直接甲醇燃料电池的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(Direct Methanol Fuel Cell,简称DMFC)是直接利用甲醇作为阳极燃料的质子交换膜燃料电池,无需甲醇转化装置,具有系统结构简单、体积能量密度高、燃料补充方便、工作温度低、启动快等优点,特别适用于便携式移动电源、电动汽车等。本工作合成了用于直接甲醇燃料电池甲醇氧化电催化剂,探索性地制备了DMFC膜电极,设计、制备、组装了DMFC单电池系统和三电池电堆,为DMFC的实用化研究迈出第一步。
     通过大量的文献查阅,选择以高导电、高比表面积的碳黑为载体的Pt基二元合金负载型催化剂作为甲醇氧化电催化剂。用H_2O_2还原法合成了Pt—Ru/C,以期替代已商品化的Johnson Matthey同类催化剂;利用Mo元素良好的抗CO中毒的能力,选择KBH_4还原法合成了Pt—Mo/C催化剂,通过循环伏安扫描以及电流—电位极化曲线测定,确定Pt—Mo/C催化剂中Pt与Mo的最佳原子比为3:1。通过循环伏安扫描发现,制备催化剂的甲醇氧化电位低于Johnson Matthey催化剂,而氧化活性与之相当,达稳定氧化电流后经过多次扫描不产生震荡。
     通过对催化剂进行XRD、XPS以及TPD表征,发现,Pt-Ru/C催化剂中Pt和Ru均以氧化物形式存在,并且Pt与Ru之间还存在相互作用;Pt-Mo/C催化剂中Pt主要以零价态形式存在,而Mo则以氧化物形式出现。以甲醇、CO和CO_2为吸附质的TPD结果表明,制备催化剂具有适宜的吸附强度,导致其具有较好的甲醇氧化活性和稳定性。
     摸索了直接甲醇燃料电池膜电极的制备工艺,设计、组装了单电池系统来考察阳极电极制备工艺,提出优化的工艺方法和工艺参数:30%PTFE憎水化处理碳纸;扩散层的制备采用刷涂法,其中PTFE最佳含量为5wt%;催化剂选用20wt%Pt—Ru/C,催化剂层中催化剂优化含量为0.6mgPt/cm~2,Teflon—C、Nafion的最佳用量分别为0.3mg/cm~2、0.5mg/cm~2。
     优化了单电池的操作参数。单电池性能随着工作温度上升而提高,选择80℃为考察温度;单电池膜电极有效面积为9cm~2,甲醇水溶液最佳浓度为2.5M,甲醇水溶液最佳流量为0.6ml/min;随着氧气压力的升高,单电池的性能明显增强,阴极尾气排放量对电池性能影响不大。单电池输出电压为
Direct Methanol Fuel Cell (DMFC) was one of the Proton Exchange Membrane Fuel Cell with methanol as anode fuel, which had the advantage as following: no methanol reformer, simple system structure, high ratio volume energy density, convenient fuel supply, low working temperature, quick start and so on. It especially was suitable for mobile power, electric vehicles and other application. Anode catalysts for methanol oxidation used in DMFC were synthesized in our research. As the first step of future application, we exploringly prepared the membrane electrode assembly used in DMFC, then designed and installed DMFC single cell system and three cells stack system which should be the first local one.
    According to the lots of reference, the Pt based bimetallic alloy catalysts supported on carbon black with high electric properties and surface area were selected as anode electrocatalysts. Pt-Ru/C catalyst was prepared by H_2O_2 reduction in order to replace the commercial catalysts from Johnson Matthey Co. Ltd. On the basis of well CO tolerance properties of Mo, Pt-Mo/C catalysts were synthesized by KBH_4 reduction. The catalyst in which Pt: Mo atomic ratios was 3:1 showed better performance from the cyclic voltammetry (CV) curve and current-potential polarization results. It was found: although their electrochemical activity were similar, the methanol oxidation potential of in house catalysts were lower than that of Johnson Matthey catalyst, and CV curve of in house catalysts didn't vibrate after much scanning after the oxidation current is stable.
    The XRD, XPS and TPD were performed to know the physical and chemical properties of catalysts. It was discovered as following: there were Pt oxide and Ru oxide in Pt-Ru/C and interaction between Pt and Ru. Pt existed as zero value in Pt-Mo/C whereas Mo existed as Mo oxide. The TPD results with methanol, CO, CO_2 as adsorbates showed that in house catalysts had the suitable adsorption intensity, which resulted in their better methanol oxidation activity and stability.
