聚磷酸铵基质子电解质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池是举世公认的绿色能源技术之一。目前,中温固态(150~400℃)燃料电池是燃料电池技术研发的最活跃领域之一。中温固态燃料电池兼具高温固态氧化物燃料电池和低温质子变换膜燃料电池的优点,同时摈弃了他们的某些缺点。工作温度在150~400℃间的燃料电池一方面能大幅提高贵金属催化剂的一氧化碳耐受能力(从80℃的10-20ppm到200℃的3000ppm),另一方面使采用金属、合成树脂等作为电池(堆)的连接和密封材料成为可能,从而降低电池的成本,延长其使用寿命。因此,中温固态燃料电池越来越受到人们的重视。而发展中温燃料电池的关键则是探索能够在150~400℃温度范围内工作的电解质材料。
     本论文工作紧紧围绕这一主题展开,研究聚磷酸铵基质子电解质的电化学性能,探索该电解质在中温燃料电池中应用的可行性,并研究这类电解质的质子传导机理。
     本论文第一章介绍了燃料电池的工作原理和发展中温固态燃料电池的重要性,综述了中温质子导体(电解质)和电极材料的研究现状。
     第二章合成了6NH_4PO_3-(NH_4)_2SiP_4O_(13)复合电解质,研究了该电解质的电导率,并首次测定了其质子迁移数,还探索了其作为燃料电池电解质的可能性。首先利用交流阻抗谱测试其在干燥、加湿气氛(3%H_2O)中的电导率。在加湿的气氛中,6NH_4PO_3-(NH_4)_2SiP_4O_(13)的电导率比在干燥的气氛中要高得多,在氢气中,这种差异几乎达到了一个数量级。如250℃时,6NH_4PO_3-(NH_4)_2SiP_4O_(13)在加湿的氢气中的最大电导率达到了0.080S/cm,而在干燥的氢气中仅为0.018S/cm。其次,测定了该电解质的质子迁移数。以6NH_4PO_3-(NH_4)_2SiP_4O_(13)为电解质、Pt/C为电极催化剂的氢浓差电池的开路电压与理论计算的纯质子导体的电动势几乎相等,这表明6NH_4PO_3-(NH_4)_2SiP_4O_(13)复合电解质是纯质子导体。其质子迁移数在150℃、200℃、250℃时分别为1.0、0.99、0.99。最后以6NH_4PO_3-(NH_4)_2SiP_4O_(13)为电解质、Pt/C为电极催化剂构造了演示燃料电池。该电池的开路电压在150℃时为0.82V。250℃时的最大电流密度为35mA/cm~2,最大功率密度为6.6mW/cm~2。通过提高电解质的致密度和阴极的催化活性,可能获得比较理想的电池性能。
     第三章合成了新型的聚磷酸铵复合电解质xNH_4PO_3-(NH_4)_2Mn(PO_3)_4,并研究其电化学性能和稳定性。热重分析结果显示,(NH_4)_2Mn(PO_3)_4在氮气中、300℃以下具有很好的稳定性,自身不发生分解。在复合电解质中,(NH_4)_2Mn(PO_3)_4同样具有很好的化学稳定性。将复合电解质在250℃长时间(24小时)热处理后,XRD谱图显示(NH_4)_2Mn(PO_3)_4未与聚磷酸铵或聚偏磷酸(HPO_3,NH_4PO_3的热分解产物)发生反应。这些结果表明(NH_4)_2Mn(PO_3)_4具备了作为聚磷酸铵基复合电解质中支撑体的基本条件:良好的热稳定性和化学稳定性。电导率测试结果显示,不论是在干燥的还是在含水的气氛中,复合电解质xNH_4PO_3-(NH_4)_2Mn(PO_3)_4的电导率都随着NH_4PO_3含量的增加而升高。如在250℃,在干燥氮气气氛中,电导率从x=2时的2.7×10~(-4) S/cm上升到x=6时的1×10~(-3)S/cm;在含水的氮气气氛中,电导率从x=2时的4×10~(-3)S/cm上升到x=6时的7×10~(-3)S/cm。而无论在干燥的还是在加湿的氮气中,(NH_4)_2Mn(PO_3)_4的电导率均比复合电解质低1-2个数量级。因此,NH_4PO_3是复合电解质的质子电导相,(NH_4)_2Mn(PO_3)_4仅仅作为支撑体存在。相对于氮气和氧气,不管是在干燥的还是的加湿的条件下,xNH_4PO_3-(NH_4)_2Mn(PO_3)_4在氢气中都有着更高的电导率,据此推测,该复合电解质是质子导体。氢浓差电池研究表明,2NH_4PO_3-(NH_4)_2Mn(PO_3)_4在250℃的质子迁移数为0.95。从而证明了xNH_4PO_3-(NH_4)_2Mn(PO_3)_4是质子导体的推测。以2NH_4PO_3-(NH_4)_2Mn(PO_3)_4为电解质的氢氧燃料电池在250℃的最大功率为16.8 mW/cm~2。保持燃料电池的输出电流密度在20mA/cm~2,10小时内未见燃料电池的输出功率有任何衰减。利用热重分析研究了NH_4PO_3-(NH_4)_2Mn(PO_3)_4复合电解质中各组分与Pt/C催化剂的化学匹配性。Pt/C催化剂加速了NH_4PO_3的分解速度,但没有使NH_4PO_3的分解产物HPO_3发生进一步的反应,也就是说复合电解质中决定电导率的成分对Pt/C催化剂来说在化学上是稳定的。对于原本在250℃下十分稳定的(NH_4)_2Mn(PO_3)_4支撑体,Pt/C的催化作用使它的分解温度降低到了250℃以下。虽然当Pt/C催化剂存在时,(NH_4)_2Mn(PO_3)_4在250℃下发生分解,在使用非Pt/C催化剂时,NH_4PO_3-(NH_4)_2Mn(PO_3)_4复合导体仍然是具有一定优越性能的中温电解质。
     第四章研究了聚磷酸铵基复合电解质2NH_4PO_3-(NH_4)_2Mn(PO_3)_4和2NH_4PO_3-(NH_4)_2SiP_4O_(13)的导电机理,并首次得到了这类电解质的电导率与温度、水蒸气分压的公式。聚磷酸铵基复合电解质2NH_4PO_3-(NH_4)_2Mn(PO_3)_4和2NH_4PO_3-(NH_4)_2SiP_4O_(13)的电导率均随着温度的增加和实验气氛中水分压的增大而升高。并且在任意实验气氛中,复合电解质的电导率跟温度的关系符合Arrhenius方程;在固定的温度下,复合电解质的电导率与实验气氛中的水分压成对数关系。我们认为水分子通过化学吸附的方式吸附到聚磷酸铵基复合电解质中,并且通过“外部氢键”的方式参与了复合电解质中的质子传导,改变了复合电解质的电导活化能。实验结果表明复合电解质2NH_4PO_3-(NH_4)_2Mn(PO_3)_4和2NH_4PO_3-(NH_4)_2SiP_4O_(13)的电导活化能均随着水分压的增大而减小。由于复合电解质中水分子的吸附量取决于实验气氛中的水分压(两者之间的关系遵循Temkin吸附等温式),因此“外部氢键”在质子传导过程中所占的比例也就跟实验气氛中的水分压有关。进而,活化能也依赖于实验气氛中的水分压。实验结果和理论分析均表明聚磷酸铵基复合电解质的电导活化能与水分压的自然对数成正比。吸附在电解质中的水分子不仅通过“外部氢键”参与质子传导,降低了电解质的电导活化能,水分子还通过电离,向电解质提供了额外的质子。由于质子导体Arrhenius方程中的指前因子与质子导体中的质子浓度成正比,所以这些额外的质子使指前因子变大。即在含水气的气氛中,Arrhenius方程中的指前因子要比在相同条件下的干燥气氛中的指前因子大。当然,由于水分子在复合电解质中的吸附量是水分压的函数,因此由水分子的电离产生的额外质子的浓度也是水分压的函数。理论推导也表明聚磷酸铵基的复合电解质的Arrhenius方程中的指前因子是水分压的函数。本章的理论分析很好的解释了聚磷酸铵复合电解质在含水气氛中比在干燥气氛中具有更高电导率的原因,并给出了完整的、含有水分压的复合电解质的Arrhenius方程(详见第四章):
     ln(σT)=ln(k_4[H~+]_0)+k_5k_2/[H~+]_0~2-Ea_0/RT+(k_5k_3/[H~+]_0~2+m/RT)ln(P_(H_2O)/P~φ)式中,σ是聚磷酸铵基复合电解质的电导率,T为温度(K),k_2,k_3,k_4,k_5和m是常数,[H~+]_0为电解质中来自HPO_3的质子浓度(mol/m~3),Ea_0是当水分压等于大气压(P~φ,101kPa)时的电导活化能,R为气体常数(8.314 J/mol-K)。
The widespread interest in fuel cells stems from their high efficient in energy conversion. Although various types of high temperature (above 400℃) and low temperature (below 150℃) fuel cells have been developed, there still exist lots of material issues to be solved for commercialization. Intermediate temperature solid state fuel cells, which are operated in the range of 150-400℃, are promising to solve these problems and offer many advantages such as suppression of CO poisoning of Pt catalyst, higher efficiency of energy conversion than that of polymer electrolyte membrane fuel cells, utilization of metals and plastics, and lower materials degradation than that of solid oxide fuel cells. Therefore, it can not overstate the importance on developing intermediate temperature fuel cells. One of the key points to develop intermediate temperature fuel cells is to develop electrolytes which can be used in the temperature range of 150-400℃.
