用户名: 密码: 验证码:
二种氟喹诺酮类抗生素光催化氧化处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新兴污染物的环境问题已经日益显现,开发对该类污染物的检测和处理技术具有重要的学术价值和实际意义。氟喹诺酮类抗生素(Fluoroquinolone antibiotics, FQs)是一类典型的新兴污染物,在不同环境水体中均有检出。本论文研究建立了诺氟沙星(NOR)和环丙沙星(CIP)二种FQs的荧光检测方法;制备出对可见光和Fenton反应具有良好响应的新型光催化剂C/Fe-BiVO4和C/Fe-Bi2WO6,建立光催化氧化处理NOR和CIP二种FQs的水处理方法和工艺,并探讨了其光催化作用机制。
     采用荧光猝灭法检测水中NOR。以中性红为探针分子,羟丙基-β-环糊精(HP-β-CD)与中性红形成包合物,从而使中性红的荧光强度大大增加,而NOR加入能够使NR-HP-β-CD体系的荧光猝灭,以此建立荧光猝灭法测定NOR的新方法。在优化条件下,NOR在0.02~0.4mg/L浓度范围内与荧光猝ΔF呈良好的线性关系,相关系数为: R2=0.9993;检出限为:6.1μg/L (S/N=3),同时试验了常见金属离子与有机物对其测定的干扰,进行在胶囊和环境水样中NOR回收率试验以及含量测定。
     采用荧光探针法检测水中CIP。通过水热法合成L-半胱氨酸包覆ZnS微球,建立以L-半胱氨酸包覆ZnS微球荧光探针法测定CIP的新方法。在优化条件下,CIP在0.10~870μg·L-1浓度范围内与体系的荧光强度增加值ΔF呈良好的线性关系,相关系数为:线性方程为R2=0.9997,检出限为0.06μg·L-1(S/N=3),同时试验了常见金属离子与有机物对其测定的干扰,进行在环境水样中CIP回收率试验以及含量测定。
     采用树脂碳化和水热两步法制备C/Fe-BiVO4光催化剂。对光催化剂的制备工艺进行优化,获得最佳制备参数为:水热反应温度180℃,水热反应时间24h,水热前驱物pH3,煅烧温度500℃,升温速率10℃/min,煅烧时间2h。利用EDX, XPS, XRD, SEM, BET, DRS, FT-IR, PL, Zeta电位等分析技术对催化剂的结构和化学性质等进行表征,并对其光催化性能进行评价。结果表明:制备的C/Fe-BiVO4催化剂为纳米级片状结构,具有良好的晶型,比表面积分别为17.76m2·g1,催化剂具有大孔和介孔的双孔结构。该催化剂具有良好的可见光吸收能力。以C/Fe-BiVO4光催化剂,以H2O2为氧化剂,对CIP具有良好的降解效果,且降解历程符合Landmuir-Hinshelwood(L-H)拟一级反应动力学模型,其反应动力学常数为0.1061min-1。
     采用树脂碳化和水热两步法制备C/Fe-Bi2WO6光催化剂,对光催化剂的制备工艺进行优化,获得最佳制备参数为:水热反应温度180℃,水热反应时间24h,水热前驱物pH11,煅烧温度500℃,升温速率10℃/min,煅烧时间2h。利用XRD, SEM, BET, EDX, XPS, DRS, FT-IR, PL, Zeta电位等分析技术对催化剂的结构和化学性质等进行表征,并对其光催化性能进行评价。结果表明:制备的C/Fe-Bi2WO6催化剂为纳米级片状结构,具有良好的晶型,比表面积分别为12.30m2·g1,催化剂具有大孔和介孔的双孔结构。该催化剂进一步提高了可见光吸收能力和Fenton技术在处理FQs污染物中pH值的使用范围。以C/Fe-Bi2WO6光催化剂,以H2O2为氧化剂,对NOR具有良好的降解效果,且降解历程也符合L-H拟一级反应动力学模型,其反应动力学常数为0.0751min-1。
     本文应用制备的C/Fe-BiVO4对CIP进行光催化氧化,通过单因素实验考察C/Fe-BiVO4去除CIP的影响因素。结果表明:C/Fe-BiVO4对CIP的去除率为96.18%;应用制备的C/Fe-Bi2WO6对NOR进行光催化氧化,通过单因素和中心复合实验设计的多因素实验对C/Fe-Bi2WO6去除NOR反应条件进行优化。结果表明:在最佳优化条件下,C/Fe-Bi2WO6对NOR的去除率达到了91.66%,TOC去除率也能达到60%。采用加入抑制剂的方法和分子荧光光谱法从定性和定量两个角度研究C/Fe-Bi2WO6光催化氧化去除NOR体系中羟基自由基的产生情况,通过不同工艺的对比证明C/Fe-Bi2WO6催化剂的加入对·OH自由基的生成量影响明显,其·OH自由基生成量远大于其它工艺,说明C/Fe-Bi2WO6光催化剂和Fenton技术二者存在协同效应,可大大提高H2O2氧化体系内·OH的生成量,从而增强对NOR的去除效率。结合LC-MS的分析结果,推测了NOR可能的降解路径和中间产物。
Environmental problems of emerging contaminants have been increasingly obvious, developing corresponding detection and treatment technology are of great importance for academic research as well as for practical applications. Fluoroquinolone antibiotics (FQs) is a kind of typical emerging contaminants, having been detected in a variety of water bodies around the world. Herein, fluorescence detection methods of norfloxacin (NOR) and ciprofloxacin (CIP) were firstly established in the thesis. Novel photocatalysts of C/Fe-BiVO4and C/Fe-Bi2WO6were synthesized, with effective response to visible lights and Fenton reaction. The wastewater treatment method and process of those two FQs were established as well. In the end, the thesis discussed the photocatalysis mechanism.
