靶向GLP-1及其受体的抗糖尿病新药研究以及肥胖性MSG小鼠特征及其发生高血糖的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰高血糖素样肽-1(Glucagon like-peptide-1, GLP-1)是20世纪80年代发现的一种肠降糖素,进食后由肠道L细胞分泌,经内分泌、神经及底物刺激等途径作用于各种胰岛细胞发挥多种功能,包括刺激胰岛素的生物合成和分泌,抑制胰高血糖素的分泌。GLP-1还具有抑制食欲,延缓胃排空,减少肝糖输出,增加胰岛素敏感性等作用。然而GLP-1最突出的优点是其降糖作用具有葡萄糖依赖性,不易引发低血糖;还能够促进胰岛β细胞增殖,抑制其发生凋亡。尽管如此,GLP-1分泌后很快被二肽基肽酶IV (DPPⅣ)降解,体内半衰期仅有2 min左右,很难应用于临床。由于GLP-1主要由其受体介导发挥作用,所以为了能更好地发挥GLP-1的各种抗糖尿病作用,研究者都在积极寻找能够抵抗DPPⅣ降解的长效GLP-1类多肽和GLP-1受体激动剂。本论文的主要研究目的是:1)评价一种新型GLP-1类多肽BPI3006的DPP IV和血浆稳定性以及对自发性2型糖尿病(Type 2 diabetes mellitus,T2DM) KKAy小鼠血糖变化的控制效果;2)研究一种新型长效GLP-1受体激动剂E2HSA的抗糖尿病作用和作用机制;3)研究肥胖性MSG小鼠的特征及其发生高血糖的机制。第一部分新型GLP-1类似物BPI3006的抗糖尿病作用研究
     BP13006是一个采用化学合成方法将GLP-1 N端第2位肽键更换为新取代基团的GLP-1类多肽。DPPⅣ和血浆稳定性实验表明,BPI3006具有良好的DPPⅣ耐受性,但血浆稳定性较差。报告基因分析表明,BPI3006能够与GLP-1受体结合,促进cAMP生成,且作用强度与Exendin-4相当。体内实验结果显示,BPI3006单次给药能够显著降低正常ICR小鼠口服葡萄糖负荷后的血糖,并具有良好的量效关系;能够降低自发性T2DM KKAy小鼠的空腹血糖。长期给予BPI3006,每天2次,能够明显改善KKAy小鼠的糖耐量异常状态和高胰岛素血症,明显减少其摄食量和饮水量,同时降低其体重。此外,BPI3006系列多肽BPI3007和BPI3008也能够显著降低正常ICR小鼠口服葡萄糖负荷后的血糖,且作用时间较长。第二部分长效GLP-1受体激动剂E2HSA的抗糖尿病作用研究
     E2HSA是一种采用基因工程技术获得的Exendin-4串联多肽与人血清白蛋白的融合蛋白。E2HSA能够明显激活GLP-1受体,刺激cAMP生成,促进胰岛素基因表达。它不仅能够增加NIT-1细胞的活力,促进其增殖,还能够增强放线菌素D、佛波酯和水溶性胆固醇诱导其损伤后的细胞活力,减少放线菌素D和水溶性胆固醇诱导的凋亡发生率,明显增加胞内AKT和PDX-1蛋白的含量。E2HSA单次给药能够明显降低正常ICR小鼠口服葡萄糖负荷后的血糖,量效关系良好,作用时间至少为4天:能够减少正常ICR小鼠的摄食量,降低其体重,延缓其小肠蠕动,作用时间至少为3天。在四氧嘧啶小鼠中长期给予E2HSA能够明显降低其禁食和非禁食血糖,增加胰岛和血清胰岛素水平,减少摄食量和饮水量,降低体重。尽管如此,长期给予E2HSA能够明显诱导正常ICR小鼠和四氧嘧啶小鼠产生抗体,抗体滴度至少为1:1000000。第三部分肥胖性MSG小鼠特征及其发生高血糖的机制研究
     MSG小鼠的主要特征为向心性肥胖、胰岛素抵抗以及糖脂代谢紊乱,是一种典型的代谢综合症模型。本实验室在研究中发现,部分MSG小鼠空腹血糖明显升高,与糖尿病发病进程中由胰岛素抵抗状态下,胰岛代偿性分泌胰岛素使血糖维持在正常水平,至胰岛失代偿而出现高血糖的变化极为相似。因此,本文在比较研究MSG小鼠特征的同时,试图从中找出其发生高血糖的原因。
     生化测定结果显示,MSG小鼠胰腺和肝脏组织中超氧化物歧化酶(SOD)含量减少,甘油三酯(TG)含量增加,高密度胆固醇(HDL)含量降低。与MSG小鼠相比,高血糖MSG小鼠胰腺和肝脏中TG含量明显增加。免疫组织化学分析表明,MSG小鼠胰岛代偿性肥大,胰岛a细胞和p细胞之间的分布平衡被打破,胰岛素和胰高血糖素含量失衡;高血糖MSG小鼠胰岛萎缩,形状不规则,并且与MSG小鼠相比,胰岛素含量明显减少,胰高血糖素含量增加。基因表达结果显示,MSG小鼠胰腺组织中与p细胞增殖、凋亡、内质网应激、炎症损伤和免疫调节相关的因子,肝脏组织中炎症因子、免疫调节因子和炎症通路中NF-KB和JNK,以及脂肪组织中瘦素、炎症因子和免疫调节因子的基因表达都有不同程度地变化。与MSG小鼠相比,高血糖MSG小鼠胰腺组织中MafA基因表达的下调,CHOP、IL-6、BAX和BAK基因表达的上调,以及脂肪组织中瘦素和TNFa基因表达的上调可能是导致其发生高血糖的原因。双向电泳结果显示MSG小鼠肝脏和胰腺组织内有多种蛋白表达发生变化,与MSG小鼠相比,高血糖MSG小鼠中的差异表达蛋白可能与其发生高血糖有关,但尚需进行蛋白归属。
Glucagon-like peptide-1 (GLP-1) belongs to the incretin family, which is secreted from intestinal L cells after food ingestion and absorption, and works through endocrine, nerve and substrate stimulation to enhance the biosynthesis and secretion of insulin, and restrain the secretion of glucagon. GLP-1 could also inhibit appetite, decrease glucose production, and increase the insulin sensitivity of the peripheral tissues. The most notable advantages of GLP-1 are less hypoglycemia for glucose-dependent hypoglycemic effect, and protection ofβcells from apoptosis and stimulation ofβcells proliferation and neogenesis. However, GLP-1 is quickly degraded by dipeptidyl peptidaseⅣ(DPPⅣ) as soon as secretion, with the half life only about 2 min, which makes it difficult to be used in clinic. Because GLP-1 exerts many effects via binding to its cognate receptor, scientists are striving to search GLP-1 analogs or GLP-1 receptor agonists that could resist the degradation of DPPⅣ. In the present study, we have three objectives:1) Study the DPPⅣand human plasma stability and in vivo hypoglycemic effects of BPI3006, a novel GLP-1 analog; 2) Study the anti-diabetic action and relative mechanisms of E2HSA, a novel long-term GLP-1 receptor agonist; 3) Study the features of Monosodium Glutamate (MSG)-induced mice and the possible reasons for producing hyperglycemia.
