桑蚕丝孔穴的生成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桑蚕丝纤维的孔穴结构对蚕丝的物理化学性质有着重要的影响,特别是对蚕丝纤维的吸湿性、染色性及整理剂的吸附性有着直接或间接的影响。本论文采用超低温冷冻,真空干燥桑蚕丝纤维,利用冰晶的升华生成蚕丝的微孔结构。
     本文用氮气吸附法表征了蚕丝纤维的中孔孔穴结构,并对蚕丝的孔穴结构进行了大胆的猜测:经过脱胶和清洗后桑蚕丝的孔穴结构为四面开放的尖劈形毛细孔或圆锥形和四面开放的尖劈形毛细孔的混合结构。经过超低温冷冻真空干燥处理后,蚕丝孔穴结构模型没有改变,孔穴有增多均匀趋势。并用压汞法对蚕丝的大孔孔穴结构进行了补充。经过处理后,桑蚕丝的热稳定性有一定提高,由于微孔的存在,力学性能轻微的下降,处理后表面能等有了一定的提高。
     本文测试处理前后桑蚕丝纤维的抗菌性能,桑蚕丝纤维与小鼠成纤维细胞的生物相容性,将表面能高低与微生物黏附理论结合起来,尝试用表面能解释微生物初始黏附,分析抗菌性能的改变及生物相容性的改善。
The micropore structure in Mulberry silk fiber has an important influence on chemical and physical properties,especially for the hygroscopicity,Dyeability and finishing agent adsorption. In this dissertation,super-low-temperature frozen- vacuum drying technique was used to produce microvoid by the sublimation of ice crystals.
     In this paper,the medium pore of silk fiber is characterized by nitrogen adsorption method,and bold guesswork is given about pore structure in silk fiber:it belongs to a four open wedge-shape or a hybrid structure of that and and a cone shape. After degumming and cleaning process. After ultra-low temperature freeze-drying treatment, silk hole model has not changed, there is a growing cavity uniform trend. And mercury intrusion method is a complement for macroporous structure of silk. After treatment, the thermal stability of the silk has been improved, due to the presence of micropores, a slight decrease in the mechanical properties, while surface energy increase lightly.
     The changes before and after treatment about inantibacterial properties and the biocompatibility of mouse fibroblast cells was examined.the surface energy and Microbial adhesion theory was combined, it attempts to explain the relationship between initial microbial adhesion and surface energy;to analyze the convert of antibacterial properties and improvements in biocompatibility.
引文
[1]于同隐等.桑蚕丝素蛋白的结构、形态及化学改性.[J].高分子通报,1990(3):154一160,189.
    [2]Akai,H., The structure and ultrastructure of the silk gland. Experientia.[J]. Experientia,1983,39:443-449.
    [3] M Demura, T Takekawa, T Asakura. Characterization of low-temperatureplasma treated silk fibroin fabrics by ESCA and the use of the fabrics as an enzyme-immobilization support. Biomaterials.1992,13(5):276-280.
    [4] G. S. Nadiger, N. V. Bhat.Effect of plasma treatment on the structure and allied textile properties of mulberry silk.[J] . Journal of Applied Polymer Science ,1985,10(30):4127–4135.
    [5]Md. Majibur Rahman Khan,Liyun Zou, Mikihiko Miura. et al.Surface morphology of low-temperature argon-plasma-treated Bombyx mori silk fibroin fiber. [J].The Journal of Silk Science and Technology of Japan. 2007,16:107-114.
    [6] Lim Jeong, In-Sung Yeo, Ha Na Kim, et al.Plasma-treated silk fibroin nanofibers for skin regeneration .[J].International Journal of Biological Macromolecules,2009,44(3):222-228.
    [7]Satreerat K. Hodaka, T. Supasaia, B. Paosawatyanyonga, et al.Enhancement of the hydrophobicity of silk fabrics by SF6 plasma. [J]. Applied Surface Science,2008,254 (15):4744-4749.