     First, the fluorescence quenching method was used to test norfloxacin in water. With neutral red acted, as probe molecules, hydroxypropyl-beta-cyclodextrin (HP-β-CD) formed inclusion compound and thus fluorescence intensity of neutral red has greatly increased. On the other hand, addition of norfloxacin induced to the fluorescence quenching of NR-HP-β-CD system. A new detection method, with fluorescence quenching technique, of norfloxacin was invented accordingly. Under the optimal conditions, fluorescence intensity of the system presented good linear relationship with the concentration of NOR in the range of0.02~0.4mg/L, with correlation coefficient R20.9993, and the detection limit reached6.1μg/L (S/N=3). At the same time, the interferences from common metal ions and some organic matters were analyized. The recovery test and content determination of NOR were also carried out in environmental water samples.
     Second, the fluorescence probe method was used to test ciprofloxacin in water. L-cysteine coated ZnS microspheres was synthesized by hydrothermal method and a new approach of determining CIP is created based on fluorescent probe method of L-cysteine coated ZnS microspheres. Under the optimal comditions, fluorescence intensity of the system presented a good linear relationship with the concentration of CIP in the range of0.10~870μg·L-1, with the correlation coefficient R20.9997, and the detection limit reached0.06μg·L-1(S/N=3). The interferences from common metal ions and some organic matter were analyized as former. The recovery test and content determination of CIP were also carried out in environmental water samples.
     Moreover, the C/Fe-BiVO4photocatalyst was prepared by a two-step approach, involving resin carbonization and hydrothermal reaction process. Meantime, the preparation processes were optimized, which obtainted a set of best preparation parameters: the temperature of hydrothermal reaction is180℃, time of hydrothermal reaction is24h, pH value of hydrothermal precursors is3, calcining temperature is500℃, calcination velocity is10℃/min, calcining time is2h. The structure and chemical properties of the catalysts were characterized by EDX, XPS, XRD, SEM, BET, DRS, FT-IR, PL and Zeta potential analysis technology. Results showed the synthesized C/Fe-BiVO4catalysts have slice-shape nanostructures and good crystal structure, specific surface area17.76m2·g-1. The samples have macroporous and mesoporous structure. The catalyst has good visible light absorption ability. C/Fe-BiVO4acted and H2O2, as photocatalyst and oxidant respectively, performed good degradation effect for CIP. The degradation process complied with Landmuir-Hinshelwood (L-H) pseudo-first-order kinetics model, with the reaction kinetic constants0.1061min-1.
     Besides, the C/Fe-Bi2WO6photocatalyst was prepared by a two-step method, involving resin carbonization and hydrothermal reaction process. Meantime,the preparation processes were optimized, which obtainted a set of best preparation parameters: the temperature of hydrothermal reaction is180℃, time of hydrothermal reaction is24h, pH of hydrothermal precursors is11, calcining temperature is500℃, calcination velocity is10℃/min, calcining time is2h. The structure and chemical properties of the catalysts were characterized by XRD, SEM, BET, EDX, XPS, DRS, FT-IR, PL and Zeta potential analysis technology. The synthesized C/Fe-Bi2WO6catalysts are slice-shape nanostructures, good crystal structure, specific surface area12.30m2·g-1. The samples have macroporous and mesoporous structure. The catalyst can furtherly improve to absorb visible lights, and widen avaible pH range for Fenton treatment of FQs. The C/Fe-Bi2WO6and H2O2oxidant, as photocatalyst and oxidant respectively, performed good degradation effect for NOR. The degradation process comply with L-H pseudo-first-order kinetics model, with the reaction kinetic constants0.0751min-1.