     PartⅠThe anti-diabetic study of novel GLP-1 analog, BPI3006
     BPI3006 is a novel GLP-1 analog with the second -NHCO- at N terminal replaced by a new chemical entity -CH(CF3)NH- through chemical synthesis. In vitro, BPI3006 possessed excellent DPPⅣresistance but poor human plasma stability. The report gene assay showed that BPI3006 could bind to GLP-1 receptor to stimulate the production of cAMP with the equivalent intensity with exendin-4. In vivo, acute administration of BPI3006 in normal ICR mice could significantly suppress the blood glucose variation following oral glucose loading with good dose-effect relationship, and evidently restrain the fasting blood glucose in spontaneous T2DM KKAy mice. Repeated administration of BPI3006 in KKAy mice twice daily could significantly improve the impaired oral glucose tolerance and hyperinsulinemia, and decrease the body weight gain as well as the food and water consumption. In addition, we also find other peptides, BPI3007 and BPI3008, which all displayed better hypoglycemic effect with long action through the in vivo hypoglycemic effect study.
     PartⅡThe anti-diabetic study of a novel long-acting GLP-1 receptor agonist, E2HSA
     E2HSA is a recombinant macromolecular protein obtained by combination of exendin-4 and human serum albumin. E2HSA could bind to GLP-1 receptor to stimulate the production of cAMP, and enhance the expression of insulin gene. E2HSA could not only significantly increase the NIT-1 cell viability, and promote it proliferation, but also protect it from the injury induced by Act D, phorbol ester (PMA) and water soluble cholesterol, and inhibit the apoptosis of NIT-1 cell induced by Act D and water soluble cholesterol, which might be associated with the increase of AKT and PDX-1 protein expression. In vivo, acute administration of E2HSA in normal ICR mice could significantly decrease the blood glucose variation following oral glucose loading with excellent dose-effect relationship, and the action could sustain for at least 4 days. E2HSA could also evidently decrease the food intake and body weight of normal ICR mice, and delay the movement of small intestine after a single dosing, and all the actions could last for 3 days. Repeated injection of E2HSA in alloxan-induced diabetic mice could markedly suppress the fasted and fed blood glucose, and increase the islet and blood insulin level, as well as reduce the consumption of food and water and body weight. In spite of this, repeated injection of E2HSA both in normal ICR mice and alloxan-induced diabetic mice could induce the production of antibody, with the titer of 1:1000000, which significantly influence the hypoglycemic effect of E2HSA.
     PartⅢStudy of the features of obese MSG mice and the reasons for occurring hyperglycemia
     As a typical model of metabolic syndrome, the main features of MSG mice include central obesity, insulin resistance and the disorder of glucose and lipid metabolism. In our study, we found that some MSG mice showed hyperglycemia, which was similar to the change of blood glucose in the insulin resistance state, whenβcell could secrete insulin in a compensatory manner to keep it in the normal level, to the decompensate state, whenβcell could not secrete more insulin to result in hyperglycemia. Therefore, in the present study we try to find out the factors that may induce hyperglycemia in MSG mice.
     The biochemical assay showed that the content of SOD and HDL decreased, and the content of TG increased in the pancreas and liver of MSG mice. When compared with the MSG mice, the content of TG in the pancreas and liver of hyperglycemic MSG mice significantly increases. The immunohistochemistry assay suggested that the islets were enlarged in a compensatory manner, the distribution of a cell andβcell and the content of insulin and glucagon were damaged in MSG mice, and the islets were shriveled irregularly with more glucagon and less insulin in the hyperglycemic MSG mice in comparision with MSG mice. The gene expression assay showed that the expression of many genes, such as the genes that relative to the proliferation, apoptosis, endoplasmic reticulum stress, inflammatory injury, and immune regulation ofβcells in the pancreas, the genes of inflammatory factor, immunoregulatory factor, NF-κB and JNK in the liver, and the genes of leptin, inflammatory factor and immunoregulatory factor in the adipose of MSG mice, have changed to varying degrees. When compared with the MSG mice, the decrease of MafA gene expression and the increase of CHOP, IL-6, BAX and BAK gene expression in the pancreas, and the increase of leptin, TNFa gene expression in the adipose of hyperglycemic MSG mice might explain the production of hyperglycemia. The 2 dimensional polyacrylamide gel electrophoresis results showed that the expression of many proteins changed in the liver and pancreas of MSG mice, and the differences of the hyperglycemic MSG mice from the MSG mice might represent the reasons for hyperglycemia, but needing further protein identification.