    [8] W. Sangpraserta, V.S. Leea, D. Boonyawanb, et al.Sulfur hexafluoride plasma surface modification of Gly-Ala and Ala-Gly as Bombyx mori silk model compounds: Mechanism investigations [J]. Journal of Molecular Structure.2010,963(2-3):130-136.
    [9]Shen Li, a, Dai Jinjin.Improvement of hydrophobic properties of silk and cotton by hexafluoropropene plasma treatment. [J].Applied Surface Science,2007,253(11): 5051-5055.
    [10]柯贵珍.蚕丝蒸汽闪爆改性以及其粉末超细化研究. [D].上海:东华大学:2003.
    [11]Mason w. H.,US Patent,1655 618(1928).
    [12]YamashiikiT.,MatsuiT.,etal,Polym.J.,1984,16(12):857一866.
    [13]YamashiikiT.,MatsuiT.,SaitohM.,etal,Brit.Polym.J.,1990,22(1): 73-83.
    [14]M. J. Negro.,P. Manzanares, J. M. Oliva, et al. Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. [J]. Biomass and Bioenergy. 2003,25(3):301-308.
    [15]邵自强,马凤国.天然纤维素蒸汽闪爆改性对其长支链醋合成影响[J].合成技术及应用,2001,16(2):9-10,31.
    [16]柯贵珍,王善元,徐卫林.蚕丝蒸汽闪爆改性后的形态结构研究. [J].高分子学报.2004(1):103-106.
    [17]Jacquet, N.,Vanderghem, C.,Blecker, C., et al. Application of steam explosion for the pretreatment of the lignocellulosic raw materials .[J] .Biotechnologie Agronomie Societe et Environment,2010,14: 561-566.
    [18]Taniguchi, M; Takahashi, D; Watanabe, D, et al.Effect of steam explosion pretreatment on treatment with Pleurotus ostreatus for the enzymatic hydrolysis of rice straw.[J]. journal of Bioscience and Bioengineering.2010,4(110):449-452.
    [19] Perkins W S.Fixation of reactive dyes using radio - frequency energy.[J] . journal of the society of dyers and colourists,1992,108(2):70-73.
    [20] Carlough M S.Perkins W S.Radio-frequency-assisted fixation of reactive dyes by pad-batch application [ J ].Journal of the Society of Dyers and cColourists,1993,109(2): 65-71.
    [21] M Tsukada, G Freddi, N Minoura . Changes in the fine structure of silk fibr oin fibers following gamma irradiation [ J ]. Journal of Applied Polymer Science, 1994, (51) : 823~829.
    [22]葛学武,储结根,徐相凌,等.蚕丝辐射接枝丙烯腈.[ J ].高分子学报, 2000, (2) : 205~209.
    [23] A Kojthung, PMeesilpa, B Sudatis, et al . Effects of gamma radiation on biodegradati on of Bombyxmori silk fibroin[ J ].International Biodeterioration & Biodegradati on, 2008, 62 (4) : 487~490.
    [24] Yutaka Kawahara,Masatoshi Shioya.Characterization of microvoids in mulberry and tussah silk fibers using stannic acid treatment.[J]. Journal of Applied PolymerScience ,1999,3(73):363-367.
    [25]Qingqing Yuan, Jinrong Yao, Xin Chen,et al.The preparation of high performance silk fiber/fibroin composite .[J]. Polymer, 2010, 51( 21): 4843-4849.
    [26] N. Mohanty, B. Pradhan, M. C. Mohanta, H. K. Das.Grafting vinyl monomers on silk fibres-I. Graft copolymerization of methyl methacrylate on silk by tetravalent cerium ion.[J]. European Polymer Journal, 1983,19(5): 415-418.
    [27]H Shiozaki, M Tsukada, Y Gotoh. Chemical structure and dynamic mechanical behavior of silk fibers modified with different kinds of epoxides.[J]. Journal of Applied Polymer Science,1994,52(8): 1037–1045.
