离体鼠工作心脏灌注模型中腺苷对缺血再灌注心脏能量底物代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腺苷作为内源性核苷,是一个重要的代谢性中间产物。腺苷通过和细胞表面
     特殊腺苷受体的相互作用在整个机体起到广泛的调节和控制作用。文献报道腺苷
     有显著的心脏保护作用,但这一作用的确切机制众说纷坛,没有定论。近年来,
     腺苷在心脏能量代谢中的作用引起广泛关注。能量缺乏时容易生成腺苷的现象提
     示腺苷的心血管作用似乎是调节氧供与能量需求之间的平衡,这意味着心脏代谢
    活性与腺苷释放之间存在敏感的联系。本课题通过建立离体鼠工作心脏灌注模
     型,在灌注葡萄糖和脂肪酸的条件下研究腺苷对缺血和再灌注期间心脏的机械功
     能、外源性葡萄糖酵解、糖氧化、代谢产物含量以及心脏超微结构的变化;同时,
     在预先经短暂缺血(而非缺血预适应)的心脏中研究腺苷对随后长时间缺血和再
     灌注心脏糖酵解、糖氧化、庄生成、代谢产物含量和心脏超微结构作用的变化,
     并研究了α肾上腺素能受体阻滞剂──酚妥拉明在缓解腺苷于这类心脏中不良
     反应中的作用,为腺苷心脏保护作用机制的进一步研究提供一条思路。主要研究
     内容、方法和结果如下:
     一、离体鼠工作心脏灌注模型的建立
    采用Neely等报道的方法,用雄性Sprague-Dawley大鼠灌注Krebs-Henseleit
     缓冲液(37℃,pH7.4,95%O2和5%CO2充分饱和)建立非再循环式的离体鼠
     工作心脏灌注模型,同时保留Langendorff灌注系统,使该灌注装置成为双灌流
     系统。该模型较好地模拟了在体心脏做功时的工作状态,使左心房前负荷保持在
     1.5kPa,主动脉后负荷保持在10.7kPa。非再循环式的灌注方法使离体心脏避免
     了长时间灌注带来的代谢产物堆积和实验参数测定基点不同的缺点,便于对多种
     干扰因素进行综合判断,使用该模型顺利地完成了后续实验。
     二、腺苷对离体心脏缺血和再灌注期间糖代谢和机械功能的影响
     在灌注改良Krebs-Henseleit缓冲液(含游离钙2.5mM、葡萄糖11mM、预先
    用3%牛血清白蛋白溶解结合的脂肪酸1.2mM、胰岛素500μU/ml)的离体鼠工
     二
    