引文
[1]Kathrin M, Richard D.C, Domenico B, et al. Sulfonylurea Induced β-Cell Apoptosis in Cultured Human Islets [J]. The Journal of Clinical Endocrinology & Metabolism.2005,90:1501-1506.
    [2]Nissen SE, Kathy Wolski K. Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes [J]. The New England Journal of Medicine.2007,356:2457-2471.
    [3]Hartmut J. Troglitazone Hepatotoxicity:Are We Getting Closer to Understanding Idiosyncratic Liver Injury? [J]. Toxicological Sciences,2007, 97:1-3.
    [4]Elrick H, Stimmler L, Hlad CJ, et al. Plasma insulin response to oral and intravenous glucose administration [J]. J Clin Endocrinol Metab.1964, 24:1076-1082.
    [5]Beck JC. Stimulation of release of insulin by an extract of intestinal mucosa [J]. Diabetes,1966,15:555-559.
    [6]Drucker DJ. Biological actions and therapeutic potential of the glucagon-like peptides [J]. Gastroenterology,2002,122:531-544.
    [7]Bregenholt S, Moldrup A, Blume N, et al. The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits beta-cell apoptosis in vitro [J]. Biochem. Biophys. Res. Commun.2005,330:577-584.
    [8]Tourrel C, Bailbe D, Lacorne M. et al. Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4 [J]. Diabetes 2002,51:1443-1452.
    [9]Wideman R D, Yu I L., Webber T D, et al. Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1 (GLP-1) [J]. PNAS.2006,103:13468-13473.
    [10]Margaret T B, John D, Thomas J M. Glucagon-like peptide 1 improved glycemic control in type 1 diabetes [J]. BMC Endocr Disord.2003,3:3.
    [11]Garber A J. Glucagon-like peptide-1-based therapies:new developments and emerging data [J]. Diabetes Obes. Metab.2008,10:22-35.
    [12]Miura Y, Matsui H. Glucagon-like peptide-1 induces a cAMP-dependent Increase of [Na+]i associated with insulin secretion in pancreatic beta-cells [J]. Am J Physiol Endocrinol Metab.2003,285.E1001-9
    [13]Buse J B, Klonoff D C, Nielsen L L, et al. Metabolic effects of two years of exenatide treatment on diabetes, obesity, and hepatic biomarkers in patients with type 2 diabetes:an interim analysis of data from the open-label, uncontrolled extension of three double-blind, placebo-controlled trials [J]. Clin Ther.,2007,29:139-153;
    [14]Schwartz S L, Ratner R E, Kim D D, et al. Effect of exenatide on 24-hour blood glucose profile compared with placebo in patients with type 2 diabetes: a randomized, double-blind, two-arm, parallel-group, placebo-controlled, 2-week study [J]. Clin Ther.,2008,30:858-867.
    [15]Lupi R, Mancarella R, Del Guerra S. et al. Effects of exendin-4 on islets from type 2 diabetes patients [J]. Diabetes Obes Metab.,2008,10:515-519.
    [16]Skoglund G, Hussain M A, Hulz G G. Glucagon-like peptide 1 stimulates insulin gene promoter activity by protein kinase A-independent activation of the rat insulin I gene cAMP response element [J]. Diabetes,2000,49: 1156-1164.
    [17]Molteni M, Volonterio A, Zanda M. Stereocontrolled synthesis of psi[CH(CF3)NH]gly-peptides [J]. Org. Lett.2003,5:3887-3890.
    [18]Younes A, Tanya H, Patricia L B. Muscarinic Receptors Control Postprandial Release of Glucagon-Like Peptide-1:In Vivo and in Vitro Studies in Rats [J]. Endocrinology,2002,143:2420-2426.
    [19]Deacon C F, Johnsen A H, Holst J J. Degradation of Glucagon-like Peptide-1 by Human Plasma in vitro Yields an N-terminally Truncated Peptide That is a Major Endogeneous Metabolite in vivo [J]. J Clin Endocr. Metab.1995, 80:952-957.
    [20]Turner A J, Isaac R E, Coates D. The Neprilysin (NEP) Family of Zinc Metalloendopeptidases:Genomics and Function [J]. BioEssays.2001, 23:261-269.
    [21]HupeSodmann K, Goke R, Goke B, et al. Endoproteolysis of Glucagon-like peptide (GLP)-1(7-36) Amide by Ectopeptidases in RINm5F Cells [J]. Peptides,1997,18:625-632.
    [22]Plamboeck A, Holst J J, Carr R D, et al. Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig [J]. Diabetologia,2005, 48:1882-90.
    [23]Eunice N M, Gao G Z, Alessandro B, et al. Development of Potent Glucagon-like Peptide-1 Agonists with High Enzyme Stability via Introduction of Multiple Lactam Bridges [J]. J Med Chem.2010,53:6412-6420.
    [24]Sarrauste de Menthiere C, Chavanieu A, Grassy G, et al. Structural requirements of the N-terminal region of GLP-1-[7-37]-NH2 for receptor interaction and cAMP production [J]. Eur. J. Med. Chem.2004,39:473-480.
    [25]Knudsen L B, Nielsen PF, Huusfeldt P O, et al. Potent Derivatives of Glucagon-like Peptide-1 with Pharmacokinetic Properties Suitable for Once Daily Administration [J]. J. Med. Chem.2000,43:1664-1669.
    [26]Parlevliet E T, Schroder-van der Elst J P, Corssmit E P, et al. CNTO736, a novel GLP-1 receptor agonist, ameliorates insulin resistance and inhibits very low density lipoprotein production in high-fat-fed mice [J]. J. Pharmacol. Exp. Ther.2009,328:240-248.
    [27]Yin D, Lu Y, Zhang H, et al. Preparation of glucagon-like peptide-1 loaded PLGA microspheres:characterizations, release studies and bioactivities in vitro/in vivo [J]. Chem. Pharm. Bull.2008,56:156-161.
