensors and concept for their use in a sensor system. Nanotechnology 2006,17, S291-S297.
    [13]Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003,107,668-677.
    [14]Sosa, I. O.; Noguez, C.; Barrera, R. G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003,107,6269-6275.
    [15]Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002,298,2176-2179.
    [16]Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles:synthesis, assembly, and optical applications. J. Phys. Chem. B 2005,109,13857-13870.
    [17]Grzelczak, M.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M. Shape Control in Gold Nanoparticle Synthesis. Chem. Soc. Rev.2008,37,1783-1791.
    [18]Alvarez-Puebla, R. A.; Liz-Marzan, L. M. Traps and Cages for SERS detection. Chem. Soc. Rev.2012,41,43-51.
    [19]Alvarez-Puebla, R. A.; Liz-Marzan, L. M. SERS Detection of Small Inorganic Molecules and Ions. Angew. Chem. Int. Ed.2012,51,11214-11223.
    [20]Pelaz, B.; Jaber, S.; de Aberasturi, D. J.; Wulf, V.; Aida, T.; de la Fuente, J. M.; Feldmann, J.; Gaub, H. E.; Josephson, L.; Kagan, C. R.; Kotov, N. A.; Liz-Marzan, L. M.; Mattoussi, H.; Mulvaney, P.; Murray, C. B.; Rogach, A. L.; Weiss, P. S.; Willner, I.; Parak, W. J. The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges. ACSNano 2012,6,8468-8483.
    [21]Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra:A Potential Cancer Diagnostic Marker. Nano Lett.2007,7,1591-1597.
    [22]Alkilany, A. M.; Louse, S. E.; Murphy, C. J. The Gold Standard:Gold Nanoparticle Libraries To Understand the Nano-Bio Interface. Acc. Chem. Res.2013, 46,650-661.
    [23]Quan, Z.; Wang, Y.; Fang, J. High-Index Faceted Noble Metal Nanocrystals. Acc. Chem. Res.2013,46,191-202.
    [24]Frens, G. Controlled nueleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys.Sci.1973,241,20-22,
    [25]Turkeviteh, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss.Farada Soc.1951,11,55-75.
    [26]Henglein, A.; Giersig, M. Formation of colloidal silver nanoparticles capping action of citrate. JPhys Chem.1999, B,9533
    [27]Sau, T. K.; Pal, A.; Jana, N. R.; Wang, Z. L.; Tarasankar, P. Size cont rolled synthesis of gold nanoparticles using photochemically prepared seed particles. J. Nanopart. Res.2001,3,257-261.
    [28]Tsai, C. Y.; Chien, H. T.; Ding, P. P.; Chan, B.; Luh, T. Y; Chen, P. H. Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Materials Letrers 2004,58,1461-1465.
    [29]Devarajan, S.; Vimalan, B.; Sampath, S. Phase transfer of Au-Ag alloy nanoprticles from aqueous medium to an organic solvent:effect of aging of surfactant on the formation of Ag-rich alloy compositions. J Colloid Interface Sci.2004,278, 126-132.
    [30]Sanehez-Cortes, S.; Garcia-Ramos, J. V.; Morcillo, G.; Tinti, A. Morphhological study of silver colloids eployed in SERS:activation when exciting in visible and NIR regions. J. Colloid Interface Sci.1995,175,358-368.
    [31]Sanehez-Cortes, S.; Garcia-Ramos, J. V. Adsorption and chemical modification of phenols on a Silver surface. J. Colloid Interface Sci.2000,231,98-106.
    [32]Jana, N. R.; Murphy, C. J. Seeding growth for size control of 5-40nm diameter gold nanoparticles. Langmuir 2001,17,6782-6786.
    [32]Jana, N. R.; Geatheart, L.; Murphy, C. J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem.Mater.2001,13, 2313-2322.
    [33]Jiang, X. C.; Brioude, A.; Pileni, M. P.Gold nanorods:Limitations on Their Synthesis and Optical Properties. Colloids Surf. A 2006,277,201-206.
    [34]Jiang, X. C.; Pileni, M. P. Gold nanorods:Influence of Various Parameters as Seeds, Solvent, Surfactant on Shape Control. Colloids Surf. A 2007,295,228-232.
    [35]Smith, D. K.; Miller, N. R.; Korgel, B. A. Iodide in CTAB Prevents Gold Nanorod Formation. Langmuir 2009,25,9518-9524.
