紧凑型MIMO天线的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何在恶劣的信道环境和在有限的带宽内提高传输速率和质量一直是无线通信的研究重点。MIMO(多输入/多输出)技术,即在无线通信系统的发射端和接收端使用多个天线或者阵列来进行信息的传输,已经成为无线信道上提高数据传输率和质量的最有效途径。它的一个主要优点是信道容量的本质提高,从而直接转化为高的数据吞吐量,另外一个好处是在不增加带宽或提高发射功率的前提下,显著提高了数据传输的可靠性。
     MIMO技术作为现代通信系统中的重要技术,天线作为系统的前端,故对其结构、尺寸、布局方式和极化特性等提出了更为严格的要求。因此,本文的主要工作是基于无线通信系统对于多天线的特殊要求,研制满足无线路由器和WiMAX系统户外单元指标的两类MIMO天线。
     本文的主要贡献和创新点总结如下:
     (1)分析比较传统的鞭状天线和微带偶极天线的优缺点,提出了一种适用于无线路由的空间分集3×3 MIMO阵列天线的设计方案,分别对天线单元,馈电网络和阵列进行优化设计,各项性能满足指标要求,并应用于Orinda USO-753型号的无线路由器。
     (2)结合WiMAX系统对MIMO天线的指标要求,在分析总结各种方案的基础上,提出了一种紧凑型双极化的单元天线形式,实现了带宽和高隔离度。
     (3)基于这种新型的单元天线,设计了一分四的馈电网络,实现了2.3GHz-2.7GHz的极化分集2×2 MIMO阵列天线,并扩展设计了一分九的馈电网络,实现了3.3GHz-3.8GHz的极化分集2×2 MIMO阵列天线。通过实验测试,所设计的两款极化分集MIMO天线在宽带的基础上,实现了结构紧凑和较高的端口隔离度。
How to improve transmission rate and quality in bad signal channel environment and limited bandwidth has been a focus of research in wireless communication. And the MIMO (multiple input / multiple output) technology, which uses multiple antennas or antenna arrays to carry out information transmission in the transmitters and receivers of wireless communication systems, has become the most effective way to improve data transfer rate and quality. One of its main advantages is that the capacity is tremendously increased, which means direct realization of higher data throughput, while another advantage is that it significantly enhanced the reliability of data transmission without increasing the available bandwidth or transmission power. MIMO technology, as an important communication technology, makes stringent requirements of antenna design including the antenna structure, size, layout, polarization properties and so on.
     The main task of this article is to develop two series of MIMO antenna array for wireless router and WiMAX applications based on the special requirements of multi-antenna wireless communication system.
     The main contribution and innovation of this dissertation are summarized as follow:
     (1) Analysis and comparison of the advantages and disadvantages of microstrip antennas and monopole antennas is proposed, and then a 3×3 MIMO antenna is given for applications in wireless routers. The antenna unit, feed networks and antennas are optimized respectively.The designed spatial diverdity 3×3 MIMO multi-antenna meets the performance, and has been used in Orinda USO-753 models of wireless router.
     (2) A compact dual-polarized antenna element is given for MIMO antenna in a WiMAX application. The given design satisfied the demands of compactness, large bandwidth, high gain and high port isolation.
     (3) Based on this new type of antenna unit, a one-to-four microstrip line feed network is designed to achieve the 2×2 MIMO antenna for 2.3-2.7GHz utility. And the one-to-four microstrip line feed network is extended to a one-to-nine feed network to achieve a 3.3-3.8 GHz 2×2 MIMO antenna. Through experimental tests, the compact polarization diversity MIMO microstrip patch antenna Arrays meet the design requirements. The exeperimental results of the designed two polarization diversity MIMO antenna show broadband, compact structure and high port isolation.