    After preparation ways of membrane electrode assembly (MEA) of DMFC and anode electrode were studied by single cell system, the optimized preparation ways of anode electrode were issued: hydrophobic carbon papers were prepared with 30%PTFE.
引文
[1] 黄汉生.日本燃料电池研究开发动向.现代化工.1998,10:42-46
    [2] 马紫峰,冷拥军,蒋淇忠等.直接甲醇燃料电池中的甲醇电催化氧化.化学通报(网络版).1999,12月:c99123
    [3] 郭志东.清洁能源汽车的开发动向—燃料电池汽车.汽车电器.1999,1:4-7
    [4] 毛宗强.质子交换膜燃料电池(PEMFC)最新进展.新能源.1999,21(1):7-10
    [5] 熊一权.燃料电池发电技术.中国电力.1998,31(9):61-64
    [6] 刘世友,李京萍.燃料电池的开发与展望.新能源.1999,21(2):39-41
    [7] 郑重德,王丰,胡涛等.质子交换膜燃料电池研究进展.电源技术.1998,22(3):133-135
    [8] 张强,许晋源.离子膜燃料电池发电技术.汽车技术.1999,1:125-131
    [9] 林维明.燃料电池系统.第一版.化学工业出版社.1994:1
    [10] 郑乃金.车用燃料电池的技术进展和应用前景.世界汽车.1998,6:9-10
    [11] 毛宗强,陆文军,阎军.质子交换膜燃料电池(PEMFC)最新进展及我国发展战略探讨.电池世界.1998,2:16-20
    [12] 陈延禧.聚合物电解质燃料电池的研究进展.电源技术.1996,20(1):21-27
    [13] 周运鸿.燃料电池的发展.电池世界.1998,创刊号:3-5
    [14] 王艳华,王欧,林彬.前景广阔的新型化学电源—燃料电池.辽宁化工.1998,27(1):9-12
    [15] 王筱武.燃料电池.科技通报.1999,15(3):242-243
    [16] 王瑛,黄黎中,王永立等.燃料电池技术要论.贵金属.1997.18(1):49-54
    [17] 衣宝廉.质子交换型燃料电池(PEMFC)—国内外状况与主要技术问题.电源技术.1997,21(2):80-83[18] 陆天虹,孙公权.我国燃料电池发展概况.电池技术.1998,22(4):182-184
    [19] 马紫峰,黄碧纯,石玉美.质子交换膜燃料电池电催化剂研究及膜电极制备技术.电源技术.1999,23(2):149-153
    [20] 刘国林,余炎.为未来的汽车和家庭供电的燃料电池.国外科技动态.1998,352:19-21
    [21] 郑重德.高比能燃料电池展望.电子科技导报.1998,7:7-8
    [22] 朱雄世.燃料电池的发展和应用.邮电设计.1999,3:23-27
    [23] 李乃朝,衣宝廉.离子交换膜燃料电池汽车.电化学.1997,3(2):125-131
    [24] 衣宝廉.燃料电池现状与未来.电源技术.1998,22(5):216-221
    [25] 蒋淇忠,马紫峰,黄碧纯等.仪器分析技术在直接甲醇燃料电池研究中的应用.光谱实验室.2000,17(2):129-133
    [26] M P Hogarth, G A Hards. Direct Methanol Fuel Cell. Platinum Metals Rev. 1996, 40(4): 150-159
    [27] 马紫峰,廖小珍,冷拥军.直接甲醇燃料电池技术及应用.化工进展.1999,6:44-46
    [28] 田立朋,李伟善.直接甲醇燃料电池研究进展.现代化工.1998,5:14-17
    [29] 周运鸿.燃料电池.电源技术.1996,20(4):161-164
    [30] H F Oetjen, V M Schmidt, U Stimming, et al.. Performance data of a proton exchange membrane fuel cell using H_2/CO as fuel gas. J Electrochem. Soc.. 1996, 143(12): 3835-3542
    [31] S Wasmus, A Kuver. Methanol oxidation and direct methanol fuel cells: a selective review. J of Electroanal, Chem.. 1999, 146: 14-31
    [32] F Gloaguen, J M Leger, C Lamy. EIectrocatalytic oxidation of methanol on platinum nanoparficles electrodeposited onto porous carbon substrates. J App. Electrochem. 1997, 27: 1052-1060
    [33] S Mukerjee, J M Breen. Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: An in situ XAS investigation. J of Electroanal. Chem.. 1998, 448: 163-171[34] R A Larnpitt, L P L Carrette, M P Hogarth, et al.. In sire and model EXAFS studies of electrocatalysts for methanol oxidation. J Electroanal. Chem,. 1999, 460: 80-87
    [35] G Meli, J M Leger, C lamy. Direct electrooxidation of methanol on highly dispersed platinum-based catalyst electrodes: temperature effect. J App. Electrochem.. 1993, 23: 197-202
    [36] A hamnett, G L troughton. Eleetroeatalysis and the direct methanol fuel cell. Chemistry & Industry. 1992, 6: 480-483
    [37] A hamnett. Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today. 1997, 38: 445-457
    [38] M Watanabe, Y Genjima, K Turumi. Direct methanol oxidation on platinum electrodes with ruthenium atoms in Hot Phosphoric Acid. J electrochem. Soc. 1997, 144(2): 423-428