    [36]Jiao, Z.; Xia, H.; Tao, X. Modulation of Localized Surface Plasmon Resonance of Nanostructured Gold Crystals by Tuning Their Tip Curvature with Assistance of Iodide and Silver(I) Ions. J. Phys. Chem. C 2011,115,7887-7895.
    [37]DuChene, J. S.; Niu, W.; Abendroth, J. M.; Sun, Q.; Zhao, W.; Huo, F.; Wei, W. Halide Anions as Shape-Directing Agents for Obtaining High-Quality Anisotropic Gold Nanostructures. Chem. Mater.2013,25,1392-1399.
    [38]Nikoobakht, B.; El-Sayed, M. A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater.2003,15, 1957-1962.
    [39]Sau, T. K.; Murphy, C. J. Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution. Langmuir 2004,20,6414-6420.
    [40]Ali, M. R. K.; Snyder, B.; El-Sayed, M. A. Synthesis and Optical Properties of Small Au Nanorods Using a Seedless Growth Technique. Langmuir 2012,28, 9807-9815.
    [41]Straney, P. J.; Andolina, C. M.; Millstone, J. E. Seedless Initiation as an Efficient, Sustainable Route to Anisotropic Gold Nanoparticles. Langmuir 2013,29,4396-4403.
    [42]Jana, N. R. Gram-Scale Synthesis of Soluble, Near-Monodisperse Gold Nanorods and Other Anisotropic Nanoparticles. Small 2005,1,875-882.
    [43]Zijlstra, P.; Bullen, C.; Chon, J. W. M.; Gu, M. High-Temperature Seedless Synthesis of Gold Nanorods. J. Phys. Chem.B2006,110,19315-19318.
    [44]Bullen, C.; Latter, M. J.; D'Alonzo, N. J.; Willis, G. J.; Raston, C. L. A seedless approach to continuous flow synthesis of gold nanorods. Chem. Commun.2011,47, 4123-4125.
    [45]Lohse, S. E.; Eller, J. R.; Sivapalan, S. T.; Plews, M. R.; Murphy, C. J. A Simple MillifluidicBenchtop Reactor System for the High-Throughput Synthesis and Functionalization of Gold Nanoparticles with Different Sizes and Shapes. ACS Nano 2013,7,4135-4150.
    [46]Xu, X.; Zhao, Y.; Xue, X.; Huo, S.; Chen, F.; Zou, G.; Liang, X. Seedless Synthesis of High Aspect Ratio Gold Nanorods with High Yield. J. Mater. Chem. A 2014,2,3528-3535.
    [47]Kim, D. Y.; Choi, K. W.; Im, S. H.; Park, O.O.; Zhong, X.; Li, Z. One-pot synthesis of gold trisoctahedra with high-index facets. Adv. Mater. Res.2012,1,1-12.
    [48]Angelome, P. C.; Mezerji, H. H.; Goris, B.; Pastoriza-Santos, I.; Perez-Juste, J.; Bals, S.; Liz-Marzan, L. M. Seedless Synthesis of Single Crystalline Au nanoparticles with Unusual Shapes and Tunable LSPR in the near-IR. Chem. Mater.2012,24, 1393-1399.
    [49]Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Functional Gold Nanorods: Synthesis, Self-Assembly, and Sensing Applications. Adv. Mater.2012,24, 4811-4841.
    [50]Gole, A.; Murphy, C. J. Seed-Mediated Synthesis of Gold Nanorods:Role of the Size and Nature of the Seed. Chem. Mater.2004,16,3633-3640.
    [51]Liu, M.; Guyot-Sionnest, P. Mechanism of Silver(I)-Assisted Growth of Gold Nanorods and Bipyramids. J. Phys. Chem. B 2005,109,22192-22200.
    [52]Zhang, J.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S.; Mirkin, C. A. Concave Cubic Gold Nanocrystals with High-Index Facets. J. Am. Chem. Soc.2010, 132,14012-14014.
    [53]Sau, T. K.; Murphy, C. J. Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution. J. Am. Chem. Soc.2004,126, 8648-8649.
    [54]Deeb, C.; Zhou, X.; Miller, R.; Gray, S. K.; Marguet, S.; Plain, J.; Wiederrecht, G. P.; Bachelot, R. Mapping the Electromagnetic Near-Field Enhancements of Gold Nanocubes.J. Phys. Chem. C2012,116,24734-24740.