    [28]塚田益裕等,日本蚕丝学杂志,1987,56 ( 4 ):323.
    [29] Saideh Davarpanah, Niyaz Mohammad Mahmoodi, Mokhtar Arami, et al. Environmentally friendly surface modification of silk fiber: Chitosan grafting and dyeing [J].Applied Surface Science, 2009, 255( 7): 4171-4176.
    [30] Gerorg Wilhelm Oetjen,Peter Haseley.Freeze-Drying.徐成海等译.第二版.2005:1.
    [31] C. Gallé.Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: A comparative study between oven-, vacuum-, and freeze-drying. [J].Cement and Concrete Research. 2001, 31(10):1467-1477.
    [32] S. Litvin, C. H. Mannheim and J. Miltz. Dehydration of carrots by a combination of freeze drying, microwave heating and air or vacuum drying. [J].Journal of Food Engineering.1998,36(10):103-111.
    [33] L Mani, Z Marinkovi. synthesis of Bi based superconducting poweders though the freeze drying. [J].Materials Chemistry and Physics. 2001, 67(1-3):288-290.
    [34] L Mancic,Z Marinkovics. Synthesis of Bi based superconducting powders through the free drying. [J]. Mater Chemisty and Physics.2001,,67:288-290.
    [35]Wassim Abdelwahed, Ghania Degobert, Hatem Fessi. Freeze-drying of nanocapsules: Impact of annealing on the drying process. [J].International Journal of Pharmaceutics, 2006,324(1):74-82.
    [36]李明忠,卢神州,吴徵宇,等.多孔丝素膜的制备及其形态结构[J].纺织学报.2000,21(5): 4-7.
    [37]C. Morgan, G. Vesey. Freeze-Drying of Microorganisms.[M]. Encyclopedia ofMicrobiology, 2009: 162-173.
    [38]Dr. Richard R. Pelker, Gary E. Friedlaender, Thomas C. Markham, et al. Effects of freezing and freeze-drying on the biomechanical properties of rat bone.[J].Journal of Orthopaedic Research. 1983,1(4):405-411.
    [39]InouéT, Osatake H.A new drying method of biological specimens for scanning electron microscopy: the t-butyl alcohol freeze-drying method. [J].Arch Histol Cytol. 1988 ,51(1):53-9.
    [40]Willem F. Wolkers,Naomi J. Walker,Fern Tablin, et al. Human Platelets Loaded with Trehalose Survive Freeze-Drying.[J] .Cryobiology,2001,2(42):79-87.
    [41]John F. Carpenter, Lois M. Crowe,John H. Crowe. Stabilization of phosphofructokinase with sugars during freeze-drying: characterization of enhanced protection in the presence of divalent cations.[J] .Biochimica et Biophysica Acta.1987, 923(1): 109-115.
    [42]Mingzhong Li ,Shenzhou Lu, Zhengyu Wu, et al. Study on porous silk fibroin materials. I. Fine structure of freeze dried silk fibroin. [J]. Journal of Applied Polymer Science, 2001, 79(12):2185–2191.
    [43]T Fukasawa, M Ando, T Ohji. Synthesis of Porous Ceramics with Complex Pore Structure by Freeze‐D ry Processing. [J] .Journal of the American Ceramic Society ,2001, 84(1):230–232.
    [44]Rina Nazarov,Hyoung-Joon Jin,and David L. Kaplan.Porous 3-D Scaffolds from Regenerated Silk Fibroin. [J].Biomacromolecules, 2004, 5 (3):718–726.
    [45]韩娜.真空冷冻干燥技术研究进展. [J] .食品工程.2007(3):28-29,47.
    [46]吴琪琳,潘鼎.密度粘胶原丝及其碳纤维的结构性能对比. [J] .合成纤维业.2003,26(5):1-4 .
    [47] Michael Grúnwald ,Eduard Burtscher, Oritain Bobleter. HPLC determination of the pore distribution and chomatographic properties of cellulosic textile materials.[J]. Appl. Polym. Sci. 1990,39(2):301-317.