引文
[1]廖建新,王晶,郭力.《移动智能网》.北京邮电大学出版社,2000
    [2]任立刚,宋梅,郗松楠等.移动通信中的MIMO技术.现代电信科技,pp. 42-45,2004
    [3] K. J. Kim, K. H. Ahn. The High Isolation Dual-band Inverted F Antenna Diversity System with the Small N-section Resonators on the Ground Plane.Microwave and Optical Technology Letters, Vol. 49, No.3, pp.731-734, Mar. 2007
    [4] David A. Samcjez-Hemandez.Multiband Integrated Antennas for 4G Terminals.Artech House, INC. 2008
    [5] K. J. Kim, K. H. Ahn. The High Isolation Dual-band Inverted F Antenna Diversity System with the Small N-section Resonators on the Ground Plane.Microwave and Optical Technology Letters, Vol. 49, No.3, pp.731-734, Mar. 2007
    [6] Chi-Yuk Chiu, Jie-Bang Yan, Ross D. Murch.Compact Three-Port Orthogonally Polarized MIMO Antennas.IEEE Antennas and Wireless Propangation Letters, Vol. 6, 2007
    [7] Chih-Chun Hsu, Ken-Huang Lin, Hsin-Lung Su, Hung-Hsuan Lin, Chin-Yih Wu. Design of MIMO antennas with strong isolation for portable applications.Antennas and Propagation Society International Symposium, 2009. APSURSI '09. IEEE 1-5 June 2009
    [8] R. Ziolkowski. Design, fabrication, and testing of double negative metamaterials.IEEE Trans. on Antennas Propagat., vo1.51, pp.1516-1529,Jul. 2000
    [9] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart. Magnetism from conductors and enhanced nonlinear phenomena.IEEE Trans. on Microwave Theory Tech., vol. 47, pp. 2075-2083, Nov. 1999
    [10] Tzung-I Lee; Wang, Y.E. A mode-based supergain approach with closely coupled monopole pair. IEEE Antennas and Propagation International Symposium, 2007
    [11] R. J. Garbacz and R. H. Turpin. A generalized expansion for radiated and scattered fields. IEEE Trans. Antennas Propagat., vol. AP-19. pp. 348-358, May 1971
    [12] N. Inagaki and R. 1. Garbacz. Eigenfunctions of composite Hermitian operators with application to discrete and continuous radiating systems. IEEE Trans. Antennas Propagat. vol. AP-30. pp. 571-575, July 1982
    [13] G. Chavka. Synthesis of broadband multiport phase commutators and uncouplers. European Conference on Circuit Theory and Design, Espoo, Finland, pp. 117-120, a August 28-31, 2001
    [14]伍裕江.MIMO无线通信中的终端多天线设计:[硕士论文].成都:电子科技大学电子, 2005
    [15]安捷伦应用说明.应对MIMO信道建模和仿真测试遇到的挑战.2008年11月
    [16] Tolga M. Duman, Ali Ghrayeb著.MIMO通信系统编码.电子工业出版社,2008,(11):pp. 220-224
    [17] Carl B.Dietrich, Jr., Kai Dietze, J. Randall Nealy, and Warren L. Stutzman. Spatial, polarization, and pattern diversity for wireless handheld terminals. IEEE Trans. Antennas and Propagation, Vol.49, pp.1271-1281, 2001
    [18]班永灵,周乐柱.背腔式微带贴片天线的近场分布和交叉极化方向图的数值计算.微波学报,Vol.20, pp. 61-66, No.1, Mar,2004,
    [19] H. D. Chen. A dual-frequency rectangular microstrip antenna with a circular slot. Microwave Opt. Technol. Lett. 18, pp. 130–132, June 5, 1998
    [20] W. S. Chen. Single-feed dual-frequency rectangular microstrip antenna with square slot. Electron. Lett. 34, pp. 231–232, Feb. 5, 1998
    [21] J. H. Lu and K. L. Wong. Compact dual-frequency circular microstrip antenna with an offset circular slot. Microwave Opt. Technol. Lett. 22, pp. 254–256, Aug. 20, 1999
    [22] C. L. Tang and K. L. Wong. A modified equilateral-triangular-ring microstrip antenna for circular polarization. Microwave Opt. Technol. Lett. 23, pp. 123–126, Oct. 20, 1999