     This thesis aims to study electrochemical characterizations and proton conduction mechanism of ammonium polyphosphate composite, which is one of the proton conductors that exhibit high conductivity and can be used as potential electrolytes in intermediate temperature fuel cells.
     In chapter 1, the theory of fuel cell and the importance of developing intermediate temperature fuel cells were introduced at first. The latest progress in the study of intermediate temperature electrolyte materials and electrode materials has been reviewed. The development in electrolyte materials for intermediate temperature fuel cells was especially highlighted.
     In chapter 2, 6NH_4PO_3-(NH_4)_2SiP_4O_(13) was synthesized and its conductivity behavior was characterized in dry and wet atmospheres. It was the first time that the proton transference numbers of NH_4PO_3-based composite were determined. And we also investigated the possibility of using 6NH_4PO_3-(NH_4)_2SiP_4O_(13) in fuel cells as electrolyte. It was found that the conductivity of 6NH_4PO_3-(NH_4)_2SiP_4O_(13) was always higher in wet atmosphere than that in dry atmosphere. For example, its conductivity in wet hydrogen is about 0.08S/cm and only 0.018S/cm in dry hydrogen. A hydrogen concentration cell was fabricated using 6NH_4PO_3-(NH_4)_2SiP_4O_(13) as electrolyte and Pt/C as electrode catalyst material. The emfs of the concentration cell almost equal to theoretical values calculated from Nernst equation. Therefore 6NH_4PO_3-(NH_4)_2SiP_4O_(13) was confirmed to be a pure proton conductor. The proton transference numbers were determined to be 1.0 at 150℃, 0.99 at 200℃, and 0.99 at 250℃. A fuel cell with 6NH_4PO_3-(NH_4)_2SiP_4O_(13) as an electrolyte showed power density of 6.6mW/cm~2 at 250℃and open circuit voltage of 0.82V at 150℃. Increases in electrolyte density and cathode activity were supposed to enhance the cell performance drastically.
     In chapter 3, a novel NH_4PO_3-based composite, xNH_4PO_3-(NH_4)_2MnP_4O_(13)(x=2, 4, 6), was synthesized using solid-state reaction. Its electrochemical behavior and thermal stability were studied. Thermal gravimetric analysis and X-ray diffraction showed that (NH_4)_2MnP_4O_(13) was very stable in dry nitrogen under 300℃. After xNH_4PO_3-(NH_4)_2MnP_4O_(13) were treated at 250℃for 24 hours, X-ray diffraction shows that (NH_4)_2MnP_4O_(13) was chemically compatible with NH_4PO_3 or HPO_3, which was thermal decomposition residue of NH_4PO_3 and responsible for high conductivity of NH_4PO_3-based composites. These results showed that (NH_4)_2MnP_4O_(13) was stable enough to serve as a supporting matrix for NH_4PO_3. The proton conductivity of the composite electrolytes was improved by increasing the molar ratio of NH_4PO_3 under both dry and wet atmospheres. Provided at 250℃, the conductivity of xNH_4PO_3-(NH_4)_2MnP_4O_(13) was increased from 0.27mS/cm to 1mS/cm in dry nitrogen and from 4mS/cm to 7mS/cm in wet nitrogen (3%H_2O) when x was increased from 2 to 6. And, the conductivity of (NH_4)_2MnP_4O_(13) is one or two orders of magnitude lower than that of xNH_aPO_3-(NH_4)_2MnP_4O_(13) in both dry and wet nitroten. So, It was believed that NH_4PO_3 or HPO_3 was responsible for high conductivity of xNH_4PO_3-(NH_4)_2MnP_4O_(13) and (NH_4)_2MnP_4O_(13) only served as support material. Comparing to nitrogen and oxygen, 2NH_4PO_3-(NH_4)_2MnP_4O_(13) showed a higher conductivity in hydrogen. Hence, it was supposed to be a proton conductor. The proton transference number of 2NH_4PO_3-(NH_4)_2MnP_4O_(13) was determined to be 0.95 at 250℃using a hydrogen concentration cell. Fuel cells utilizing 2APP-(NH_4)_2MnP_4O_(13) as electrolyte were constructed and tested. Maximum power density of 16.8mW/cm~2 was observed at 250℃when dry hydrogen and dry oxygen were used as fuel and oxidant, respectively. And no decrease was observed when the output current density was fixed at 20mA/cm~2 for 10 hours. These results suggest that (NH_4)_2MnP_4O_(13) is an excellent supporting matrix and NH_4PO_3-(NH_4)_2MnP_4O_(13) composites are potential candidate electrolytes for intermediate temperature fuel cells. The chemical compatibility between NH_4PO_3-(NH_4)_2MnP_4O_(13) and Pt/C catalyst was tested using thermal gravimetric analysis. Though, catalytic degradation of (NH_4)_2MnP_4O_(13) and NH_4PO_3 happened with Pt/C catalyst presence, HPO_3, which is responsible for high conductivity of the composite, was still chemically compatible with Pt/C catalyst. It indicates that NH_4PO_3-based composites are still potential candidate electrolytes for intermediate temperature fuel cells if non-Pt catalysts for NH_4PO_3-based electrolyte were developed.