    
     博士学位论文 中文摘要
     作心脏中,缺血前或再灌注时使用腺昔O P M)显著改善了经 60ndn低流量
     缺血(冠脉流量打)心脏机械功能的恢复(分别从1二.31士7.68o/增加至
     7o.58士2一84%和6905士二28巴%);缺血期间的糖氧化被抑制(从o.35士〕则到
     0刀8士0刀2 n moVmin·g干重X这一抑制作用不受腺昔的影响,再灌注期间糖
     氧化恢复至认29士0刀3 n moUmin·g干重,此时使用腺昔进一步增加了糖氧化
     m.40士 0刀9 n moUmin·g千重入 缺血前使用腺昔抑制了不受缺血影响的糖酵
     解的速率(从 4.77士0.66至 2.64士0.76 n moymin·g干重人缺血前或再灌注时
     使用腺苦均使再灌注期间的糖酵解受到抑制(分别为2.77土1.03和L73土o.71
     moUnun·g干重,对照组为 4刀7士045 u moUndnY干重X腺昔对糖代谢的作用
     降低了缺血和再灌注期间来源于糖代谢的庄生成:腺苦增加了缺血后再灌注期
     间的冠脉流量,这可能和心脏机械功能的增加有关,缺血期间冠脉流出液乳酸含
    c
     量显著增高(从2.08土0.34到22.42士7.56mmo oo),再灌注后有所降低(8.65士
     3,43mmow),缺血前和再灌注时使用腺昔进一步降低了缺血期间冠脉流出液的
     乳酸含量(分别为5.gi士1.93和365土14lmmow),反映了这些心脏中糖氧化
     作用的增强;腺苦保存了缺血期间的心肌糖原,降低了心脏摄取葡萄糖,但并不
     增加缺血期间的糖原分解,再灌注期间腺昔抑制葡萄糖的摄取。
     三、AIS心脏中腺昔对缺血后糖代谢和机械功能作用的转变
     在经预先缺血应激(lS)——两段10min缺血继以sndn再灌注一一耗竭
     糖原的心脏中,腺昔乃00 p M)刺激了糖酵解而非抑制糖酵解(从4.68士2.38
    ,增至 5.92士 l.98 u moUmin·g干重),使庄的生成增加(从 8.64土 4.80到 10.70
     士 4.18 n molimin·g干重L抑制了再灌注后心脏机械功能的恢复(恢复至缺血
     前的16.46土2.96%,对照组为31.65土4.74%)。在灌注无底物(葡萄糖、脂肪酸)
     灌注液以耗竭糖原(SFGD)的心脏中,药物治疗前的糖原含量与 lS心脏相似
     (68.12士m.35和65.15士n65 pm叱干重),腺昔(500pM)抑制了有氧灌注
     SFGD心脏中的糖酵解和庄生成。在SFGD心脏中,与未治疗心脏相比,长时
     间缺血后的再灌注期间?
Adenosine, an endogenous nucleoside, is an important metabolite intermediate
     and exerts widespread regulatoiy and control throughout the body by interacting with
     specific cell-surface adenosine receptors. It is said that adenosine possesses marked
     cardioprotective properties, but the mechanisms for this beneficial effect are unclear.
     The role of adenosine in cardiac energy metabolism as a homeostatic metabolite has
     recently attracted much attention. The cardiovascular effects of adenosine appear to
     regulate the balance between 02 supply and energy demand, and the formation of
     adenosine is facilitated during periods of energy deficit. This provides a sensitive link
     between cardiac metabolic activity and adenosine release. The objective of this study
     was to determine the effect of adenosine on mechanical function, exogenous glucose
     oxidation, glycolysis, metabolite levels, and ultrastructure changes of heart cells in
     isolated working rat hearts perfused with glucose and fatty acids. Meanwhile,
     glycolysis, oxidation, H+ production, metabolite levels, and ultrastructure changes in
     hearts subjected to antecedent ischemic stress (AIS) (not ischemic preconditioning)
     and subsequent ischemia and reperfusion was studied. The effect of phentolamine-an
     a -adrenoceptor antagonist in preventing adenosine-induced stimulation of glycolysis
     and reduced H+ production from glucose was also studied. The main work was
     described as foliows:
    
     1. Establishment the model of isolated working rat hearts
    
     The model, reported by Neely et al, was established in Hearts from male
     Sprague-Dawley rats perfused with non-recirculating Krebs-Henseleit solusion (37℃,
     pH 7.4, gassed with a 95%O2-5%CO2 mixture). It is a biperfusing system because the
     Langendorff perfusion was attached. The model well mimicked the hearts in vivo.
     Perfusions were performed at a constant 1.5kPa left atrial preload and 1O.7kPa aortic
    
    
     5
    
    
    
    
    
    
    
    
    
     aflerload. The non-recirculating perfusion avoided the cumulation of metabolites and
     kept the the same baseline during the perfusion. It provide lots of help for the
     subsequent research work.
    