    [39] D Chu, C Walker, S Gilman. The effect of Ru on unsupported Pt-Ru alloys for methanol electro-oxidation at different temperatures. Materials for Electrochemical Energy Storage and Conversiton- Batteries, Capacitors and fuel Cells, 1995
    [40] A S Adco, A K Shukla, K M El-khatib, et al.. Effect of carbon-supported and unsupported Pt-Ru anodes on the performance of solid-polymer-electrolyte direct methanol fuel cells. J App. Eleetrochem.. 1999, 29: 671-676
    [41] L Liu, C Pu, R Viswanathan, et al.. Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells. Electrochimica Acta. 1998, 43(24): 3657-3663
    [42] A S Arico, P Creti, H Kim, et al.. Analysis of the electrochemical characteristics of a direct methanol fuel cell based on a Pt-Ru/C anode catalyst. J electrochem. Soc.. 1996, 143(12): 3950-3959
    [43] A S Arico, V Antonucci, N Giordano. Methanol oxidation on carbonsupported platinum-tin electrodes in sulfuric acid. J of Power Sources. 1994, 50: 295-309[44] A K Shukla, A S Arico, K M El-Khatib, et al.. An X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinised carbons. Applied Surface Science, 1999, 137: 20-29
    [45] K Wang, H A Gasteiger, N M Markovie, et al.. On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. Electroehimica Aeta. 1996, 41(16): 2587-2593
    [46] W Chrzanowski, A Wieckowski. Surface effects in platinum methanol oxidation electrocatslysts. Langmuir. 1998, 14: 1967-1970
    [47] R D Rolison, L P Hagans, E K Swider, et al.. Role of hydrous ruthenium oxide in Pt—Ru direct methanol fuel cell anode electrocatalysts: The importance of mixed electron/proton conductivity. Langmuir. 1999, 15: 774-779
    [48] H Nakajima. A methanol fuel cell having a molybdenum-modified platinum-SPE membrane electrode. J Chem. Tech. Biotechnol. 1991, 50: 555-561
    [49] S Mukerjee, S J Lee, E A Ticianelli, et al.. Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst. Electrochemical and solid-state Letters. 1999, 2(1): 12-15
    [50] B N Grgur, N M Markovic, P N Ross. Electrooxidation of H_2, CO, and H_2/CO mixtures on a well-characterized Pt_(70)Mo_(30) bulk alloy electrode. J Phys. Chem. B. 1998, 102(14): 2494-2501
    [51] B N Grgur, G Zhuang, N M Markovie, et al.. Electrooxidation of H_2/CO mixtures on a well-characterized Pt_(75)Mo_(25) alloy surface. J Phys. Chem. B. 1997, 101(20): 3910-3913
    [52] B N Grgur, N M Markovie, P N Ross. The electro-oxidation of H_2 and H_2/CO mixtures on carbon-supported PtxMoy alloy catalysts. J Electrochem. Soc.. 1999, 146(5): 1613-1619
    [53] B N Grgur, N M Markovic and P N Ross. Electrooxidation of H_2, CO and H_2/CO mixtures on a well-characterized Pt-Re bulk alloy electrode and comparison with other Pt binary alloys. Electrochimica Acta. 1998, 43(24): 3631-3635[54] K L Ley, R Liu, C Pu, et al.. Methanol oxidation on single-phase Pt-Ru-Os ternary alloys. J Electrochem. Soc.. 1997, 144(5): 1543-1548
    [55] R Liu, K Triantafillou, L Liu, et al.. A coulometric normalization procedure for comparing high surface area methanol anod catalysts by rotating disk electrode voltammctry. J Electrochcm. Soc.. 1997, 144(6): LI48-LI50