    [55]Ma, Y.; Kuang, Q.; Jiang, Z.; Xie, Z.; Huang, R.; Zheng, L. Synthesis of Trisoctahedral Gold Nanocrystals with Exposed High-Index Facets by a Facile Chemical Method. Angew. Chem. Int. Ed.2008,47,8901-8904.
    [56]Yu, Y.; Zhang Q.; Lu, X.; Lee, J. Y. Seed-Mediated Synthesis of Monodisperse Concave Trisoctahedral Gold Nanocrystals with Controllable Sizes.J. Phys. Chem. C 2010,114,11119-11126.
    [57]Peng, Z. A.; Peng, X. Mechanisms of the Shape Evolution of CdSe Nanocrystals. J. Am. Chem. Soc.2001,123,1389-1395.
    [58]Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 2001,294, 1901-1903.
    [59]Yu, Y.; Zhang, Q.; Liu, B.; Lee, J. Y. Synthesis of Nanocrystals With Variable High-Index Pd Facets through the Controlled Heteroepitaxial Growth of Trisoctahedral Au Templates. J.Am. Chem. Soc.2010,132,18258-18265.
    [60]Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999,103,8410-8426.
    [61]Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003,107,668-677.
    [62]Liz-Marzan, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles, Langmuir 2006,22,32-41.
    [63]Eustis, S.; El-Sayed M. A. Why gold nanoparticles are more precious than pretty gold:noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev.2006,35, 209-217.
    [64]Pierrat, S.; Zins, I.; Breivogel, A.; Sonnichsen, C. Self-assembly of small gold colloids with functionalized gold nanorods. Nano.Lett.2007,7,259-263.
    [65]von Maltzahn, G.; Park, J. H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas. Cancer Res.2009,69,3892-3900.
    [66]Jiang, X.-F.; Pan, Y.; Jiang, C.;Zhao, T., Yuan, P.; Venkatesan, T.; Xu, Q.-H. Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy. J. Phys. Chem. Lett.2013,4,1634-1638.
    [67]Tabor, C.; Van Haute, D.; El-Sayed, M. A. Effect of Orientation on Plasmonic Coupling between Gold Nanorods. ACS Nano 2009,3,3670-3678.
    [68]Alvarez-Puebla, R. A.; Zubarev, E. R.; Kotov, N. A.; Liz-Marzan, L. M. Self-assembled nanorodsupercrystals for ultrasensitive SERS diagnostics. Nano Today 2012,7,6-9.
    [69]Coronado-Puchau, M.; Saa, L.; Grzelczak, M.; Pavlov, V.; Liz-Marzan, L. M. Enzymatic Modulation of Gold Nanorod Growth and its Application to Improved Nerve Gas Detection. Nano Today,2013,8,461-468.
    [70]Hornyak, G. L.; Patrissi, C. J.; Martin, C. R. Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites:The Nonscattering Maxwell-Garnett Limit. J. Phys. Chem. B 1997,101,1548-1555.
    [71]Hubert, F.; Testard, F.; Rizza, G.; Spalla, O. Nanorods versus Nanospheres:A Bifurcation Mechanism Revealed by Principal Component TEM Analysis. Langmuir 2010,26,6887-6891.
    [72]Hubert, F.; Testard, F.; Thill, A.; Kong, Q.; Tache, O.; Spalla, O. Growth and Overgrowth of Concentrated Gold Nanorods:Time Resolved SAXS and XANES. Cryst. Growth Des.2012,12,1548-1555.
    [73]Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Defining Rules for the Shape Evolution of Gold Nanoparticles. J. Am. Chem. Soc.2012,134, 14542-14554.
    [74]Dreaden, E. C.; Alkilany, A. M.; Huang, X; Murphy, C. J.; El-Sayed, M. A. The golden age:gold nanoparticles for biomedicine. Chem. Soc. Rev.2012,41, 2740-2779.
    [75]Llevot, A.; Astruc, D. Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem. Soc. Rev.2012,41,242-257.
    [76]Sardar, R.; Funston, A. M.; Mulvaney, P.; Murray, R. W. Gold Nanoparticles: Past, Present and Future. Langmuir 2009,25,13840-13851.
    [77]Xia, H.; Bai, S.; Hartmann, J.; Wang, D. Synthesis of Monodisperse Quasi-Spherical Gold Nanoparticles in Water via Silver(I)-Assisted Citrate Reduction. Langmuir 2010,26,3585-3589.