     2. Adenosine altered glucose metabolism and mechanical function during
    
     ischemia and reperfusion in isolated rat heart
    
     In isolated working rat hearts perfused with modified Krebs-Henseleit solution
     containing 2. 5mM free Ca2~, 11mM glucose, 1.2mM palmitate pre-bound to 3%
     bovine serum albumin, 500 ju U/mi insulin, adenosine (100 ~.t M) pretreatment or
     adenosine (100 ~ M) at reperfusion markedly increased the recovery of mechanical
     function (from 12.31 ?7.68% to 70.58 ?24.84% and 69.05 ?12.88%, respectively)
     after 60 minutes of low-flow ischemia (coronary flow     was inhibited during ischemia (from 0.35 ?0.04 to 0.08 ?0.02 au mol/min g dry wt),
     and this was not altered by adenosine. During reperftision, glucose oxidation
     recovered to 0.29 ?0.03 ju md/mm g dry wt, and adenosine (100 ii M), given at
     reperflision, further increased glucose oxidation to 0.40 ?0.09 ~t mol/min g dry wt.
     The rate of glycolysis, which was unaffected by ischemia per se, was inhibited by
     adenosine pretreatment (from 4.77 ?0.66 to 2.64 ?0.76 ~t mollmin g dry wt). During
     reperfusion, glycolysis was also inhibited by adenosine relative to control (4.07 ?0.45
     ~.i mol/min g dry wt) either when present during ischemia (2.77 ?1.03 ~t moVmin g
     dry wt) or during reperfusion (1.73 ?0.71 ji inol/min g dry wt). These e
引文
1. Londos C, Cooper DMF, Wolff J, et al. Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 1980; 77: 2551-1554.
    2. Schrader M. Adenosine. A homeostatic metabolite in cardiac energy metabolism. Circulation 1990; 81: 389-391.
    3. Finegan BA, Clanachan AS, Coulson CS, et al. Adenosine modification of energy substrate use in isolated hearts perfused with fatty acids. Am J Physiol 1992; 262(Heart Circ Physiol 31) : H1501-1507.
    4. Neely JR, Morgan HE. Relationship between carbohydrate, and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 1974; 36: 413-459.
    5. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working hearts. J Biol Chem 1991; 266, 8162-8170.
    6. Law WR, McLane MP. Adenosine enhances myocardial glucose uptake only in the presence of insulin. Metabolism 1991; 40. 947-952.
    7. Law WR, McLane MP, Raymond RM. Adenosine is required for myocardial insulin responsiveness in vivo. Diabetes 1988; 37: 842-845.
    8. Law WR, McLane MP, Raymond RM. Adenosine restores myocardial resposiveness to insulin during acute endotoxin shock in vivo. Circ Shock 1989; 28: 333-345.
    9. Law WR, Raymond RM. Adenosine potentiates insulin-stimulated myocardial glucose uptake in vivo. Am J Physiol 1988; 254(Heart Circ Physiol 23) . H970-H975.
    10. Mainwairing R, Lasley R, Rubio R, et al. Adenosine stimulates glucose uptake in the isolated rat heart. Surgery 1988; 103: 445-449.
    11. Fuller SJ, Sugden PH. Stimulation of protein synthesis, glycose uptake and lactate output by insulin and adenosine deaminase in the rat heart. FEBS Lett 1986; 201: 246-250.
    