    [48]近藤精一,石川达雄,安部郁夫.吸附科学[M] .李国希译.2版.北京:化学工业出版社,2006:2.
    [49]W.D.Bancroft.[J].Applied Colloid Chemistry,1926.
    [50]近藤精一,石川达雄,安部郁夫.吸附科学[M] .李国希译.2版.北京:化学工业出版社,2006:32-34.
    [51] Emanuele Tomba,Pierantonio Facco,Martina Roso.Artificial Vision System for the Automatic Measurement of Interfiber Pore Characteristics and Fiber Diameter Distribution in Nanofiber Assemblies. [J].Ind. Eng. Chem. Res,2010,49(6):2957–2968.
    [52]董卫国,徐静,俊鹏.氮气吸附法表征棉纤维的孔结构. [J] .纺织学报:2007,28(6):5-7 .
    [53]S. Brunauer,L.S.Deming,W.E.Deming. On a theory of the van der Waais adsorption of gases. [J].Amer.Chem.Soc.,1940,62:1723.
    [54]S.Brunauer,P.H.Emmett,E.Teller. Adsorption of gases in multimolecular layers [J].Amer.Chem.Soc.,1938,60:309-319.
    [55]张小平.胶体界面与吸附教程[M] . 1版.广州:华南理工大学出版社,2008:135
    [56]章燕豪.吸附作用[M] .1版.上海:上海科学技术文献出版社,1989年12月:130-131
    [57]严继民,张启元.吸附于凝聚的固体表面与孔[M]. 1版.北京:科学出版社1979:116-123.
    [58]近藤精一,石川达雄,安部郁夫.吸附科学[M] .李国希译.2版.北京:化学工业出版社,2006:81-84.
    [59]储鸿,崔正刚.薄板毛细渗透法测定粉体接触角和表面能成分[J].江南大学学报:自然科学版, 2005,4(3):302-305.
    [60]王书忠,薛志云,胡福增.超高分子量聚乙烯纤维表面浸润性的研究[J].玻璃钢/复合材料,2003(4):17-20,30.
    [61] Lee Young-keun, Park Sang-hyun, Rhee Jang-weon, et al.Microporous polyethylene film with improved strength, permeability and surface energy: US,20090130547 [P/OL] 2009-5-21.
    [62]于伟东. [M].纺织材料学,1版.北京:中国纺织出版社,2006:92,122.
    [63]Byler D M,Brouillette J N,Susi H. Quantitative studies of protein structure by FT-IR spectral deconvolution and curve fitting.[J].Spectrosc,1986,1(3),29-32.
    [64]周文,陈新,邵正中.红外和拉曼光谱用于对丝蛋白构象的研究.[J]化学进展, 2006,18(11):1514-1522.
    [65]Xie M X,Liu Y,Chen J.Chin.Univ.2003,24(2),226
    [66]常建华,董绮功.波谱原理及解析[M] .2版.北京:科学出版社,2005年9月:86.
    [67]刘明,闵思佳,朱良均.冷冻干燥对丝素蛋白凝胶结构的影响[J].蚕业科学,2007;33(2):246-249.
    [68]Canetti M, Seves A, Secundo F, et al. CD and small-angle X-ray-scattering of silk fibroin in solution. [J].Biopdymer,1989,28(9):1613-1624.
    [69]Asakura T, Kuzuhara A, Tabeta R, et al. [J]. Macromolecules 1985,18,1841-1845.
    [70]李明忠,吴微宇,箕浦宪彦.再生丝素固体的微细结构.[J].东华大学学报(自然科学版),2002,28(4):28-32
    [71]Hirabayashi K,Ishikava H.Studies on the fine structure of silk fibroin[J].Sen-i Gakkaishi 1967;23(10):538-542.
    [72]Konishi T,Kondo M,Kurokawa M.Study on the structure of silk fibroin under enzymatic hydrolysis.[J].Sen-I Gakkaishi 1967;23:64-9.