    [28]Youn Y S, Chae S Y, Lee S, et al. Evaluation of therapeutic potentials of site-specific PEGylated glucagon-like peptide-1 isomers as a type 2 anti-diabetic treatment:Insulinotropic activity, glucose-stabilizing capability, and proteolytic stability [J]. Biochem. Pharmacol.2007,73:84-93.
    [29]Madsbad S. Exenatide and Liraglutide:Different Approaches to develop GLP-1 receptor agonists (Incretin Mimetics):Preclinical and Clinical Results [J]. Best Pract Res Clin Endocrinol Metab.2009,23:463-477.
    [30]Tiessen R G, Castaigne J P, Dreyfus JF, et al. Pharmacokinetics and tolerability of a novel long-acting glucagon-like peptide-1 analog, CJC-1131, in healthy and diabetic subjects [J]. Int J Clin Pharmacol Ther.2008, 46:443-452.
    [31]Lankas G R, Leiting B, Roy R S, et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes:Potential importance of selectivity over dipeptidyl peptidases 8 and 9 [J]. Diabetes 2005,54:2988-2994.
    [32]Green B D, Flatt P R, Bailey C J. Dipeptidyl peptidase IV (DPP IV) inhibitors: a new emerging drug class for the treatment of type 2 diabetes [J]. Diabetes Vasc Dis Res.2006,3:159-165.
    [33]Dumonteil F, Philippe J. Insulin gene:organisation, expression, and regulation. Diabete Metab (Paris) [J].1995,22:164-173.
    [34]Oetjen E, Diedrich T, Eggers A, et al. Distinct properities of the Camp-responsive element of the rat insulin 1 gene [J]. J Biol Chem.1994, 269:27036-27044.
    [35]Eggers A, Siemann G, Blume R, et al. Gene-specific transcriptional activity of the insulin cAMP responsive elements is conferred by NF-Y in combination with cAMP response element-binding protein [J]. J Biol Chem.1988, 273:18499-18508.
    [36]Gunnar S, Mehboob A H, George G H. Glucagon-like peptide 1 stimulates insulin gene promoter activity by protein kinase A-independent activation of the rat insulin 1 gene cAMP response element [J]. Diabetes,2000, 49:1156-1164.
    [37]环奕,申竹芳.以GLP-1受体为靶点的药物筛选细胞模型的建立和应用[J].药学学报,2009,44:309-313.
    [38]Oleg G C, Mehboob A H, George G H. Exendin-4 as a stimulator of rat insulin I gene promoter activity via Bzip/CRE interactions sensitive to serine/threonine protein kinase inhibitor Ro 31-8220 [J]. Endocrinology,2002, 143:2303-2313.
    [1]Kim D, Macconell L, Zhuang D et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes [J]. Diabetes Care.,2007, 30:1487-1493.
    [2]Safety and Pharmacodynamics of CJC-1134-PC, a Novel GLP-1 Receptor Agonist, in Patients with Type 2 Diabetes Mellitus [OL].http://newsgroups.derkeiler.com/Archive/Alt/alt.support.diabetes/2007-0 7/msg02401.html.
    [3]Huang Y S, Chen Z, Chen Y Q et al. Preparation and characterization of a novel exendin-4 human serum albumin fusion protein expressed in Pichia pastoris [J]. J Pept Sci.,2008,14:588-595.
    [4]Kreymann B, Ghatei M A, Burnet P, et al. Characterization of glucagons-like peptide-1-(7-36)amide in the hypothalamus [J]. Brain Res.1989, 502:325-331.
    [5]Turton M D, O'Shea D, Gunn I, et al. A role for glucagons-like peptide-1 in the central regulation of feeding [J]. Nature,1996,379:69-72.
    [6]Williams D L. Minireview:Finding the Sweet Spot:Peripheral versus Central glucagons-like peptide 1 action in feeding and glucose homeostasis [J]. Endocrinology.2009,150:2997-3001.
    [7]Baggio L L, Huang Q, Brown T J, et al. A recombinant human glucagon-like peptide (GLP-1)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis [J]. Diabetes,2004,53:2492-2500.
    [8]Williams D L, Baskin D G, Schwartz M W. Evidence that intestinal GLP-1 plays a physiological role in satiety [J]. Endocrinology,2009,150:1680-1687.
    [9]Schmidtler J, Dehne K, Allescher H D, et al. Rat parietal cell receptors for GLP-1-(7-36) amide:Northern blot, cross-linking, and radioligand binding [J]. Am J Physio.1994,267:G423-G432.
    [10]Wettergren A, Wojdemann M, Meisner S, et al. The inhibitory effect of glucagon-like peptide-1 (GLP-1) 7-36 amide on gastric acid secretion in humans depends on an intact vagal innervaton [J]. Gut,1997,40:597-601.
    [11]Buse J B, Henry R R, Han J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes[J]. Diabetes Care,2004,27:2628-2635.
    [12]Peter F, Robert B, Jude B, et al. The effect of exenatide re-exposure on safety and efficacy [J]. Peptides,2009,30:1771-1774.
    [13]Szkudelski T. The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas [J].2001,50:537-546.
    [14]Kwon D Y, Kim Y S, Ahn I S, et al. Exendin-4 potentiates insulinotropic action partly via increasing beta-cell proliferation and neogenesis and decreasing apoptosis in association with the attenuation of endoplasmic reticulum stress in islets of diabetic rats [J]. J Pharmacol Sci.2009,111:361-371.
    [15]Li Y Z, Cao X M, Li L X et al. β-cell Pdx-1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1 [J].Diabetes,2005.54:482-486.
    [16]Lasfer M, Davenne L, Vadort N, et al. Protein kinase PKC delta and c-Abl are required for mitochondrial apoptosis induction by genotoxic stress in the absence of p53, p73 and Fas receptor [J]. FEBS Lett,2006,580:2547-2552.