    
    12. Boiling SF, Bies LE, Gallagher KP, et al. Enhanced myocardial protection with adenosine. Ann Thorac Surg 1989; 47: 809-815.
    13. Boiling SF, Bies LE, Bove EL, et al. Augmenting intracellular adenosine improves myocardial recovery. J Thorac Cardiovasc Surg 1990; 99: 469-474.
    14. Schubert T, Vetter H, Owen P, et al. Adenosine cardioplegia. J Thorac Cardiovasc Surg 1989; 98: 1057-1065.
    15. de Jong JW, van der Meer P, van Loon H, et al. Adenosine as adjunct to potassium cardioplegia: Effect on function, energy metabolism, and electrophysiology. J Thorac Cardiovasc Surg 1990; 100: 445-454.
    16. Pitarys CJ, Virmani R, Vildibill HD Jr, et al. Reduction of myocardial reperfusion injury by intravenous adenosine administered during the early reperfusion period. Circulation 1991; 83: 237-247.
    17. Olafsson B, Forman MB, Puett DW, et al. et al. Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: Importance of the endothelium and the ' no-reflow' phenomenon. Circulation 1987; 76: 1135-1145.
    18. Liu GS, Thornton J, Van Winkle DM, et al. Protection against infarction afforded by preconditioning is mediated by AI adenosine receptors in rabbit heart. Circulation 1991; 84: 350-356.
    19. Wilson RF, Wyche K, Christensen BV, et al. Effects of adenosine on human coronary arterial circulation. Circulation 1990; 82: 1595-1606.
    20. Headrick J, Willis RJ. Endogenous adenosine improves work rate to oxygen consumption ratio in catecholamine stimulated isovolumic rat heart. Pflugers Arch 1989; 413: 354-358.
    21. Cronstein BN, Rosenstein ED, Kramer SB, et al. Adenosine, a physiologic modulator of superoxide anion generation by human neutrophils: Adenosine acts via an A_2 receptor on human neutrophils. J Immunol 1985; 135: 1366-1371.
    22. Reibel DK, Rovetto MJ. Myocardial adenosine salvage rates and restoration of ATP content following ischemia. Am J Physiol 1979; 237: H247-H252.
    23. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 1974; 36: 413-459.
    
    
    
    24. Neely JR, Grotyohann UN. Role of glycolytic products in damage to ischemic myocardium. Circ Res 1984; 55: 816-824.
    25. Mallet RT, Hartman DA, Bunger R. Glucose requirement for postischemic recovery of perfused working heart. Eur J Biochem 1990; 188: 481-493.
    26. Lopaschuk GD, Spafford M, Davies NJ, et al. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 1990; 66: 546-553.
    27. McVeigh JJ, Lopaschuk GD. Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Physiol 1990; 28: H1079-H1085.
    28. Finegan BA, Lopaschuk GD, Coulson CS, et al. Adenosine alters glucose use During ischemia and reperfusion in isolated rat hearts. Circulation 1993; 87: 900-908.
    29. Finegan BA, Lopaschuk GD, Gandhi M, et al. Inhibition of glycolysis and enhanced mechanical function of working rat hearts as a result of adenosine AI receptor stimulation during reperfusion following ischemia. Br J Pharmcol 1996; 118: 355-363.
    30. Finegan BA, Lopaschuk GD, Gandhi M, et al. Ischemic preconditioning inhibits glycolysis and proton production during ischemia and reperfusion in working rat hearts. Am J Physiol 1995; 269(Heart Circ Physiol 38) : H1767-H1775.
    31. Murry CE, Richard VJ, Reimer KA, et al. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode.Circ Res 1990; 66: 913-931.
    32. Wolfe CL, Sievers RE, Visseren FL, et al. Loss of myocardial protection after preconditioning correlates with the time course of glycogen recovery within the preconditioned segment. Circulation 1993; 87: 881-892.
    33. Lagerstrom CF, Walker WE, Taegtmeyer H. Failure of glycogen depletion to improve left ventricular function of the rabbit heart after hypothermic ischemic arrest. Circ Res 1988; 63: 81-86.
    34. Janier MF, Vanoverschelde JL, Bergmann SR. Adenosine protects ischemic and reperfused myocardium by receptor-mechanisms. Am J Physiol 1993; 264(Heart
    