     In chapter 4, NH_4PO_3-based proton conductors, 2NH_4PO_3-(NH_4)_2MnP_4O_(13) and 2NH_4PO_3-(NH_4)_2SiP_4O_(13), were synthesized and their proton conduction mechanism was investigated. Their conductivities not only increase with temperature, but also increase with water vapor pressure. In any atmosphere, the relation of conductivity of NH_4PO_3-based composites and temperature obeys Arrhenius equation. And at a given temperature, conductivity of NH_4PO_3-based composites is proportional to natual logarithm of partial water pressure. Water molecules were believed to be adsorbed into NH_4PO_3-based composite through chemisorptions and participate in proton conduction by "external H-bond". Then, the conductivity activation energy, Ea, was decreased. Because amount of adsorbed water molecules depended on water partial pressure and amount of "external H-bond" depended on amount of adsorbed water molecules, the amount of"external H-bond" was a function of partial water pressure. As a consequence, the conductivity activation energy was a function of partial water pressure. Both experimental results and theoretical analysis showed that Ea decreased linearly with natural logarithm of partial water pressure. The adsorbed water also contributed to the conductivity by providing extra protons through ionization. Because in proton conductors, the pre-exponential factor of Arrhenius equation was proportional to proton concentration, the pre-exponential factor for NH_4PO_3-based composites was higher in wet atmosphere than that in dry atmosphere and was also a function of partial water pressure. Hence, the conductivity of NH_4PO_3-based cgmposites was increased in wet atmospheres. Our theoretical analysis agreed well with experimental results and gave reasonable explanations for higher conductivity of NH_4PO_3-based composites in wet atmosphere. Finally, a modified Arrhenius equation, which contains water pressure, was obtained (Please refer chapter 4 for details):
     ln(σT)=ln(k_4[H~+]_0)+ k_5k_2/[H~]_0~2-Ea_0/RT+(k_5k_3/[H~+]_0~2+m/RT)ln(P_(H_2O)/P~φ)where,σis conductivitu, T is temperature with unit K, k_2, k_3, k_4, k_5 and m are constants, [H~+]_0 is the proton concentration coming from HPO_3 in NH_4PO_3-based composites, Ea_0 is the activation energy when P_(H_2O) equals to p~φ, the atmospheric pressure (101 kPa), R is gas constant, 8.314 J/mol-K.
引文
[1] N. Q. Mirth, Journal of the American Ceramic Society 76 (1993) 563-588
    [2] 王艳华,王欧,林彬,辽宁化工,27(1)(1998)9-12
    [3] K. D. Kreuer, Annual Review of Materials Research, 33 (2003) 333-359
    [4] B. Zhu, J. Power Sources, 114 (2003)1
    [5] B. Zhu, X. Liu, T. Schober, Electrochemistry Communications, 6 (2004) 378
    [6] G. C. Mather, F. M. Figueiredo, J. R. Jurado, J. R. Frade, Electrochimica Acta, 49 (2004) 2601-2612
    [7] H. B. Yu, J. H. Kim, H. I. Lee, M. A. Scibioh, J. Lee, J. Han, S. P. Yoon, H. Y. Ha, Journal of Power Sources, 140 (2005) 59-65
    [8] S. M. Haile, C. R. I. Chisholm, K. Sasaki, D. A. Boysen, T. Uda, Faraday Discussions, 134 (2007) 17-39
    [9] Y. M. Kim, S.H. Choi, H. C. Lee, M.Z. Hong, K. Kim, H.I. Lee, Electrochimica Acta, 49 (2004) 4787-4796
    [10] S. M. Haile, Acta Materialia, 51 (2003) 5981
    [11] http://fuelcellsworks.com/Typesoffuelcells.html#afc
    [12] J. Guan, S.E. Dorris, U. Balachandran, M. Liu, Solid State Ionics, 100 (1997) 45-52
    [13] H. F. Oetjen, V. M. Schmodt, U. Stimming, and F. Trila, Jounal of Electrochemical Society, 143 (1996)3838
    [14] A. S. Patil, T. G. Dubois, N. Sifer, E. Bostic, K. Gardner, M. Quah, C. Bolton, Journal of Power Sources, 136, 220-225(2004)
    [15] DoD 4140.25-M, DOD Directive 4140.25 (1993)
    [16] http://www.touchbriefing.com/pdf/11/auto031_r_kumar.pdf
    [17] http://www.hydrogen.energy.gov/pdfs/review07/fc_28_james.pdf
    [18] http://www.nrel.gov/docs/fy06osti/39104.pdf
    [19] M. Rikukawa, K. Sanui, Progress in Polymer Science, 25 (2000) 1463-1502.
    [20] T. Kobayashi, M. Rikukawa, K. Sanui and N. Ogata, Solid State Ionics, 106 (1998) 219-225.
    [21] J. -M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa and N. Ogata, Solid State Ionics, 147 (2002) 189-194
    [22] X. Glipa, M. El Haddad, D. J. Jones, J. Roziere, Solid State Ionics, 97 (1997) 323-331
    [23] M. Kawahara, M. Rikukawa, K. Sanui, N. Ogata, Solid State Ionics, 136-137 (2000)1193-1196
    [24] F. Lufrano, I. Gatto, P. Staiti, V. Antonucci, E. Passalacqua, Solid State Ionics, 145 (2001)47-51
    [25] F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, J. E. McGrath, Journal of Membrane Science 197 (2002) 231-242
    