    [17]Seufert J, Weir G C, Habener J F, et al. Differential expression of the insulin gene transcriptional repressor CCAAT/enhancer-binding protein β and transactivator islet duodenum homeobox-1 in rat pancreatic β cells during the development of diabetes mellitus[J]. J Clin Invest,1998,101:2528-2539;
    [18]Matsuoka T, Kajimoto Y, Watada H, et al. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells[J]. J Clin Invest,1997,99:144-150.
    [19]Svitiz W I. Lipotoxicity and glucotoxicity in type 2 diabetes [J]. Postgraduate Medicine,2001,109:55-59,63-64.
    [20]陈名道.胰岛β细胞的“糖毒性”、“脂毒性”与“糖脂毒性”[J].中华内分泌代谢杂志.
    [21]Won J C, Rhee B D, Ko K S, et al. Glucose-responsive gene expression system for gene therapy [J]. Advanced Drug Delivery Reviews,2009, 61:633-640.
    [22]Skoglund G, Hussain M A, Holz G G. Glucagon-like peptide 1 stimulates insulin gene promoter activity by protein kinase A-independent activation of the rat insulin 1 gene cAMP response element [J]. Diabetes,2000, 49:1156-1164.
    [23]Fehmann H C, Habener J F. Insulinotropic hormone glucagons-like peptide-1-(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma β-TC-1 cells [J]. Endocrinology,1992,159-166.
    [1]Anderson J W, Kendall C W, Jenkins D J. Importance of weight management in type 2 diabetes:review with meta-analysis of clinical studies [J]. J Am Coll Nutr.2003,22:331-339.
    [2]Masato K. Insulin resistance and pancreatic β cell failure [J]. The Journal of Clinical Investigation.2006,116:1756-1760.
    [3]Bunyan J, Murrell Elspeth A, Shah P P. The introduction of obesity in rodents by means of monosodium glutamate [J]. Br J Nutr.1976,35:25-39.
    [4]Morrison J F, Shehab S, Sheen R, et al. Sensory and autonomic nerve changes in the monosodium glutamate-treated rat:a model type 2 diabetes [J]. Exp Physiol.2008,93:213-222.
    [5]Li P P, Shan S, Chen Y T, et al. The PPAR a/y dual agonist chiglitazar improves insulin resistance and dyslipidemia in MSG obese rats [J]. Br J Pharmacol.2006,148:610-618.
    [6]Larsen P J, Fledelius C, Knudsen L B, et al. Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats[J]. Diabets,2001,50:2530-2539.
    [7]Cameron D P, Cutbush L, Opat F. Effects of monosodium glutamate-induced obesity in mice on carbohydrate metabolism in insulin secretion [J]. Clin Exp Pharmacol Physiol.1978,5:41-51.
    [8]Lefebvre P J. Glucagon and its family revisited [J]. Diabetes Care,1995,18: 715-730.
    [9]Unger R H, Orci L. The essential role of glucagon in the pathogenesis of diabetes mellitus [J]. Lancet,1975,1:14-16.
    [10]Matsuoka T A, Kaneto H, Stein R, et al. MafA regulates expression of genes important to islet β-cell function [J]. Mol Endocrinol,2007,21:2764-2774.
    [11]Kaneto H, Matsuoka T A, Nakatani Y, et al. A crucial role of MafA as a novel therapeutic target for diabetes[J]. J Bio Chem,2005,280:15047-15052.
    [12]Aramata S, Han S I, Kataoka K. Roles and regulation of transcription factor MafA in islets beta-celss [J]. J Endocr J,2007,54:659-666.
    [13]Gregor M F, Yang L, Fabbrini E, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss [J]. Diabetes,2009, 58:693-700.
    [14]Wellen K E, Hotamisligil G S. Inflammation, stress and diabetes [J]. J Clin Invest.2005,115:1111-1119.
    [15]Dandona P, Aljada A, Bandyopadhyay A. Inflammation:the link between insulin resistance, obesity and diabetes [J]. Trends Immunol.2004,25:5-7.
    [16]Shoelson S E, Lee J, Goldfine A B. Inflammation and insulin resistance [J]. J Clin Invest.2006,116:1793-1801.
    [17]Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance[J]. Nature,2002,420:333-336.
    [18]Cai D, Yuan M, Frantz D F, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-Kb [J]. Nature Med,2005, 11:183-190.
    [19]张洪芹,张连双,李雅娜.谷氨酸钠诱导肥胖性不孕大鼠弓状核NPY及GnRH的表达[J].现代妇产科进展.2008,17:901-903,908.
    [20]Kieffer T J, Habener J F. The adipoinsular axis:effects of leptin on pancreatic beta-cells [J]. Am J Physiol Endocrinol Metab,2000,278:1.
    [21]Ostlund R E, Yang J W, Klein S, et al. Relation between plasma leptin concentration and body fat, gender, diet, age and metabolic [J]. J Clin Endocrinol Metab.1996,81:3909-3913.
    [22]Mukherjee R, Hoener P A, Jow L, et al. A selective peroxisome proliferator-activated receptor-γ(PPARγ) modulator blocks adipocyte differentiation but stimulates glucose uptake in 3T3-L1 adipocytes [J]. Mol Endocrinol,2000,14:1425-1433.
    [23]Olefsky J M, Saltiel A R. PPARy and the treatment of insulin resistance [J]. Trends Endocrinol Metab,2000,11:362-367.
    [24]Shi H, Kokoeva M V, Inouye K, et al. TLR4 links innate immunity and fatty acid-induced insulin resistance [J]. The Journal of Clinical Investigation.2006, 116:3015-3025.
    [1]Combettes M M. GLP-1 and type 2 diabetes:physiology and new clinical advances [J]. Current Opinion in Pharmacology 2006,6:598-605.
    [2]Richard E P, Matthew G. Targeting Incretins in Type 2 Diabetes:Role of GLP-1 Receptor Agonists and DPP-4 Inhibitors [J]. The Review of Diabetic Studies, 2008,5:73-94.