     In the end, the prepared C/Fe-BiVO4as photocatalyst were conducted to the photocatalytic oxidation of CIP, some factors with respect to CIP removal were examined through the single factor experiment. The results show that the removal efficiency of CIP is96.18%; the prepared C/Fe-Bi2WO6as photocatalyst, were conducted to the photocatalytic oxidation of NOR, some factors about the removol of NOR were examined through the single factor experiment and the multivariate experimental design. The results show that the removal efficiency of NOR is91.66%, and the TOC removal efficiency is also able to reach more than60%under the optimum processing condition. Adopting the method of adding inhibitor and molecular fluorescence spectrometry from two aspects of qualitative and quantitative, we determined the production of hydroxyl radicals in the C/Fe-Bi2WO6photocatalytic oxidation to remove NOR system. The addition of C/Fe-Bi2WO6 catalyst have significant effect on the generation amount of·OH radical through comparing different process, proves that the generation amount of·OH radical is much larger than that of other processes, and further illustrated that there was a synergistic effect between the two photocatalyst and Fenton technology, and can greatly improve the·OH generation in H2O2oxidation system, thereby enhancing the removal efficiency of NOR. Combined with the analysis results of LC-MS, possible degradation paths and intermediate products of NOR were speculated.
引文
[1] Rodriguez I, Quintana J B, Carpinteiro J, et al. Determination of acidic drugs insewage water by gas chromatography-mass spectrometry astert.-butyldimethylsilyl derivatives[J]. Journal of Chromatography A,2003,985(1-2):265-274.
    [2] Miao X S, Koenig B G, Metcalfe C D. Analysis of acidic drugs in the effluents ofsewage treatment plants using liquid chromatography-electrospray ionizationtandem mass spectrometry[J]. Journal of Chromatography A,2002,952(1-2):139-147.
    [3] Stumpf M, Ternes T A,Wilken R D, et al. Polar drug residues in sewage andnatural waters in the state of Rio de Janeiro, Brazil[J]. Science of the TotalEnvironment,1999,225(1-2):135-141.
    [4] Ternes T A. Occurrence of drugs in German sewage treatment plants andrivers[J]. Water Research,1998,32(11):3245-3260.
    [5] Buszka P M, Yeskis D J, Kolpin D W, et al. Waste-indicator and pharmaceuticalcompounds in landfill-leachate-affected ground water near Elkhart, Indiana,2000-2002[J]. Bulletin of Environmental Contamination and Toxicology,2009,82(6):653-659.
    [6] United Nations Environment Programme (UNEP). Global environmentoutlook-4(GEO-4): environment for development. United NationsEnvironment Programme Early Warning and Assessment Department,2007[2008-11-26]. http://www.unep.org/geo/geo4/media/.
    [7] Yu C P, Chu K H. Occurrence of pharmaceuticals and personal care productsalong the West Prong Little Pigeon River in east Tennessee, USA[J].Chemosphere,2009,75(10):1281-1286.
    [8] Sui Q, Huang J, Deng S B, et al. Occurrence and removal of pharmaceuticals,caffeine and DEET in wastewater treatment plants of Beijing, China[J]. WaterResearch,2010,44(2):417-426.
    [9] Murakami M, Kuroda K, Sato N, et al. Groundwater pollution by perfluorinatedsurfactants in Tokyo[J]. Environmental Science&Technology,2009,43(10):3480-3486.
    [10] Nakada N, Kiri K, Shinohara H, et al. Evaluation of pharmaceuticals andpersonal care products as water-soluble molecular markers of sewage[J].Environmental Science&Technology,2008,42(17):6347-6353.
    [11]戴自英.实用抗菌药物学[M].北京:人民卫生出版社,1992:268.
    [12]吴杰.氟喹诺酮类药物市场概览[J].世界临床药物,2004,25(11):703-705.
    [13]汪复.氟喹诺酮类的进展与临床评价喹诺酮类的进展与临床评价[J].国外医学内科学分册,1990,17:208-211.
    [14]张莉蓉.氟喹诺酮类抗菌药物不良反应的流行病学及中枢神经毒性研究[D].上海:复旦大学药理学学科博士学位论文,2007,33-36.