     Circ Physiol 33) : H163-H170.
    35. Wyatt DA, Edmunds MC, Rubio R, et al. Adenosine stimulates glycolytic flux in isolated perfused rat hearts by A_1-adenosine receptors. Am J Physiol 257(Heart Circ Physiol 26) : H1952-H1957.
    36. Uematsu M, Gaudette GR, Laurikka JO, et al. Adenosine-enhanced ischemic preconditioning decreases infarct in the regional ischemic sheep heart. Ann Thorac Surg 1998; 66: 382-387.
    37. McCully JD, Uematsu M, Parker RA, et al. Adenosine-enhanced ischemic preconditioning provides enhanced postischemic recovery and limitation of infarct size in the rabbit heart. Ann Thorac Surg 1998; 116: 154-162.
    38. Finegan BA, Gandhi M, Lopaschuk et al. Antecedent ischemia reverses effects of adenosine on glycolysis and mechanical function of working hearts. Am J Physiol 1996; 271(Heart Circ Physiol 40) : H2116-H2125.
    39. Schomig A, Dart AM, Dietz R, et al. Release of endogenous catecholamine in the ischemic myocardium of the rat. Part A: Locally mediated release. Circ Res 1984; 55: 689-701.
    40. Headrick JP, Willis RJ. Effects of adenosine antagonism and beta-blockade during low-flow ischemia in rat heart. Clin Exp Pharmacol Physiol 1989; 16: 885-891.
    41. Belardinelli L, Isenberg G. Actions of adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ Res 1983; 53: 287-297.
    42. Cano C, Slavik KJ, Malik KU. Loss of adenosine-induced negative inotropic effect in hyperexcited rabbit hearts: relationship to PKC. Am J Physiol 1995; 268: H1037-1044.
    43. Langendorff O. Untersuchungen am uberlebenden Saugethierherzen. Pfluegers Arch 1895; 61: 291-332.
    44. Neely JR, Liebermeister H, Battersby EJ, et al. Effect of pressure development on oxygen consumption by isolated rat hearts. Am J Physiol 1967; 212: 804-814.
    45. Schneider CA, Taegtmeyer H. Fasting in vivo delays myocardial cell damage after brief periods of ischemia in the isolated working rat heart. Circ Res 1991; 68:
    
     1045-1050.
    46. Kobayashi K, Neely JR. Control of maximum rates of glycolysis in rat cardiac smooth muscle. Circ Res 1979; 44: 166-175.
    47. Opie LH, Mansford KRL, Owen P. Effect of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats. Biochem J 1971; 124: 475-490.
    48. deLeiris J, Harding DP, Pestre S. The isolated perfused heart: A model for studing myocardial hypoxia or ischaemia. Basic Res Cardiol 1984, 79: 313-321.
    49. Finegan BA, Gandhi M, Canadian AS. Phentolamine prevents the adverse effects of adenosine on glycolysis and mechanical function in isolated working rat hearts subjected to antecedent ischemia. J Mol Cell Cardiol 2000; 32: 1075-1086.
    50. Koke JR, Fu LM, Sun D, et al. Inhibitors of adenosine catabolism improve recovery of dog myocardium after ischemia. Mol Cell Biochem 1989; 86: 107-113.
    51. Murry CE, Jennings RB, Reimer KA. New insights into potential mechanisms of ischemic preconditioning. Circulation 1991, 84: 442-445.
    52. Cronstein BN, Daguma L, Nichols D, et al. The adenosine/neutrophil paradox resolved: Human neutrophils possess both A_1 and A_2 receptors that promote chemotaxis and inhibit O_2 generation, respectively. J Clin Invest 1990; 85: 1150-1157.
    53. Owen P, Denis S, Opie LH. Glucose flux rate regulates onset of ischemia contracture in globally underperfused rat hearts. Circ Res 1990; 66: 344-354.
    54. Cunningham MJ, Apstein CS, Weinberg EO, et al. Influence of glucose and insulin on the exaggerated diastolic and systolic dysfunction of hypertrophied rat hearts during hypoxia. Circ Res 1990; 66: 406-415.
    55. Opie LH. Myocardial ischemia: Metabolic pathways and implications of increased glycolysis. Cardiovasc Drugs Ther 1990; 4: 777-790.
    56. Denis SC, Gevers W, Opie LH. Protons in ischemia: Where do they come from; where do they go to? J Mol Cell Cardiol 1991; 23: 1077-1086.
    