    [3]Schwartz S L, Ratner R E, Kim D D et al. Effect of exenatide on 24-hour blood glucose profile compared with placebo in patients with type 2 diabetes:a randomized, double-blind, two-arm, parallel-group, placebo-controlled, 2-week study [J]. Clin Ther.,2008,30:858-867.
    [4]Lupi R, Mancarella R, Del Guerra S et al. Effects of exendin-4 on islets from type 2 diabetes patients [J]. Diabetes Obes Metab.,2008,10:515-519.
    [5]Klonoff D C, Buse J B, Nielsen L L et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years [J]. Curr Med Res Opin.,2008, 24:275-286.
    [6]Bertilsson G, Patrone C, Zachrisson O et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson's disease [J]. J Neurosci Res.,2008,86:326-338.
    [7]Brodows R G, Qu Y, Johns D et al. Quantifying the effect of exenatide and insulin glargine on postprandial glucose excursions in patients with type 2 diabetes [J]. Curr Med Res Opin.,2008,24:1395-1397.
    [8]Kjeldsen R, Sandbaek A. Exenatide--an alternative to insulin in the treatment of type 2 diabetes? [J]. Ugeskr Laeger.,2008,170:3039-3043.
    [9]Tews D, Werner U, Eckel J. Enhanced protection against cytokine- and fatty acid-induced apoptosis in pancreatic beta cells by combined treatment with glucagon-like peptide-1 receptor agonists and insulin analogues [J]. Horm Metab Res.,2008,40:172-180.
    [10]Pinelli N R, Cha R, Brown M B et al. Addition of thiazolidinedione or exenatide to oral agents in type 2 diabetes:a meta-analysis [J]. Ann Pharmacother.,2008,42:1541-1551.
    [11]Kim D, Macconell L, Zhuang D et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes [J]. Diabetes Care.,2007, 30:1487-1493.
    [12]Byetta (exenatide injection) Prescribing Information. Amylin Pharmaceuticals, San Diego, California,2007.
    [13]Drucker D J, Buse J B, Taylor K et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes:a randomised, open-label, non-inferiority study [J]. Lancet.,2008,372:1240-1250.
    [14]Vilsboll T, Zdravkovic M, Le-Thi T et al. Liraglutide, a long-acting human glucagon-like peptide-a analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemica in patients with type 2 diabetes [J]. Diabetes Care.,2007,30:1608-1610.
    [15]Vilsboll T, Brock B, Perrild H et al. Liraglutide, a once-daily human GLP-1 analogue, improves pancreatic B-cell function and arginine-stimulated insulin secretion during hyperglycaemia in patients with Type 2 diabetes mellitus [J]. Diabet Med.,2008,25:152-156.
    [16]Vilsboll T, Zdravkovic M, Le-Thi T et al. Liraglutide treatment, blood pressure and biomarkers of cardiovascular risk in patients with type 2 diabetes:14 weeks monotherapy study [J]. Diabetes.,2006,55 (Suppl.1):Abstract 2007-PO.
    [17]Merani S, Truong W, Emamaullee J A et al. Liraglutide, a long-acting human glucagon-like peptide 1 analog, improves glucose homeostasis in marginal mass islet transplantation in mice [J]. Endocrinology.,2008,149:4322-4328.
    [18]Tiessen R G, Castaigen J P, Dreyfus J F et al. Pharmacokinetics and tolerability of a novel long-acting glucagon-like peptide-1 analog, CJC-1131, in healthy and diabetic subjects [J]. Int J Clin Pharmacol Then.,2008, 46:443-452.
    [19]Matthews J E, Stewart M W, De Boever E H. Pharmacodynamics, Pharmacokinetics, Safety and Tolerability of Albiglutide, a Long-Acting GLP-1 Mimetic, in Patients with Type 2 Diabetes [J]. J Clin Endocrin Metab.,2008, 93:4810-4817.
    [20]Safety and Pharmacodynamics of CJC-1134-PC, a Novel GLP-1 Receptor Agonist, in Patients with Type 2 Diabetes Mellitus[OL]. http://newsgroups.derkeiler.com/Archive/Alt/alt.support.diabetes/2007-07/m sg02401.html.
    [21]Dou W F, Lei J Y, Zhang L F et al. Expression, purification, and characterization of recombinant human serum albumin fusion protein with two human glucagon-like peptide-1 mutants in Pichia pastoris [J]. Protein Expr Purif.,2008,61:45-49.
    [22]Huang Y S, Chen Z, Chen Y Q et al. Preparation and characterization of a novel exendin-4 human serum albumin fusion protein expressed in Pichia pastoris [J]. J Pept Sci.,2008,14:588-595.
    [23]Thomas H C, Clark Q P, Joanne M B et al. Dual-acting peptide with prolonged glucagon-like peptide-1 receptor agonist and glucagon receptor antagonist activity for the treatment of type 2 diabetes [J]. J Endocrinol.2007 Feb;192(2):371-80.
    [24]Ulrich W, Brigitte V, Julie K C et al. The GLP-1 Receptor Agonist AVE0010 Improves GSIS, Prevents Lipotoxicity-Induced Insulin Depletion and Preserves β-Cell Function in Human Pancreatic Islets. San Francisco, ADA68th,2008.
    [25]Balena R, Ratner R, Berria R et al. Eight weeks of treatment with the long acting, human GLP-1 analogue R1583 improves glycemic control and lowers body weight in subjects with type2 diabetes mellitus (T2DM) treated with metformin:a doubleblind placebo-controlled phase 2 study. San Francisco, California,2008.
    [26]Parlevliet E T, Schroder-Van Der Elst J P, Corssmit E P et al. CNTO736, a novel GLP-1 receptor agonist, ameliorates insulin resistance and inhibits very low density lipoprotein production in high-fat-fed mice [J]. J Pharmacol Exp Ther.,2009,328:240-248.