    [26] V. Tricoli, N. Carretta, Electrochemistry Communications, 4 (2002) 272-276
    [27] Q. Guo, P.N. Pintauro, H. Tang, S. O'Connor, Journal of Membrane Science, 154 (1999)175-181
    [28] C. A. Edmondson, J.J. Fontanella, S.H. Chung,. S.G. Greenbaum, G.E. Wnek. Electrochimica Acta, 46 (2001) 1623-1628
    
    [29] J. Kim, B. Kim, B. Jung, Journal of Membrane Science, 207 (2002) 129-137
    [30] S. Kaur, G. Florio, D. Michalak, Polymer, 43 (2003) 5163-5167
    [31] A. Mokrini, J.L. Acosta, Polymer, 42 (2001) 9-15
    [32] H. Bashir, A. Linares, J.L.Acosta, Solid State Ionics, 139 (2001) 189-196
    [33] C. Hasiotis, V. Deimede and C. Kontoyannis, Electrochimica Acta, 46 (2001) 2401-2406
    
    [34] J. Qiao, N. Yoshimoto, M. Morita, Journal of Power Sources, 105 (2002) 45-51
    [35] D. H. Jung, S. Y Cho, D. H. Peck, D. R. Shin, J. S. Kim, Journal of Power Sources, 106(2002)173-177
    [36] I. Honma, S. Hirakawa, K. Yamada, J. M. Bae, Solid State Ionics, 188 (1999) 29-36
    
    [37] I. Honma, Y. Takeda and J. M. Bae, Solid State Ionics, 120 (1999) 255-264
    [38] I. Honma, S. Nomura and H. Nakajima, Journal of Membrane Science, 185 (2001)83-95
    
    [39] H. Nakajima and I. Honma, Solid State Ionics, 148 (2002) 607-610
    [40] I. Honma, H. Nakajima, S. Nomura, Solid State Ionics, 154-155 (2002) 707-712
    [41] I. Honma, O. Nishikawa, T. Sugimoto, S. Nomura, H. Nakajima, Fuel Cells, 2 (2002) 52-58
    [42] P. Costamagna, C. Yan, A.B. Bocarsly, S. Srinivasan, Electrochimica Acta, 47 (2002) 1023-1033
    [43] P. Dimitrova, K.A. Friedrich, U. Stimming, B. Vogt. Solid State Ionics, 150 (2002) 115-122
    [44] P. Staiti, A.S. Arico, V. Baglio, F. Lufrano, E. Passalacqua, V. Antonucci, Solid State Ionics, 145 (2001) 101-107
    [45] Nunes S.P, Ruffmann B, Rikowski E, Vetter S, Richau K. Journal of Membrane Science, 203 (2002) 215-225
    [46] S.D. Mikhailenko, S.M.J. Zaidi, S. Kaliaguine. Catalysis Today, 67 (2001) 225-236
    [47] Y.-S. Kim, F. Wang, M. Hickner, T.A. Zawodzinski, J.E. McGrath. Journal of Membrane Science, 212 (2003) 263-282
    [48] H.-M. Xiong, K.-K. Zhao, X. Zhao, Y.-W. Wang, J.-S. Chen. Solid State Ionics, 159 (2003) 89-95
    [49] F.J. Anaissi, G.J.-F. Dernets, R.A. Timm, H.E. Toma, Materials Science and Engineering, 347 (2003) 374-381
    [50] Y. Geng, J. Li, X. Jing, F. Wang, Synthetic Metals, 84 (1997) 81-82
    [51] J. Kerresa, W. Zhang, A. Ullrich, C.-M. Tang, M. Hein, V. Gogel, T. Frey, L. Jorissen, Desalination, 147 (2002) 173-178
    [52] C. Manea, M. Mulder, Journal of Membrane Science, 206 (2002) 443-453
    [53] C. Manea, M. Mulder, Desalination, 147 (2002) 179-182
    [54] L. Jorissen, V. Gogel, J. Kerres, J. Garche, Journal of Power Sources, 105 (2002) 267-273
    [55] N.-P. Chen, L. Hong, Solid State Ionics, 146 (2002) 377-385
    [56] Z.-G. Shao, X. Wang, I.-M. Hsing, Journal of Membrane Science, 210 (2002) 147-153
    [57] C.W. Walker, Journal of Power Sources, 110 (2002) 144-151
    [58] L.E. Karlsson, B. Wesslen, P. Jannasch, Electrochimica Acta, 47 (2002) 3269-3275
    [59] J.A. Horsfall, K.V. Lovell, Polymers for Advanced Technologies, 13 (2002) 381-390
    [60] T. Hatanaka, N. Hasegawa, A. Kamiya, M. Kawasumi, Y. Morimoto, K. Kawahara, Fuel, 81 (2002) 2173-2176
    [61] P. Vie, M. Paronen, M. Strφmgard, E. Rauhala, F. Sundholm, Journal of Membrane Science, 204 (2002) 295-301
    [62] B. Bae, B.-H. Chun, H.-Y. Ha, I.-H. Oh, D. Kim, Journal of Membrane Science, 202 (2002) 245-252
    [63] J. Won, S.-W. Choi, K.-S. Yong, H.-Y. Ha, I.-H. Oh, H.-S. Kim, K.-T. Kim, Journal of Membrane Science, 214 (2003) 245-257
    [64] W.-C. Choi, J.-D. Kim, S.-I. Woo, Journal of Power Sources, 96 (2001) 411-414
    [65] S.R. Yoon, G.H. Hwang, W.I. Cho, I.-H. Oh, S.-A. Hong, H.Y. Ha, Journal of Power Sources, 106 (2002) 215-223
    [66] G.A. Tompsett and N.M. Sammes, J. Am. Ceram. Soc., 80(12) (1997) 3181-3186
    [67] B.C.H. Steele, Solid State Ionics, 129 (2000) 95-110
    [68] B. Dalslet, P. Blennow, P. V. Hendriksen, N. Bonanos, D. Lybye, M. Mogensen, Journal of Solid State Electrochemistry 10 (2006) 547-561.
    [69] N. Q. Minh, T. Takahashi, Elsevier Science B. V., ISBN:0-444-895668-X, U.S.A. 11(1995)92
    [70] N. M. Sammes, G. A. Tompsett, C. Zhihong, Solid State Ionics, 121(1999)121-125
    [71] Y. Mishima, H. Mitsuyasu, M. Ohtaki, et al. J. Electrochem. Soc., 145(3)(1998) 1004-1007.
    [72] R.Doshi, V. L. Richards, J. D. Carter, X. P. Wang, M. Krumpelt, J. Electrochem. Soc. 146 (1999) 1273
    [73] T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, M. Sano, Science 288 (2000) 2031-2033
    [74] B. Zhu, X. R. Liu, P. Zhou, Z. G. Zhu, W. Zhu, S. F. Zhou, Journal of Materials Science Letters 20 (2001) 591-594.
    [75] B. Zhu, Journal of Power Sources 114 (2003) 1-9.
    [76] B. Zhu, X. G. Liu, P. Zhou, X. T. Yang, Z. G. Zhu, W. Zhu, Electrochemistry Communications 3 (2001) 566-571.
    [77] B. Zhu, X. T. Yang, J. Xu, Z. G. Zhu, S. J. Ji, M. T. Sun, J. C. Sun, Journal of Power Sources 118 (2003) 47-53.
    [78] W. Bronowska, A. Pietraszko, Solid State Communications, 76(3) (1990) 293-298
    [79] J. Otomo, N. Minagawa, C. Wen, K. Eguchi, H. Takahashi, Solid State Ionics 156 (2003) 357-369
    [80] S. M. Haile, D. A. Boysen, C.R.I. Chisholm, R.B. Merle, Nature, 410 (2001) 910-913
    