    [56] A S Arico, P Creti, N Giordano, et al.. Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt-Ru-SnW/C anode. J App. Elcctrochem., 1996, 26: 959-967
    [57] A S Arico, P Creti, Z Poltarzewski, et al.. Characterization of direct methanol fuel cell components by electron microscopy and X-ray microchemical analysis. Materials Chemistry and Physics. 1997, 47: 257-262
    [58] E Reddington, A Sapienza, B Ourau, et al.. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysis. Science. 1998, 280: 1735-1737
    [59] S C Roy, A W Harding, A E Russell, et al.. Spectroelectrochemical study of the role played by carbon functionally in fuel cell electrodes. J Electrochem. Soc.. 1997, 144: 2323-2328
    [60] Zidong Wei, Hetong Guo, Zhiyuan Tang. Methanol electro-oxidation on platinum and platinum-tin alloy catalysts dispersed on active carbon. J of Power Sources, 1996, 58: 239-242
    [61] 文纲要,张颖,杨正龙等.甲醇阳极电氧化催化剂的研究.电化学.1998,4(1),1998:73-78
    [62] Y Zhao, Z H Yuan, H B Zhang, et al.. Preparation of nanocrystalline composite oxide SrRuO_3 and its application in the fuel cell as negative electrode materials. Materials Chemistry and Physics. 1999, 57: 285-288
    [63] 黄文迎,曾蓉,庞志成等.质子交换膜燃料电池膜电极.化学通报,1999,9:38-43
    [64] F. Gloaguen, J M Leger, C Lamy, et al.. Platinum Electrodeposition on graphite: electrochemical study and STM imaging. Electrochimica Acta. 1999,??44: 1805-1816
    [65] S C Roy, P A Christensen, A Hamnett, et al.. Direct Methanol Fuel Cell Cathodes with Sulfur and Nitrogen-Based Carbon Functionality. J Electrochem. Soc.. 1996, 143(10): 3073-3079
    [66] R W Reeve, P A Christensen, A Hamnett, et al.. Methanol tolerant oxygen reduction catalysts based on transition metal sulfides. J Electrochem. Soc.. 1998, 145(10): 3463-3471
    [67] S Gupta, D Tryk, S K Zecevic, et al.. Methanol-tolerant electrocatalysts for oxygen reduction in a polymer electrolyte membrane fuel cell. J App. Electrochem.. 1998, 28: 673-682
    [68] 李长志,文纲要,张颖等.Pt-Cr/C-Nafion膜氧电极的电催化活性.电源技术.1998,22(5):201-203
    [69] 文纲要,李长志,孙公权.燃料电池氧阴极催化剂的研究.电池.1999,29(3):110-112
    [70] X Ren, M S Wilson, S Gottesfeld, High Performance Direct Methanol Polymer Electrolyte Fuel-Cell. J. Electrochem. Soc.. 1996, 143: L12-L15
    [71] -K Broka, P Ekdunge. Oxygen and hydrogen permeation properties and water uptake of nafion#117 membrane and recast film for PEM fuel cell. J App. Electrochem.. 1997, 27: 117-123
    [72] J Cruickshank, K Scott. The degree and effect of methanol crossover in PEMFC. J of Power Sources. 1998, 70(1): 40-47
    [73] J H White, A F Sammells. Perovskite electroeatalysis for direct methanol fuel cells. J Eleetrochem. Soc.. 1993, 140: 2167-2177
    [74] S Surampudi, S R Narayanan, E Vamos, et al.. Advances in direct oxidation methanol fuel cell. J of Power Sources, 1994, 47: 377-385
    [75] J T Wang, S Wasmus, R F Savinell. Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell. J Electrochem. Soc.. 1996, 143: 1233-1239
    [76] A Kuver, K P Kamloth. Comparative study of methanol crossover across??electropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell. Electrochimica Acta. 1998, 43(16-17): 2527-2535