    [27]Knudsen L B, Kiel D, Teng M et al. Small-molecule agonists for the glucagon-like peptide1 receptor [J]. PNAS.2007,104:937-942.
    [28]Chen D, Liao J, Li N et al. A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice [J]. PNAS.,2007,104:943-948.
    [29]Su H, He M, Li H et al. Boc5, a non-peptidic glucagon-like Peptide-1 receptor agonist, invokes sustained glycemic control and weight loss in diabetic mice [J]. PloS ONE.,2008,3:e2892.
    [30]Fujita Y, Wideman R D, Asadi A et al. Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet alpha-cells and promotes insulin secretion [J]. Gastroenterology.2010,138:1966-75.
    [31]Baggio L L, Drucker D J. Biology of incretins:GLP-1 and GIP [J]. Gastroenterology,2007,132:2131-2157.
    [32]Kim SJ, Winter K, Nian C et al. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression [J]. J Biol Chem,2005,280:22297-22307.
    [33]Prasadan K, Koizumi M, Tulachan S et al. The expression and function of glucose-dependent insulinotropic polypeptide in the embryonic mouse pancreas [J]. Diabetes.2011,60:548-54.
    [34]Tseng C C, Kieffer T J, Jarboe L A et al. Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat [J]. J Clin Invest.1996,98:2440-5.
    [35]Pederson R A, Satkunarajah M, Mclntosh CHS et al. Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon like peptide 1 receptor-/- mice[J]. Diabetes,1998, 47:1046-1052.
    [36]Harte F P, Gault V A, Parker J C et al. Improved stability, insulin-releasing activity and antidiabetic potential of two novel N-terminal analogues of gastric inhibitory polypeptide:N-acetyl-GIP and pGlu-GIP [J]. Diabetologia,2002, 45:1281-91.
    [37]Miyawaki K, Yamada Y, Ban N et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity [J]. Nat Med.2002,8:738-42.
    [38]Flatt P R, Bailey C J, Kwasowski P et al. Abnormalities of GIP in spontaneous syndromes of obesity and diabetes in mice [J]. Diabetes.1983,32:433-5.
    [39]McClean P L, Irwin N, Hunter K et al. (Pro(3))GIP[mPEG]:novel, long-acting, mPEGylated antagonist of gastric inhibitory polypeptide for obesity-diabetes (diabesity) therapy [J]. British Journal of Pharmacology,2008,155:690-701.
    [40]Fulurija A, Lutz T A, Sladko K et al. Vaccination against GIP for the treatment of obesity [J]. PLos ONE,2008,3:e3163.
    [41]Deacon C F, Plamboeck A, Moller S et al. GLP-1(9-36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion [J]. Am J Physiol Endocrinol Metab.2002,282:E873-879.
    [42]Nikolaidis L A, Elahi D, Shen Y T et al. Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy [J]. Am J Physiol Heart Circ Physiol,2005,289:H2401-H2408.
    [43]Zander M, Madsbad S, Deacon C F et al. The metabolite generated by dipeptidyl-peptidase 4 metabolism of glucagon-like peptide-1 has no influence on plasma glucose levels in patients with type 2 diabetes [J]. Diabetologia,2006,49:369-374.
    [44]Deacon C F, Plamboeck A, Rosenkilde M M et al. GIP-(3-42) does not antagonize insulinotropic effects of GIP at physiological concentrations [J]. Am J Physiol Endocrinol Metab,2006,291:E468-E475.
    [45]Widmann C, Dolci W, Thorens B. Desensitization and phosphorylation of the glucagon-like peptide-1 (GLP-1) receptor by GLP-1 and 4-phorbol 12-myristate 13-acetate [J]. Mol Endocrinol.1996,10:62-75.
    [46]Liu X, Harada N, Yamane S et al. Effects of long-term dipeptidyl peptidase-IV inhibition on body composition and glucose tolerance in high fat diet-fed mice [J]. Life Sciences,2009,84:876-881.
    [47]Dai H, Gustavson S M, Preston G M et al. Non-linear increase in GLP-1 levels in response to DPP-IV inhibition in healthy adult subjects [J]. Diabetes Obes Metab.2008,10:506-13.
    [48]Ahren B, Landin-Olsson M, Jansson P A et al. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes [J]. J Clin Endocrinol Metab,2004,89:2078-2084
    [49]Conarello S L, Li Z, Ronan J et al. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance [J]. Proc Natl Acad Sci U S A, 2003,100:6825-6830
    [50]Flock G, Baggio L L, Longuet C et al. Incretin receptors for glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are essential for the sustained metabolic actions of vildagliptin in mice [J]. Diabetes,2007, 56:3006-13.
    [51]Kvist Reimer M, Holst J J, Ahren B. Long-term inhibition of dipeptidyl peptidase Ⅳ improves glucose tolerance and preserves islet function in mice [J]. European Journal of Endocrinology.2002,146:717-727.
    [52]Pospisilik J A., Stafford S G., Demuth H-U. et al. Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and β cell glucose responsiveness in VDF(fa/fa)Zucker rats [J]. Diabetes,2002,51:943-950.
    [53]Beatrice S, Pierre B, Richard B. W et al. Chronic inhibition of circulating dipeptidyl peptidase IV by FE999011 delays the occurrence of diabetes in male Zucker Diabetic Fatty Rats [J]. Diabetes,2002,51:1461-1469.
    [54]Sedo A, Malik R. Dipeptidyl peptidase IV-like molecules:homologous proteins or homologous activities? [J]. Biochim Biophys Acta,2001, 1550:107-116.
    [55]Lankas G R, Leiting B, Roy R S et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes:potential importance of selectivity over dipeptidyl peptidases 8 and 9 [J]. Diabetes,2005,54:2988-2994.
    [56]Reinhold D, Kahne T, Steinbrecher A et al. The role of dipeptidyl peptidase IV (DP IV) enzymatic activity in T cell activation and autoimmunity [J]. Biol Chem,2002,383:1133-1138.