    
    57. Tani M, Neely JR. Role of intracellular Na~+ in Ca~(2+) overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Circ Res 1989; 65: 1045-1056.
    58. Lazdunski M, Frelin C, Vigne P. The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal PH. J Mol Cell Cardiol 1985; 17: 1029-1042.
    59. Allison SP, Chamberlain MJ, Hinton P. Intravenous glucose tolerance, insulin, glucose and free fatty acid levels after myocardial infarction. BMJ 1969; 4: 776-778.
    60. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 1991; 266: 8162-8170.
    61. Dale WE, Hale CC, Kim HD, et al. Myocardial glucose utilization. Circ Res 1991; 69: 791-799.
    62. Fuller SJ, Sugden PH. Stimulation of protein synthesis, glucose uptake and lactate output by insulin and adenosine deaminase in the rat heart. FEBS Lett 1986; 201: 246-250.
    63. Law WR, Raymond RM. Adenosine potentiates insulin-stimulated myocardial glucose uptake and in vivo. Am J Physiol 1989; 257: H1952-H1957.
    64. Oetjen CE, Schweickhardt C, Unthan-Fechner K, et al. Stimulation of glucose prodction from glycogen by glucagons, noradrenaline and non-degradable adenosine analogues is counteracted by adenosine and ATP in cultured rat hepatocytes. Biochem J 1990; 271: 337-344.
    65. Schaefer S, Carr LJ, Prussel E, et al. Effects of glycogen depletion on ischemic injury in isolated rat hearts: insights into preconditioning. Am J Physiol 1995; 268: H935-H944.
    66. Lopaschuk GD, Collins-Nakai R, Olley PM, et al. Plasma fatty acid levels in infants and adults after myocardial ischemia. Am Heart J 1994; 128: 61-67.
    67. Kupriyanov W, Lakomkin VL, Steinschneider AY, et al. Relationships between
    
     pre-ischemic ATP and glycogen content and post-ischemic recovery of rat heart. J Mol Cell Cardiol 1988; 20: 1151-1162.
    68. Neely JR, Grotyohann LW. Role of glycolytic products in damage to ischemic myocardium. Circ Res 1984; 55: 816-824.
    69. Carlsson L. Mechanism of local noradrenaline release in acute myocardial ischemia. Acta Physiol Scand 1987; (Suppl. 559) . 1-85.
    70. Dart AM, Riemersma RA. Origins of endogenous noradrenaline overflow during reperfusion of the ischaemic rat heart. Clin Sci 1988; 74: 269-274.
    71. Cargnoni A, Ceconi C, Curello S, et al. Relation between energy metabolism, glycolysis, noradrenaline release and duration of ischemia. Mol Cell Biochem 1996;160-161: 187-194.
    72. Collins-Nakai RL, Noseworthy D, Lopaschuk GD. Epinephrine increases ATP production in hearts by preferertially increasing glucose metabolism. Am J Physiol 1994; 267: H1862-H1871.
    73. Dobson JG Jr, Schrader J. Role of extracellular and intracellular adenosine in the attenuation of catecholamine evoked responses in guinea pig heart. J Mol Cell Cardiol 1984; 16: 813-822.
    74. Dixon AK, Gubitz AK, Sirinathsinghji DJ, et al. Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 1996; 118: 1461-1468.
    75. Dobson JGJ, Fenton RA. Adenosine A2 receptor function in rat ventricular myocytes. Cardiovasc Res 1997; 34: 337-347.
    76. Zhang WL, LU GW. Changes of adenosine and if s A(1) receptor in hypoxic preconditioning. Bio Signals Recept 1999; 8: 275-280.
    77. Hudspeth DA, Nakanishi K, Vinten-Johansen J, et al. Adenosine in blood cardioplegia prevents post-ischemic dysfunction in ischemically injured hearts. Ann Thorac Surg 1994; 58: 1637-1644.
    78. Hudspeth DA, Willams MW, Zhao ZQ, et al. Phentolamine-augmented interstitial adenosine prevents postcardioplegia injury in damaged hearts. Ann Thorac Surg 1994; 58: 719-727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700