    [77] A Kuver, W Vielstich. Investigation of methanol crossover and single electrode performance during PEMDMFC operation: A study using a solid polymer electrolyte membrane fuel cell system. J of Power Sources. 1998, 74: 211-218
    [78] M K Ravikumar, A K Shukla. Effect of Methanol crossover in a liquid-feed polymer-electrolyte direct methanol fuel cell. J Electrochem. Soc.. 1996, 143(8): 2601-2606
    [79] J Cruickshank, K Scott. The degree and effect of methanol crossover in the direct methanol fuel cell. J of Power Sources. 1998, 70: 40-47
    [80] S Suramupudi, S R Narayanan, E Vamos, et al.. Advances in direct oxidation methanol fuel cell. J of Power Sources. 1994, 47(3): 377-385
    [81] K Kordesch, G Siader. Fuel cells and their applications. WEINHEIM, VCH. 1996: 156-157
    [82] J A Kosek, S Narayanan, E Vamos, et al.. A Direct Methanol Oxidation Fuel Cell. 28th IECEC. 1993, 1: 1209-1214
    [83] M Waidhas, W Drenckhahn, W Preidel. Direct-fuelled fuel cells. J of Power Sources, 1996, 61: 91-97
    [84] K Hassmann, R Rippel. A new approach to fuel cell investment strategy. J of Power Sources, 1998, 71: 75-79
    [85] M Hogarth, P Christensen, A Hamnett, et al.. The design and construction of high-performance direct methanol fuel cells. 1 Liquid-feed systems. J of Power Sources. 1997, 69:113-124
    [86] A S Arico, P Creti, P L Antonucci, et al.. Optimization of operationg parameters of a direct methanol fuel cell and physico-chemical investigation of catalyst-electrolyte interface. Electrochimica Acta. 1998, 43(24): 3719-3729
    [87] D H Jung, C H Lee, C S Kim, et al.. Performance of a direct polymer??electrolyte fuel cell. J of Power Sources. 1998, 71: 169-173
    [88] K Scott, W M Taama, P Argyropoulos, et al.. The impact of mass transport and methanol crossover on the direct methanol fuel cell. J of Power Sources. 1999, 83: 204-216
    [89] K Scott, W M Taama, P Argyropoulos. Material aspects of the liquid feed direct methanol fuel cell. J App. Electrochem.. 1998, 28: 1389-1397
    [90] K Scott, W M Taama, P Argyropoulos. Engineering aspects of the direct methanol fuel cell system. J of Power Sources. 1999, 79: 43-59
    [91] P Argyropoulos, K Scott, W M Taama. Gas evolution and power performance in direct methanol fuel cells. J App. Electrochem.. 1999, 26: 661-669
    [92] T I Valdez, S R Narayanan, H Frank, et al.. Direct methanol fuel cell for portable application. The 12th annual battery conference on applications and advances. January 1, 1997, 239-244
    [93] A K Shukla, P A Chdstensen, A J Dickinson, et al.. Liquid-feed solid polymer electrolyte direct methanol fuel cell operation at near ambient conditions. J of Power Sources. 1998, 76: 54-59
    [94] A K Shulda, M K Ravikumar, M Neergat, et al.. A 5 W liquid-feed solidpolymer-electrolyte direct methanol fuel cell stack with stainless steel. J App. Electrochem.. 1999, 29: 129-132
    [95] M Baldauf, W Preidel. Status of the development of a direct methanol fuel cell. J of Power Sources. 1999, 84: 161-166
    [96] 美研制新型甲醇电池让手机通话100小时.电池世界.1998,1(1):45