    [78]Liu, X.; Xu, H.; Xia, H.; Wang, D. Rapid Seeded Growth of Monodisperse, Quasi-Spherical, Citrate-Stabilized Gold Nanoparticles via H2O2 Reduction. Langmuir 2012,28,13720-13726.
    [79]Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L.; Wang, J.; Yan, C. Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets. J. Am. Chem. Soc.2009, 131,16350-16351.
    [80]Hamelin, A. Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J. Electroanal. Chem.1996,407,1-11.
    [81]Hamelin, A.; Martins, A. M. Cyclic voltammetry at gold single-crystal surfaces. Part 2. Behaviour of high-index faces. J. Electroanal. Chem.1996,407,13-21.
    [82]Wang, J.; Gong, J.; Xiong, Y.; Yang, J.; Gao, Y.; Liu, Y.; Lu, X.; Tang, Z. Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chem. Commun.2011,47,6894-6896.
    [83]Qin, Y.; Song, Y.; Sun, N.; Zhao, N.; Li, M.; Qi, L. Ionic Liquid-Assisted Growth of Single-Crystalline Dendritic Gold Nanostructures with a Three-Fold Symmetry. Chem. Mater.2008,20,3965-3972.
    [84]Xia, H.; Ran, Y.; Li, H.; Tao, X.; Wang, D. Freestanding monolayered nanoporous gold films with high electrocatalytic activity via interfacial self-assembly and overgrowth. J. Mater. Chem. A 2013,1,4678-4684.
    [85]Haes, A. J.; Van Duyne, R. P. A Nanoscale Optical Biosensor:Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J. Am. Chem. Soc.2002,124, 10596-10604.
    [86]Haes, A. J.; Van Duyne, R. P. A Nanoscale Optical Biosensor:Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J. Am. Chem. Soc.2002,124, 10596-10604.
    [87]Stamplecoskie, K. G.; Scaiano, J. C.; Tiwari, V. S.; Anis, H. Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2011,115,1403-1409.
    [88]Xia, X.; Zeng, J.; Zhang, Q.; Moran, C. M.; Xia, Y. One-Pot Synthesis of Monodispersed Silver Nanodecahedra with Optimal SERS Activities Using Seedless Photo-Assisted Citrate Reduction Method. J. Phys. Chem. C 2012,116,24292-24300.
    [89]Tao, A.; Sinsermsuksakul, P.; Yang, P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotechnology 2007,2,435-440.
    [90]Tao, A.; Sinsermsuksakul, P.; Yang, P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed.2006,45,4597-4601.
    [91]Rycenga, M.; McLellan, J. M.; Xia, Y. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater.2008,20, 2416-2420.
    -[92] Zeng, J.; Zheng, Y.; Rycenga, M.; Tao, J.; Li, Z.-Y.; Zhang, Q.; Zhu, Y.; Xia, Y. Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc.2010,132,8552-8553.
    [93]Zhang, Q.; Moran, C. H.; Xia, X.; Rycenga, M.; Li, N.; Xia, Y. Synthesis of Ag nanobars in the presence of single-crystal seeds and a bromide compound, and their surface-enhanced raman scattering (SERS) properties. Langmuir 2012,28, 9047-9054.
    [94]Xia, X.; Zeng, J.; Oetjen, L. K.; Li, Q.; Xia, Y. Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals. J. Am. Chem. Soc.2012,134,1793-1801.
    [95]Xia, Y.; Li, W.; Cobley, C. M.; Chen, J.; Xia, X.; Zhang, Q.; Yang, M.; Cho, E. C.; Brown, P. K. Gold nanocages:from synthesis to theranostic applications. Acc. Chem. Res.2011,44,914-924.
    [96]Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z.-Y.; Xia, Y. Facile synthesis of gold-silver nanocages with controllable pores on the surface J. Am. Chem. Soc.2006,128,14776-14777.
    [97]Chen, J.; Wiley, B.; McLellan, J.; Xiong, Y.; Li, Z.-Y.; Xia, Y. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett.2005,5,2058-2062.
    [98]Wang, Y.; Zheng, Y.; Huang, C. Z.; Xia Y. Synthesis of Ag Nanocubes-1382 nm in Edge Length:The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility. J. Am. Chem. Soc.2013,135,1941-1951.
    [99]Gong, J.; Zhou, Fei.; Li, Z.; Tang, Z. Synthesis of Au@SlgellCore Nanocubes Containing Varying Shaped Cores and Their Localized Surface Plasmon Resonances. Langmuir 2012,28,8959-8964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700