    [73]Rigina V,Samuel P,Weiping Z.Trigonal crystal structure ofBombyx mori silk incorporating threefold helical chain conformation found at the air water interface[J]. Macromolecules,1996,29:8606-8614.
    [74]So Hyun Kim,Yong Sik Nam,Take Seung Lee.Silk Fibroin Nanofiber Electrospinning,Properties and Structure.[J].Polymer Journal,2003,35(2): 185-190
    [75]Hirabayashi K,Ishikava H.Studies on the fine structure of silk fibroin[J].Sen-i Gakkaishi 1967;23(10):538-542.
    [76]Konishi T,Kondo M,Kurokawa M.Study on the structure of silk fibroin under enzymatic hydrolysis.Sen-I Gakkaishi 1967;23:64-9.
    [77] Owens D K. , Wendt R C..Estimation of the Surface Free Energy of Polymers[J].Journal of Applied Polymer Science,1969(13):1741- 1747.
    [78] Fowkes F M.Attractive Forces at Interfaces [J].Industrial and Engineering Chemistry,1964,56(12):40-52.
    [79] González-Martín M L.,Janczuk B.,Labajos-Broncano L.,et al. Determination of the Carbon Black Surface Free Energy Components from the Heat of ImmersionMeasurements[J].Langmuir,1997(13):5991-5994.
    [80]孙慕瑾,胡宝蓉,罗爱琴.动态毛吸法测定纤维及粉末料的接触角研究[J].复合材料学报,1989(3):5-11.
    [81] Emil Chibowski,Lucyna Holysz.Use of the Washburn Equation for Surface Free Energy Determination[J].Langmuir,1992(8):710-716.
    [82] Chwastiak S.A. Wicking Method for Measuring Wetting Properties of Carbon Yarns[J].Journal of Colloid and Interface Science,1973,42(2):298-309.
    [83]金士九,王霞,余云照.动态毛吸法测定纤维表面能[J].复合材料学报,1994(2):69-74.
    [84]王霞,金士九,李已明.动态毛吸法测定纤维浸润性[J].中国胶粘剂,1994(3):1-5,10.
    [85]杜美娜,罗运军.RDX粒径和表面能对HTPB推进剂力学性能的影响[J].含能材料,2008,16(4).441-445
    [86]于伟东. [M].纺织材料学,1版.北京:中国纺织出版社,2006:92,122.
    [87] Md. Majibur Rahman Khan, Yasuo Gotoh *, Hideaki Morikawa, et al.Carbon fiber from natural biopolymer Bombyx mori silk fibroin with iodine treatment [J]. Carbon,2007(45):1035–1042.
    [88] TSUKADA MASUHIRO. Technical development for production of functional silk worm protein and its utilization: Development of highly antibacterial and repellent materials made from silf worm.[J]. Kagaku to Seibutsu,2004,42(7): 454-458.
    [89] SAWA YUKO,YAMABAYASHI CHIE,HOTEN MASANOBU.Antibacterial activities of silk fabrics dyed with herbal plants[J] . Mukogawa Joshi Daigaku Kiyo. Shizen Kagakuhen.2000(40):21-28 .
    [90] Davarpanah, Saideh, Mahmoodi, Niyaz Mohammad,et al. Environmentally friendly surface modification of silk fiber: Chitosan grafting and dyeing.[J] . Applied Surface Science,2009,7(25): 4171-4176,
    [91] Moazami, Atousa,Montazer, Majid; Rashidi, et al.Abousaied Antibacterial properties of raw and degummed silk with nanosilver in various conditions. [J]. Applied Polymer Science, 2010,1(118), 253-258.
    [92]杨明英.丝绸服饰舒适保健功能的研究. [D].浙江:浙江大学,2001.
    [93]Antibacterial Finishes on Textile Materials:Assessment of [S] . AATCC Test Method 100—2004.
    [94]中华人民共和国纺织行业标准抗菌纺织品[S].FZ/T 73023-2006.