    [57]Ikushima H, Munakata Y, Iwata S et al. Soluble CD26/dipeptidyl peptidase IV enhances transendothelial migration via its interaction with mannose 6-phosphate/insulin-like growth factor Ⅱ receptor [J]. Cell Immunol,2002, 215:106-110
    [58]Ling Z, Wu D, Zambre Y et al. Glucagen-like peptide1receptor sig-naling influences topography of islet cells in mice. Virchows Arch,2001, 438:382-387.
    [59]Kang G X, Oleg G C, Brian M et al. Camp sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells [J]. J Physiol,2006,573:595-609.
    [60]Doliba N M, Qin W, Vatamaniuk M Z et al. Restitution of defective glucose-stimulated insulin release of sulfonylurea type 1 receptor konckout mice by acetylcholine [J]. Am J Physiol Endocrinol Metab.2004,1-34.
    [61]Kataoka K, Han S, Shioda S et al. MafA is a glucose-regulated and pancreatic β-cell-specific transcriptional activator for insulin gene [J].2002, 277:49903-49910.
    [62]Wang H, Brun T, Wollheim C B. MafA controls genes implicated in insulin biosunthesis and secretion [J]. Diabetologia.2007,50:348-358.
    [63]Kwon G, Pappan K L, Marshall C A et al. Camp dose-dependently prevents palmitate-induced apoptosis by both protein kinase A- and Camp-guanine nucleotide exchange factor-dependent pathway in beta-cells [J]. The Journal of Biological Chemistry,2004,279:8938-8945.
    [64]Trumper J, Ross D, Jahr H et al. The Rap-B-Raf signalling pathway is activated by glucose and glucagon-like peptide-1 in human islet cells [J]. Diabetologia,2005,48:1534-1540.
    [65]Colin A L, George G H, Oleg C et al. Habener. Expression of cAMP-Regulated Guanine Nucleotide Exchange Factors in Pancreatic β-Cells [J]. BBR.2000,278:44-47.
    [66]Robyn L T, Navdeep S G, William P et al. Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKBa [J]. Nature Medicine,2001,7:1133-1137.
    [67]Harndahl L, Wierup N, Enerback S et al. β-Cell-targeted Overexpression of Phosphodiesterase 3B in Mice Causes Impaired Insulin Secretion, Glucose Intolerance, and Deranged Islet Morphology [J]. J. Biol. Chem.2004,279: 15214-15222.
    [68]Li L X, Macdonald PE, Ahn D S et al. Role of phosphatidylinositol 3-kinase gama in the beta cell:interactions with glucagon-like peptide [J]. Endocrinology,2006,147:3318-3325.
    [69]Jhala U S, Canettieri G, Screaton R A et al. Camp promotes pancreatic beta-cell survial via CREB-mediated induction of IRS2 [J]. Genes & development 2003,17:1575-1580.
    [70]Buteau J, Foisy S, Rhodes C J et al. Protein kinase C activation mediates glucagon-like peptide-1-induced pancreatic beta cell proliferation [J]. Diabetes,2001,50:2237-2243.
    [71]Blair A S, Hajduch E, Litherland G J et al. Regulation of Glucose Transport and Glycogen Synthesis in L6 Muscle Cells during Oxidative Stress. Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathway [J]. J.Biol.Chem.1999, 274:36293-36299.
    [72]Li Y Z, Cao X M, Li L X et al. β-cell Pdx-1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1 [J].Diabetes,2005.54:482-486.
    [73]Wang X L, Zhou J, Doyle M E et al. Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic beta-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism [J]. Endocrinology, 2001,142:1820-1827.
    [74]Zhou J, Pineyro MA, Wang X et al. Exendin-4 differentiation of a human pancreatic duct cell line into endocrine cells:involvement of PDX-1 and HNF3beta transcription factors [J]. J Cell Physiol,2002,192:304-314.
    [75]Buteau J, Spatz ML, Accili D. Transcription Factor FoxO1 Mediates Glucagon-Like Peptide-1 Effects on Pancreatic β-Cell Mass [J]. Diabetes, 2006,55:1190-1197.
    [76]Buteau J, Foisy S, Joly E et al. Glucagon-like peptide 1 induces pancreatic beta cell proliferration via transactivation of the epidermal growth factor receptor [J]. Diabetes,2003,52:124-132.
    [77]Stiles BL, Kuralwalla-Martinez C, Guo W et al. Selective deletion of Pten in pancreatic beta cell leads to increased islet mass and resistance to STZ-induced diabetes [J]. Molecular and cellular biology,2006, 26:2772-2781.
    [78]Wolfrum C, Besser D, Luca E et al. Insulin regulates the activity of forkhead transcription factor Hnf-3β/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization [J]. PNAS,2003,100:11624-11629.
    [79]McDaniel ML, Marshall CA, Pappan KL et al. Metabolic and Autocrine Regulation of the Mammalian Target of Rapamycin by Pancreatic β-Cells [J]. Diabetes,2002,51:2877-2885.
    [80]Pende M, Kozma SC, Jaquet M et al. Hypoinsulinaemia, glucose intolerance and diminished β-cell size in S6K1-deficient mice[J]. Nature,2000,408:994-997.
    [81]Kwon G, Marshall CA, Pappan KL et al. Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets[J]. Diabetes,200453:S225-S232.
    [82]Bain SC, Stehens JW. Exenatide and pancreatitis:an update[J]. Expert Opin Drug Saf.,2008,7:643-644.
    [83]Johansen OE, Whitfield R. Exenatide may aggravate moderate diabetic renal impairment:a case report [J]. Br J Clin Pharmacol.,2008,66:568-569.
    [84]Kohen I, Lester P. Exenatide-induced depression in a geriatric patient [J]. Int J Geriatr Psychiatry.,2008,23:443-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700