    [81] C. R. I. Chisholm, and S. M. Haile, Mater. Res. Bull. 35 (2000) 999
    [82] Z. Jirak, M. Dlouha, S. Vratislav, A. M. Balagurov, A. I. Beskrovnyi, V. I. Gordelii, I. D. Dart, L. A. Shuvalov, Phys. Status Solidi A 100 (1987) K117
    [83] P. Colomban, J. C. Badot, J. Phys.: Condens. Matter 4 (1992) 5625
    [84] B. V. Merinov, A. I. Baranov, L. A. Shuvalov, B. A. Maksimov, 32 (1987) 86
    [85] A. V. Belushkin, W. I. F. David, R. M. Ibberson, and L. A. Shuvalov, Acta Crystallogr., Sect. B: Struct. Sci. B47 (1991) 161
    [86] V.G. Ponomareva, N.F. Uvarov, G.V. Lavrova, E.F. Hairetdinov, Solid State Ionics 90 (1996) 161-166
    
    [87] V.G. Ponomareva, GV. Lavrova, Solid State Ionics 145 (2001) 197-204
    [88] L.N. Rashkovich, K. B.Meteva, Ya. E. Shevchik, V. G. Hoffman, A. V. Mishchenko, Sov. Phys. Crystallogr., 22(5) (1977) 613-615.
    [89] L. N. Rashkovich, K. B. Meteva, Sov. Phys. Crystallogr, 23(4) (1978) 447-449.
    [90] E. Rapoport, J. B. Clark, P. W. Richter, J. Solid State Chem., 24(3-4) (1978) 423-433.
    
    [91] B. Metcalfe and J. B. Clark, Thermochim. Acta, 24(1) (1978) 149-153.
    [92] M. Wada, A. Sawada, Y. Ishibashi, J. Phys. Soc. Jpn., 47(5) (1979) 1571-1574.
    [93] L. C. Gupta, U. R. K. Rao, K. S. Venkateswarlu, B. R. Wani, Thermochim. Acta, 42(1) (1980) 85-90.
    [94] B. M. Nirsha, E. N. Gudinitsa, A. A. Fakeev, V. A. Efremov, B. V. Zhadanov and V. A. Olikova, Russ. J. Inorg. Chem., 27(6) (1982) 770-772.
    [95] A. I. Baranov, V.P. Khiznichenko, V. A. Sandier, L. A. Shuvalov, Ferroelectrics, 81 (1988)183-186
    
    [96] F. Romain, A. Novak, J. Mol. Struct, 263 (1991) 69-74
    [97] R.A. Vargas, E. Torijano, Solid State Ionics, 59 (3-4) (1993) 321-324
    [98] K. S. Lee, J. Phys. Chem. Solids, 57(3) (1996) 333-342.
    [99] K.S. Lee, Ferroelectrics, 268 (2002) 789-794
    [100] E. Ortiz, R. A. Vargas, B. E. Mellander, J. Chem. Phys., 110(10) (1999) 4847-4853.
    
    [101] E. Ortiz, R. A. Vargas, B. E. Mellander, Solid State Ionics, 125 (1999) 177-185.
    [102] E. Ortiz, R. A. Vargas, B. E. Mellander, A. Lunden, Pol. J. Chem. 71(12) (1997) 1797-1802
    [103] J. H. Park, C. S. Kim, B. C. Choi, B. K. Moon, H. J. Seo, J. Phys. Soc. Jpn., 72(6) (2003) 1592-1593.
    
    [104] J. H. Park, Phys. Rev. B, 69(5) (2004) 054104
    [105] Y. Luspin, Y. Vaills, G Hauret, J. Phys. I, 7(6) (1997) 785-796
    [106] D.A. Boysen, S.M. Haile, H.J. Wen, K. Eguchi, H. Takahashi, Solid State Ionics, 15(3) (2003) 727-736
    [107] J. Otomo, N. Minagawa, C.J. Wen, K. Eguchi, H. Takahashi, Solid State Ionics, 156(3) (2003) 357-369
    [108] J. Otomo, T. Tamaki, S. Nishida, S.Q. Wang, M. Ogura, T. Kobayashi, C.J. Wen, H. Nagamoto, H. Takahashi, J. Appl. Electrochem., 35(9) (2005) 865-870
    [109] D.A. Boysen, T. Uda, C.R.I. Chisholm, S.M. Haile, Science, 303(5654) 68-70
    [110] T. Uda, S. M. Haile, Electrochemical and Solid-State Letters, 8 (5) (2005) A245-A246
    [111] T. Uda, D. A. Boysen, C. R. I. Chisholm, S. M. Haile, Electrochemcal and Solid-State Letters, 2006, 9(6), A261 - A264.
    [112] V. Korthuis, N. Khosrovani, A. W. Sleight, N. Roberts, R. Dupree,W. W. Warren, Chem. Mater. 7 (1995) 412-417
    