    [95]一次性使用卫生用品卫生标准[S] .GB 15979-2002.
    [96]纺织品抗菌性能的评价[S] . GB 20944—2008.
    [97]张辉,钟博,邓玉福.生命单元表面行为的物理表征.[M] .北京;科学出版社,1版,2006年2月:142.
    [98] H J Busscher, A H Weerkamp, H C van der Mei et a1.Measurement of the Surface Free Energy of Bacterial Cell Surfaces and Its Relevance for Adhesion.[J].Appl Environ Microbiol. 1984,48(5): 980–983.
    [99] C.I. Pereni, Q. Zhao, Y. Liu et a1.Surface free energy effect on bacterial retention .[J].Colloids and Surfaces B: Biointerfaces, 2006, 48(2):143-147
    [100]Liu, Y; Zhao, Q. Influence of surface energy of modified surfaces on bacterial adhesion. [J]. Biophysical Chemistry . 2005, 117(1) : 39-45 .
    [101] Weerkamp AH,Uyen HM,Busscher HJ. Effect of Zeta Potential and Surface Energy on Bacterial Adhesion to Uncoated and Saliva-coated Human Enamel and Dentin.[ J ] . Dent Res.1988,67(12):1483-1487.
    [102]Q. Zhao, Y. Liu, C. Wang, S. Wang, et al. Bacterial adhesion on ion-implanted stainless steel surfaces. [ J ] . Applied Surface Science, 2007, 253(21): 8674-8681.
    [103]Ahn HB,Ahn SJ,Lee SJ et al. Analysis of surface roughness and surface free energy characteristics of various orthodontic materials.[ J ] .American journal of orthodontic and dentofacial orthopedics,2009,136(5):668-674.
    [104]Li, JX; Wang, J; Shen, LR, et al. The influence of polyethylene terephthalate surfaces modified by silver ion implantation on bacterial adhesion behavior. [ J ].Surface and Coatings Technolog,2007,201(19-20): 8155-8159.
    [105] Y. Liu ,Q. Zhao. Influence of surface energy of modified surfaces on bacterial adhesion. [J]. Biophysical Chemistry,2005, 117(1):39-45.
    [106] Van Loosdrech M C M,Lyklema J,Norde W et al.Microb.Ecol.,1989,17:1.
    [107]D R Absolom, F V Lamberti, Z Policova, et al. Surface thermodynamics of bacterial adhesion. [ J ]. Applied and Environmental Microbiology,1983,46(1): 90–97.
    [108] Chitrangada Acharya,Sudip K. Ghosh and S. C. Kundu.Silk fibroin protein from mulberry and non-mulberry silkworms: cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion [J].Materials Science: Materials in Medicine 2008,19(8):2827-2836.
    [109]江莹,陈槐卿,周闻达.蚕丝丝素纤维的制备及其与骨髓间充质干细胞相容性的研究.[J].生物医学工程学杂志.2006,23(3).560-564.
    [110]李冰燕,洪承皎,张保国,左保齐.激光扫描共聚焦显微镜观察细胞在丝素纤维织物上的生长情况.[J].激光杂志.2006,27(4).-70-71.
    [111]RE Unger, M Wolf, K Peters, A Motta, Growth of human cells on a non-woven silk fibroin a potential for use in tissue engineering .[J]. Biomaterials.2004, 25(6): 1069-1075
    [112]司徒镇强,吴军正,细胞培养. [M]兴界图书出版公司,1版,2005年4月:246-256.
    [113]ZoBell C E. The effects of solid surfaces upon bacterial activity. [J]. Bacteriol, 1943, 46:39–56.
    [114]Heukelekian H, Heller A. Relation between food concentration and surface for bacterial growth[J]. J Bacteriol, 1940, 40: 547-558.
    [115]张辉,钟博,邓玉福.生命单元表面行为的物理表征.[M] .北京;科学出版社,1版,2006年2月:83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700