    [15] Savion S, Shepshelovich J, Toder V, et al. Ciprofloxacin affects pregnancy lossin CBA/JxDBA/2J mice possibly via elevation of interleukin-3andgranulocyte macrophage-colony stimulating factor production[J]. AmericanJournal of Reproductive Immunology,2000,44(5):293-298.
    [16] Rysz M, Alvarez P J. Amplification and attenuation of tetracycline resistance insoil bacteria: aquifer column experiments[J]. Water Research,2004,38(17):3705-3712.
    [17] Kümmerer K, Ahmad A A, Sundermann V M. Biodegradability of someantibiotics, elimination of the genotoxicity and affection of wastewaterbacteria in a simple test[J]. Chemosphere,2000,40(7):701-710.
    [18] Halling-Sorensen B, Nors Nielsen S, Lanzky P F, et al. Occurrence, fate andeffects of pharmaceutical substances in the environment-a review[J].Chemosphere,1998,36(2):357-393
    [19] Kasprzyk-Hordern B, Dinsdale B R, Guwy A J. The removal ofpharmaceuticals, personal care products, endocrine disruptors and illicit drugsduring wastewater treatment and its impact on the quality of receivingwaters[J]. Water Research,2009,43(2):363-380.
    [20] Arikan O A, Rice C, Codling E. Occurrence of antibiotics and hormones in amajor agricultural watershed[J]. Desalination,2008,226(1-3):121-133.
    [21] Phillips I. Withdrawal of growth-promoting antibiotics in Europe and its effectsin relation to human health[J]. International Journal of Antimicrobial Agents,2007,30(2):101-107.
    [22] Duong H A, Pham N H, Nguyen H T, et al. Occurrence, fate and antibioticresistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi,Vietnam[J]. Chemosphere,2008,72(6):968-973.
    [23] Seifrtová M, Pena A, Lino C M, et al. Determination of fluoroquinoloneantibiotics in hospital and municipal waste-waters in Coimbra by liquidchromatography with amonolithic column and fluorescence detection[J].Analytical and Bioanalytical Chemistry,2008,391(3):799-805.
    [24] Zoritaa S, M rtensson L, Mathiasson L. Occurrence and removal ofpharmaceuticals in a municipal sewage treatment system in the south ofSweden[J]. Science of the Total Environment,2009,407(8):2760-2770.
    [25] Paul T, Miller P L, Strathmann T J. Visible-Light-Mediated TiO2Photocatalysisof Fluoroquinolone Antibacterial Agents[J]. Environmental Science&Technology,2007,41(13):4720-4727.
    [26] Cooper W J, Cramer C J, Martin, N H, et al. Free radical mechanisms for thetreatment of methyl tert-butyl ether (MTBE) via advanced oxidation/reductiveprocesses in aqueous solutions[J]. Chemical Reviews,2009,109(3):1302-1345.
    [27] Abdelmelek S B, Greaves J, Ishida K P, et al. Removal of pharmaceutical andpersonal care products from reverse osmosis retentate using advancedoxidation processes[J]. Environmental Science&Technology,2011,45(8):3665-3671.
    [28] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals,hormones,andother organic wastewater contaminants in US streams,1999-2000:A nationalreconnaissance[J]. Environmental Science&Technology,2002,36(6):1202-1211.
    [29] Tamtam F, Mercier F, Bot B L, et al. Occurrence and fate of antibiotics in theSeine River in various hydrological conditions[J]. Science of the TotalEnvironment,2008,393(1):84-95.
    [30] Golet E M, Alder A C, Giger W. Environmental exposure and risk asesssmentof fluoroquinolone antibacterial agents in wastewater and fiver water of theGlatt Valley Watershed, Switzerland[J]. Environmental Science&Technology,2002,36(17)):3645-3651.
    [31] Lindberg R H, Wennberg P, Johansson M I, et al. Screening of humanantibiotic substances and determination of weekly mass flows in five sewagetreatment plants in Sweden[J]. Environmental Science&Technology,2005,39(10):3421-3429.
    [32] Xu W H, Zhang G, Zou S C, et al. Determination of selected antibiotics in theVictoria Harbour and the Pearl River, South China using high-performanceliquid chromatography-electrospray ionization tandem mass spectrometry[J].Environmental Pollution,2007,145(3):672-679.
    [33] Gulkowska A, He Y H, So M K, et al. The occurrence of selected antibiotics inHong Kong coastal waters[J]. Marine Pollution Bulletin,2007,54(8):1287-1293.
    [34] Xu W H, Zhang G, Li X D, et al. Occurrence and elimination of antibiotics atfour sewage treatment plants in the Pearl River Delta(PRD), South China[J].Water Research,2007,41(19):4526-4534.