    [113] A. W. Sleight, Curr. Opin. Solid State Mater. Sci. 3 (1998) 128-131
    [114] J. S. O. Evans, J. Chem. Soc. Dalton Trans. (1999) 3317-3326
    [115] S. T. Norberg, G Svensson, J. Albertsson, Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 57 (2001) 225-227
    [116] E. R. Losilla, A. Cabeza, S. Bruque, M. A. G. Aranda, J. Sanz, J. E. Iglesias, J. A. Alonso, J. Solid State Chem. 156 (2001) 213-219
    [117] J. Sanz, J. E. Iglesias, J. Soria, E. R. Losilla, M. A. G. Aranda, S. Bruque, Chem. Mater. 9(1997)996-1003
    
    [118] X. Helluy, C. Marichal, A. Sebald, J. Phys. Chem. B 104 (2000) 2836-2845
    [119] M. Nagao, T. Kamiya, P. Heo, A. Tomita, T. Hibino, M. Sano, Journal of The Electrochemical Society, 153 (8) (2006) A 1604-A1609
    [120] M. Nagao, A. Takeuchi, P. Heo, T. Hibino, M. Sano, A. Tomita, Electrochemical and Solid-State Letters, 9(3) (2006)A105-A109
    [121] P. Heo, H. Shibata, M. Nagao, T. Hibino, M. Sano, Journal of The Electrochemical Society, 153(5) (2006)A897-A901
    [122] M. Nagao, T. Yoshii, T. Hibino, M. Sano, A. Tomita, Electrochemical and Solid-State Letters, 9(2) (2006) J1-J4
    [123] M. Nagao, Y. Namekata, T. Hibino, M. Sano, A. Tomita, Electrochemical and Solid-State Letters, 9(6) (2006) H48-H51
    [124] A. Tomita, Y. Namekata, M. Nagao, T. Hinibo, Journal of The Electrochemical Society, 154(5) (2007) J172-J176
    [125] 郑重德,王丰,胡涛,王守绪,何为,王偕恕,王豪才,电源技术,22(3)(1998)133-135
    [126] M. Oshitani, T. Takayama, K. Takashima, S. Tsuji, Journal of Applied Electrochemistry, 16(1986) 403-412
    [127] M. S. Wilson, S. Gottesfeld, Journal of The Electrochemical Society, 139 (1992) L28-L30
    [128] E. J. Taylor, E.B. Anderson, N. R. K. Vilambi, Journal of The Electrochemical Society, 139 (1992) L45-L46
    [129] G. Sasi Kumar, M. Raja and S. Parthasarathy, Electrochimica Acta, 40 (1995) 285-290
    [130] A. Aramata, I. Toyoshima, M. Enyo, Electrochimica Acta, 37 (1992) 1317-1320
    [131] B. Beden, F. Kadirgan, C. Lamy, J.M. Leger, Journal of Electroanalytical Chemistry, 142 (1982) 171-190
    [132] A. Hamnett, S.A. Weeks, B.J. Kennedy, G. Troughton, P.A. Christensen, Ber. Bunsenges. Phys. Chem., 94 (1990) 1014-1020
    [133] S. Swathirajan, Y. M. Mikhail, Journal of The Electrochemical Society, 138(5) (1991) 1321-1326
    [134] A. Hamnett and B. J. Kennedy, Electrochimica Acta, 33 (1988) 1613-1618
    [135] J. B. Goodenough, A. Hamnett, B. J. Kennedy, R. Manoharan and S. A. Weeks, Journal of Electroanalytical Chemistry, 240 (1988) 133-145
    [136] P. K. Shen, A. C.C. Tseung, Journal of The Electrochemical Society, 141(11) (1994)3082-3090
    [137] A.G. Gunner, T.I. Hyde, R.J. Potter, D. Thompsett, U.S. Patent 5939220
    [138] A. S. Arico, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V. Antonucci, Journal of Power Sources, 55 (1995) 159-166
    [139] J. H. White, A. F Sammells, Journal of The Electrochemical Society, 140(8) (1993)2167-2177
    [140] J. M. Zen, R. Manoharan, J.B. Goodenough, Journal of Applied Electrochemistry, 22 (1992) 140-150
    [141] J. M. Zen, C.B. Wang, Journal of The Electrochemical Society, 141(4) (1994) L51-L52
    
    [142] R. Manoharan, J. B. Goodenough, Electrochimica Acta, 40 (1995) 303-307
    [143] G. Tamizhmani, J.P. Dodelet, D. Guay, G. Lalande, G.A. Capuano, Journal of The Electrochemical Society, 141(1) (1994) 41-45
    [144] A. Biloul, P. Gouerec, M. Savy, G. Scarbeck, s. Besse, J. riga, Journal of Applied Electrochemistry, 26 (1996) 1139-1146
    [145] G. Lalande, G. Faubert, R. Cote, D. Guay, J. P. Dodelet, L. T. Weng, P. Bertrand, Journal of Power Sources, 61 (1996) 227-237
    [146] M. C. Martins Alves, J. P. Dodelet, D. Guay, M. Ladouceur, G. Tourillon, The Journal of Physical Chemistry, 96 (1992) 10898-10905
    [147] G. Lalande, G. Tamizhmani, R. Cote, L. Dignard-Bailey, M. L. Trudeau, R. Schulz, D. Guay, and J. P. Dodelet, Journal of The Electrochemical Society, 142 (1995)1162-1168
    [148] G. Lalande, R. Cote, G. Tamizhmani, D. Guay, J. P. Dodelet, L. Dignard-Bailey, L. T. Weng and P. Bertrand, Electrochimica Acta, 40 (1995) 2635-2646
    [149] G Faubert, G. Lalande, R. Cote, D. Guay, J. P. Dodelet, L. T. Weng, P. Bertrand and G. Denes, Electrochimica Acta, 41 (1996) 1689-1701
    [1] C. Y. Shen, N. E. Stahlheber, D. R. Dyroff, Journal of the American Chemical Society 91 (1969) 62-67
    [2] T. Kenjo, Y. Ogawa, Solid State Ionics, 76 (1995) 29-34
    [3] M. Cappadonia, O. Niemzig, U. stimming, Solid State Ionics, 125 (1999) 333-337
    [4] 赵瑞玉,董鹏,梁文杰,石油大学学报,1996,19(5),89-92
    [5] 周产力,寇战峰,刘钧,无机盐工业,2001(7),33(4),22-24
    [6] K. M. S. Khalil, A. A. Elsamahy, M. S. Elanany, Journal of Colloid and Interface Science, 249 (2002) 359-365
    [7] T. Matsui, S. Takeshita, Y. Iriyama, T. Abe, M. Inaba and Z. Ogumi, Electrochemistry communications, 6 (2004) 180-182
    [8] J. Guan, S. E. Dorris, U. Balachandran, M. Liu, Solid State Ionics, 100 (1997) 45-52
    [9] D.P. Sutija, T. Norby, P. Bjornbom, Solid State Ionics, 77 (1995) 167-164
    [10] T. Matsui, S. Takeshita, Y. Iriyama, T. Abe and Z. Ogumi, Journal of The Electrochemical Society, 152 (1) A167-A170 (2005)
    [11] J. Gao, X. Liu, D. Peng and G. Meng, Catalysis Today, 82 (2003) 207-211
    [12] S.P Jiang, Y.L. Leng, S.H. Chan, and K.A. khor, Electrochemical and solid state letters, 6 (2003) A67-A70
    [1] T. Kenjo, Y. Ogawa, Solid State Ionics, 76 (1995) 29-34
    [2] M. Cappadonia, O. Niemzig, U. stimming, Solid State Ionics, 125 (1999) 333-337
    [3] V.G. Ponomareva, N.F. Uvarov, G.V. Lavrova, E.F. Hairetdinov, Solid State Ionics 90(1996) 161-166
    