    [97] 黄仲涛,林维明,庞先桑等.工业催化剂设计与开发.华南理工大学出版社.第一版.1991:25
    [98] M Watanabe, M Vchida, S Motoo. Preparation of highly dispersed Pt+Ru alloy clusters and the activity for the electrooxidation of methanol. J. Electroanal. Chem.. 1987, 229: 395-406
    [99] 段长强,孟庆芳,张泰等.现代化学试剂手册(第一册通用试剂).第一版.化学工业出版社,1998:88[100] 段长强,孟庆芳,张泰等.现代化学试剂手册(第一册 通用试剂).第一版.化学工业出版社,1998:236
    [101] N.N.Creenwood,A Earanshaw.元素化学(下册).李学同,孙玲,单辉等译.第一版,高等教育出版社,1996:139-192
    [102] 周伟肪主编.电化学测量.第一版.上海科学技术出版社.1985:255
    [103] 李红,江琳才,蒋雄.甲醛和甲酸在Pt/Sbad电极上的电催化氧化.电化学.1995,1(1):56-64
    [104] A V Tripkovic, K D Popovic. Oxidation of methanol on platinum single crystal stepped electrodes from[110] zone in acid solution, Eleetrochimica Acta, 1996, 4(15): 2385-2394
    [105] 张新朋.甲醇电氧化的催化剂制备与电化学性能研究.上海交通大学学士学位论文.1999:30
    [106] 尹元根主编.多相催化剂的研究方法.第一版.化学工业出版社.1988:134-169
    [107] 刘希尧等.工业催化剂分析测试表征.第一版.中国石化出版社.1990:105-175
    [108] 尹元根主编.多相催化剂的研究方法.第一版.化学工业出版社.1988:671-732
    [109] 刘希尧等.工业催化剂分析测试表征.第一版.中国石化出版社.1990:260-268
    [110] C D Wagner, W M Riggs, L E Davis, et al.. Handbook of X-ray photoelectron spectroscopy. G E Mullemberg, Perkin-Elmcr Corporation, Eden Prairie. 1978
    [111] 黄仲涛,林维明,庞先哚等.工业催化剂设计与开发.华南理工大学出版社.第一版.1991:193-197
    [112] James T Pdchardson.催化剂开发原理.黄仲涛,王乐夫,庞先 等.华南理工大学出版社.第一版.1993:16-17
    [113] 潘履让.固体催化剂的设计与制备.南开大学出版社.第一版.1993:35-36[114] 宫原孝四郎,田中虔一.什么是催化剂.丁一.科学出版社.第一版.1986:105-109
    [115] 尹元根主编.多相催化剂的研究方法.第一版.化学工业出版社.1988:223-236
    [116] 刘希尧等.工业催化剂分析测试表征.第一版.中国石化出版社.1990:228-233
    [117] Nafion Perfluorinated Polymer Products. Product Information. DuPont Fluoroproducts Nafion Global Customer Service. 1999
    [118] 马紫峰.固体聚合物燃料电池中的高分子材料问题.’99高分子学术论文报告会论文集(中册).’99全球高分子学术会议,上海,1999.上海交通大学出版社,1999.
    [119] 区英鸿主编.塑料手册.第一版.兵器工业出版社.1991:352
    [120] 徐洪峰,衣宝廉,韩明.电极结构对质子交换膜燃料电池性能的影响.电源技术.1998,22(4):163-166
    [121] 葛善海,衣宝廉,徐洪峰等.质子交换膜燃料电池的研究.电化学.1998,4(3):299-306
    [122] K Wang, H A Gasteiger, N M Markovic, et al.. Carbon and sulfur isotope anomalies across the frasnian-famennian extinction boundry. Electrochirnica Acta. 1996, 41(16): 2597-2593
    [123] K B Parter. Polymer electrolyte fuel cells: a review of recent developments. J of Power Sources, 1994, 51: 129-144
    [124] E J Tayler, E B Aderson, N R Vilambi, et al.. Preparation of highplatinum-utilization gas diffusion electrodes for proton-Exchange-membrane fuel cells. J. Electrochem. Soc.. 1992, 139(5): L45-L46
    [125] G S Kumar, M Raja. High performance electrodes with very low platinum loading for polymer electrolyte fuel cells. S Parthasarathy. Electrochimica Acta., 1995, 40(3): 285-290
    [126] M W Verburugge. Selective electrodeposition of catalyst within membrane-electrode struetures. J Electrochem. Soc.. 1994, 141(1): 46-53[127] P Argyropoulos, K Scott, W M Taama. Carbon dioxide evolution patterns in direct methanol fuel cells. Electrochimica Acta. 1999, 44: 3575-3854
    [128] 衣宝廉,韩明,张恩浚等.千瓦级质子交换膜燃料电池.电源技术.1999,23(2):120-125
    [129] X Ren, W Henderson, S Gottesfeld. Electro-osmotic drag of water in ionomeric membranes. J Electrochem. Soc.. 1997, 144(9): L267-L270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700