    [23] J. S. Kuo and K. L. Wong. Dual-frequency operation of a planar inverted L antenna with tapered patch width. Microwave Opt. Technol. Lett. 28, pp. 126–127, Jan. 20, 2001
    [24] J. S. Chen and K. L. Wong. A single-layer dual-frequency rectangular microstrip patch antenna using a single probe feed. Microwave Opt. Technol. Lett. 11, pp. 83–84, Feb. 5, 1996
    [25] K. L. Wong and Y. F. Lin. Small broadband rectangular microstrip antenna with chipresistor loading. Electron. Lett. 33, pp. 1593–1594, Sept. 11, 1997
    [26] K. L. Wong and Y. F. Lin. Microstrip-line-fed compact broadband circular microstrip antenna with chip-resistor loading, Microwave Opt. Technol. Lett. 17, pp. 53–55, Jan. 1998
    [27] R. B. Waterhouse. Broadband stacked shorted patch. Electron. Lett. 35, pp. 98–100, Jan. 21, 1999
    [28] J. Ollikainen, M. Fischer, and P. Vainikainen. Thin dual-resonant stacked shorted patch antenna for mobile communications. Electron. Lett. 35, pp. 437–438, March 18, 1999
    [29] K. L. Wong and J. Y. Wu. Single-feed small circularly polarized square microstrip antenna. Electron. Lett. 33, pp. 1833–1834, Oct. 23, 1997
    [30] K. L. Wong and Y. F. Lin. Circularly polarized microstrip antenna with a tuning stub. Electron. Lett. 34, pp. 831–832, April 30, 1998
    [31] N. Herscovici. A wide-band single-layer patch antenna. IEEE Trans. Antennas Propagat.46, pp. 471–473, April 1998
    [32] W. S. Chen, C. K. Wu, and K. L. Wong. Novel compact circularly polarized square microstrip antenna. IEEE Trans. Antennas Propagat. 49, pp. 340–342, March 2001
    [33] C. Y. Huang, J. Y. Wu, C. F. Yang, and K. L. Wong. Gain-enhanced compact broadband microstrip antenna. Electron. Lett. 34, pp. 138–139, Jan. 22, 1998
    [34] B. Robert, T. Razban, and A. Papiernik. Compact amplifier integration in square patch antenna. Electron. Lett. 28, pp. 1808–1810, Sept. 10, 1992
    [35]谢拥军,王鹏等.Ansoft HFSS基础及应用[M].西安电子科技大学出版社,2007
    [36]司鹏博,胡亚辉,程源,余锦,等.无线宽带接入新技术.机械工业出版社,2007
    [37] John D. Kraus, Ronald J. Marhefka. Antennas: For All applications.Third Edition. pp. 138-139,2006
    [38]清华大学《微带电路》编写组.微带电路.人民邮电出版社,pp. 209-214,1975年
    [39] N. Jayasundere and T. S. M. Maclean. Omnidirectional radiation patterns from body-mounted microstrip antennas. IEE Sixth International Conference on Antennas and Propagation, vol. 1, 4–7, pp. 187–190 April 1989
    [40] D. R. Jackson and N. G. Alexopoulos. Simple approximate formulas for input resistance bandwidth and efficiency of a resonant rectangular patch. IEEE Transactions on Antennas and Propagation,vol.39,no.3,pp.407–410, 1991
    [41] N. K. Das and D. M. Pozar. Multiport scattering analysis of general multilayered printed antennas fed by multiple feed ports. Part II: Applications. IEEE Transactions on Antennas and Propagation, vol.40, no.5, pp.482–491, 1992
    [42] M. A. Khayat, J. T. Williams and S. A. L. D. R. Jackson. Mutual coupling between reduced surface-wave microstrip antennas. IEEE Transactions on Antennas and Propagation, vol.48, no.10, pp.1581–1593, 2000
    [43] W. S. Chen, C. K. Wu, and K. L. Wong. Compact circularly polarized microstrip antenna with bent slots. Electron.Lett.34, pp. 1278–1279, June 25, 1998
    [44] G. S. Row, S. H. Yeh, and K. L. Wong. Compact dual-polarized microstrip antennas. Microwave Opt. Technol.Lett.27, pp. 284–287, Nov.20, 2000
    [45]谢处方,邱文杰.天线原理与设计.成都电讯工程学院出版社.pp. 62-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700