    [4] V.G. Ponomareva, G.V. Lavrova, Solid State Ionics 145 (2001) 197-204
    [5] T. Matsui, T. Kukino, R. Kikuchi, K. Eguchi, Electrochemical Solid-state Letters, 8(2005)A256-A258
    [6] T. Matsui, T. Kukino, R. Kikuchi, K. Eguchi, Electrochimica Acta, 51 (2006) 3719-3723
    [7] J. Otomo, N. Minagawa, C. Wen, K. Eguchi, H. Takahashi, Solid State Ionics 156 (2003) 357-369
    [8] G. F. Levchik, A. F. Selevich, S. V. Levchik, A. I. Lesnikovich, Thermochimica Acta, 239 (1994) 41-49
    [9] G. F. Levchik, S. V. Levchik, P. D. Sachok, A. F. Selevich, A. S. Lyakhov, A. I. Lesnikovich, Thermochimica Acta, 257 (1995) 117-125
    [10] C. Y. Shen, N. E. Stahlheber, D. R. Dyroff, Journal of the American Chemical Society 91 (1969)62-67
    
    [11] T. Matsui, S. Takeshita, Y. Iriyama, T. Abe and Z. Ogumi, Journal of The Electrochemical Society, 152 (2005) A167-A170
    [12] M. Nogami and Y. Abe, Physical Review B, 55(18) (1997) 12108-12112
    [1] F. N. Poulsen, RISO Report M-2244, (1980)
    [2] J.O. Bockris, A.K.N. Reddy, Modern Electrochemistry, Macdonald Press (1970)
    [3] S.H. Sheffield, A.T. Towe, Materials Research Bulletin, 14 (1979) 929-935
    [4] A. T. Howe, M. G. Shilton, Journal of Solid State Chemistry, 34 (1980) 149-155
    [5] Y. Wing, M. Lal, A. T. Howe, Materials Research Bulletin, 15 (1980) 1649-1654
    [6] M. G. Shilton, A. T. Howe, In: Fast Ion Transport in Solids, Electrodes and Electrolytes, The Nethelands, (1979)
    
    [7] G. C. Farrington, J. L. Briant, Materials Research Bulletin, 13 (1978) 763-773
    [8] M. Lal and A. T. Howe, Journal of the Chemical Society, Chemical Communications, 1980, 737-738
    
    [9] K. D. Kreuer, W. Weppner, A. Rabenau, Solid State Ionics, 3-4 (1980) 353-358
    [10] G.C. Farrington, J.L. Briant, In: Fast Ion Transport in Solids, Electrodes and Electrolytes, North Holland Amsterdam (1971)
    
    [11] K. D. Kreuer, I. Stall, A. Rabenau, Solid State Ionics, 9-10 (1983) 1061-1064
    [12] K. D. Kreuer, W. Weppner, A. Rabenau, Materials Research Bulletin, 17 (1982) 501-509
    
    [13] M. M. El-Aiat, F.A. Kroger, Journal of Applied Physics, 53(5) (1982) 3658-3667
    [14] T. Norby and P. Kofstad, Solid State Ionics, 20 (1986) 169-184
    [15] T. Takahashi, H. Iwahara, Rev, Chim. Minerale, 17 (1980) 243
    [16] W. Lee, A. S. Nowick, L. A. Boatner, Solid State Ionics, 18-19 (1986) 989-993
    [17] K. Nomura, T. Takeuchi, S. Kamo, H. Kageyama, Y. Miyazaki, Solid State Ionics, 175 (2004) 553-555
    
    [18] D. P. Sutija, T. Norby and P. Bjornbom, Solid State Ionics, 77 (1995) 167-174
    [19] T. Scherban, A. S. Nowick, Solid State Ionics, 35 (1989) 189-194
    [20] R. A. De Souza, J. A. Kilner, B. C. H. Steele, Solid State Ionics, 77 (1995) 180-184
    [21] M. Pionke, T. Mono, W. Schweika, T. Springer, H. Schober, Solid State Ionics, 97(1997)497-504
    [22] Th. Matzke, U. Stimming, Ch. Karmonik, M. Soetratmo, R. Hempelmann, F. Guthoff, Solid State Ionics, 86-88 (1996) 621-628
    [23] K.D. Kreuer, Chemistry of Materials, 8 (1996) 610-641
    [24] W. Munch, G Seifert, K. D. Kreuer, J. Maier, Solid State Ionics, 86-88 (1996) 647-652
    
    [25] E. Matsushita, A. Tanase, Solid State Ionics, 97 (1997) 45-50
    [26] R. Hempelmann, Physica B: Condensed Matter, 226 (1996) 72-77
    [27] W. A. England, M. G. Cross, A. Hamnett, P. J. Wiseman, J. B. Goodenough, Solid State Ionics, 1 (1980) 231-249
    
    [28] M. G. Shilton, A. T. Howe, Materials Research Bulletin, 12 (1977) 701-706
    [29] A. T. Howe, M. G. Shilton, Journal of Solid State Chemistry, 28 (1979) 345-361
    [30] P. E. Childs, T. K. Halstead, A. T. Howe, M. G. Shilton, Materials Research Bulletin, 13(1978)609-619
    [31] P. Barboux, N. Baffler, R. Morineau, J. Livage, Solid State Ionics, 9-10 (1983) 1073-1080
    [32] P. Barboux, N. Baffler, R. Morineau, J. Livage, Solid State Protonic Conductors III, Odense University Press, (1985) 173
    
    [33] C. B. Amphlett, Inorganic Ion Exchangers, Elsevier, Amsterdam, 1964
    [34] R. C. T. Slade, J. Barker, T. K. Halstead, Solid State Ionics, 24 (1987) 147-153
    [35] P. Barboux, R. Morineau, J. Livage, Solid State Ionics, 27 (1988) 221-225
    [36] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics, 3-4 (1981) 359-363
    [37] H. Uchida, N. Maeda, H. Iwahara, Solid State Ionics, 11 (1983) 117-124
    [38] H. Iwahara, H. Uchida, S. Tanaka, Solid State Ionics, 9 (1983) 1021-1025
    [39] H. Iwahara, T. Esaka, H. Uchida, T. Yamauchi, K. Ogaki, Solid State Ionics, 18-19(1986)1003-1007
    
    [40] H. Iwahara, H. Uchida, N. Maeda, Solid State Ionics, 11 (1983) 109-115
    [41] T. Ishigaki, S. Yamauchi, K. Kishio, K. Fueki, H. Iwahara, Solid State Ionics, 21 (1986)239-241
    [42] H. Uchida, N. Maeda, H. Iwahara, Journal of Applied Electrochemistry, 12 (1982) 645-651
    [43] H. Iwahara, H. Uchida, S. Tanaka, Journal of Applied Electrochemistry, 16 (1986) 663-668
    [44] H. Iwahara, H. Uchida, J. Kondo, Journal of Applied Electrochemistry, 13 (1983) 365-370
    
    [45] H. Iwahara, H. Uchida, N. Maeda, Journal of Power Sources, 7 (1982) 293-301
    [46] H. Iwahara, H. Uchida, I. Yamasaki, International Journal of Hydrogen Energy, 12 (1987) 73-77
    
    [47] Y. Wing, M. Lal, A. T. Howe, Materials Research Bulletin, 15 (1980) 1649-1654
    [48] H. Watelet, J.P. Picard, G. Baud, J.P. Besse, R. Chevalier, Materials Research Bulletin, 16(1981)1131
    
    [49] K.D. Kreuer, A. Rabenau, R. Messner, Appl. Phys. Ser. A, 32 (1982) 155
    [50] K.D. Kreuer, A. Rabenau, R. Messner, Appl. Phys. Ser. A, 32 (1982) 45
    [51] O. Nakamura, I. Ogino, T. Kodma, Solid State Ionics, 3-4 (1981) 347-351
    [52] O. Nakamura, I. Ogino, Materials Research Bulletin, 17 (1982) 231-234
    [53] J. Helsen, Journal of Chemical Education, 59 (1982) 1065-1065
    [5.4] S. Chandra, S.K. Tolpadi, S.A. Hashmi, Solid State Ionics, 28-30 (1988) 651-655
    [55] D.J. Dzimitrowicz, J.B. Goodenough, P.J. Wiseman, Materials Research Bulletin, 17(1982)971
    [56] A. Potier, D. Rousselet, J. Chim. Phys. 70 (1973) 873
    [57] G.C. Farringion, J.L. Briant, Materials Research Bulletin, 13 (1978) 763
    [58] Ph. Coiombon, J.P. Boilon, A. Kahn, G. Lucazean, Nouv. J. Chim. 2 (1978) 21
    [59] K.D. Kreuer, W. Weppner, A. Rabenau, Materials Science Bulletin, 17 (1982) 501
    
    [60] J. Vanderkooy, J.D. Cuthbert, G.E. Petch, Can. J. Phys. 42 (1964) 1871
    [61] F.R. Mognaschi, A. Chierico, G. Panavacini, J. Chem. Soc. Faraday Trans., 74 (1978)2333
    
    [62] M. V. SUSIC, D. M. MINIC, Solid State Ionics 2 (1981) 309-314
    [63] S. M. Haile, C. R. I. Chisholm, K. Sasaki, D. A. Boysen, T. Uda, Faraday Discussions, 134 (2007) 17-39
    
    [64] C. R. I. Chisholm, and S. M. Haile, Mater. Res. Bull. 35 (2000) 999
    [65] Z. Jirak, M. Dlouha, S. Vratislav, A. M. Balagurov, A. I. Beskrovnyi, Y. I. Gordelii, I. D. Datt, L. A. Shuvalov, Phys. Status Solidi A 100 (1987) K117
    [66] P. Colomban, J. C. Badot, J. Phys.: Condens. Matter 4 (1992) 5625
    [67] B. V. Merinov, A. I. Baranov, L. A. Shuvalov, B. A. Maksimov, 32 (1987) 86
    [68] A. V. Belushkin, W. I. F. David, R. M. Ibberson, and L. A. Shuvalov, Acta Crystallogr., Sect. B: Struct. Sci. B47 (1991) 161
    [69] B.V. Merinov, Solid State Ionics, 84 (1996) 89-96
    [70] R.C.T. Slade, A. Hardwick, P.G. Dickens, Solid State Ionics, 9-10 (1983) 1093
    [71] W.H.J. Hogarth, J.C. Diniz da Costa, GQ.(Max) Lu, Journal of Power Sources 142(2005)223-237
    [72] M. Cappadonia, O. Niemzigand U. Stimming, Solid State Ionics, 125 (1999) 333-337
    [73] T. Matsui, S. Takeshita, Y. Iriyama, T. Abe and Z. Ogumi, Journal of The Electrochemical Society, 152 (2005) A167-A170
    [74] X. Chen, X. Li, S. Jiang, C. Xia and U. Stimming, Electrochimica Acta, 51 (2006) 6542-6547
    
    [75] X. Chen, Z. Huang, C. Xia, Solid State Ionics, 177 (2006) 2413-2416
    [76] S. Haufe, D. Prochnow, D. Schneider, O. Geier, D. Freude, U. Stimming, Solid State Ionics, 176 (2005) 955-963
    [77] A. Peter, C. Korte, D. Hesse, N. Zakharov, J. Janek, Solid State Ionics, 178 (2007) 67-76
    [78] T. Schober, Solid State Ionics, 145 (2001) 319-324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700