    [35] Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline,sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin,China[J]. Environmental Science&Technology,2011,45(5),1827-1833.
    [36] Brown K D, Kulis J, Thomson B, et al. Occurrence of antibiotics in hospital,residential, and dairy effluent, municipal wastewater, and the Rio Grande inNew Mexico[J]. Science of the Total Environent,2006,366(2-3):772-783.
    [37] Huang C, Renew J E, Smeby K L, et al. Assessment of potential antibioticscontaminants in water and preliminary occurrence analysis[J]. Journal ofEnvironmental Quality,2002,120(11):675-677.
    [38]叶计朋,邹世春,张干,等.典型抗生素类药物在珠江三角洲水体中的污染特征[J].生态环境,2007,16(2):384-388.
    [39] Han Y R, Wang Q J, Mo C H, et al. Determination of four fluoroquinoloneantibiotics in tap water in Guangzhou and Macao[J]. Environmental Pollution,2010,158(7):2350-2358.
    [40]徐维海,张干,邹世春,等.固相萃取-液相色谱/串联质谱法分析水体中痕量抗生素[J].环境化学,2006,25(2):232-233.
    [41] Renew J E, Huang C H. Simultaneous determination of fluoroquinolone,sulfonamide, and trimethoprim antibiotics in wastewater using tandem solidphase extraction and liquid chromatography-electrospray mass spectrometry[J].Journal of Chromatography A,2004,1042(1-2):113-121.
    [42] Golet E M, Alder A C, Hartmann A, et al. Trace determination offluoroquinolone antibacterial agents in solid-phase extraction urbanwastewater by and liquid chromatography with fluorescence detection[J].Analytical Chemistry,2001,73(15):3632-3638.
    [43] Turiel E, Ferndández P, Poérez-Conde C, et al. Trace-level determination oftriazines and several degradation products in environmental waters by disksolid-pha se extraction and micellar electrokinetic chromatography[J]. Journalof Chromatography A,2000,872(l-2):299-307.
    [44] Reverté S, Borrull F, Pocurull E, et al. Determination of antibiotic compoundsin water by solid-phase extraction-high-performance liquid chromatography-(electrospray) mass spectrometry[J]. Journal ofChromatography A,2003,1010(2):225-232.
    [45] Tong C L, Zhuo X J, Guo Y. Occurrence and Risk Assessment of Four TypicalFluoroquinolone Antibiotics in Raw and Treated Sewage and in ReceivingWaters in Hangzhou, China[J]. Journal of Agricultural and Food Chemistry.2011,59(13),7303-7309.
    [46] Ferdig M, Kaleta A, Thanh Vo T D, et al. Improved capillary electrophoreticseparation of nine (fluoro) quinolones with fluorescence detection forbiological and environmental samples[J]. Journal of Chromatography A,2004,1047(2):305-311.
    [47] Kumar K, Thompson A, Singh A K, et al. Enzyme-linke dimmunosorbent assayfor ultratrace determination of antibiotics in aqueous samples[J]. Journal ofEnvironmental Quality,2004,33(l):250-256.
    [48] Haasnoot W, Gercek H, Cazemier G, et al. Biosensor immunoassay forfumequine in broiler serum and muscle[J]. Analytica Chimica Acta,2007,586(1-2):312-318.
    [49] Zhang Z, Liu J F, Feng T T et al. Time-Resolved Fluoroimmunoassay as anAdvantageous Analytical Method for Assessing the Total Concentration andEnvironmental Risk of Fluoroquinolones in Surface Waters[J]. EnvironmentalScience&Technology,2013,47(1):454-462.
    [50]童裳伦,项光宏,黄迪金,等.表面活性剂敏化的铽离子荧光探针对氧氟沙星的测定[J].分析化学,2004,32(5):619-621.
    [51]童裳伦,项光宏,刘维屏.表面活性剂敏化稀土荧光探针对环丙沙星药物的测定研究[J].光谱学与法谱分析,2005,25(12):2061-2064.
    [52] Han Y X, Wu X, Yang J H, et al.The fluorescence characteristic of theYttriurn-norfloxacin system and its analytical application[J]. Journal ofPharmaceutical and Biomedical Analysis,2005,38(3):528-531.
    [53]徐莉英,俞文清.诺氟沙星的荧光光谱研究及其应用[J].光谱学与光谱分析.2004,24(12):1615-1617.
    [54] Gimenez D, Grasso D, Sarabia L, et al. Determination of quinolones byfluorescent excitation emission[J]. Talanta,2004,64(2):442-451.
    [55] Tong C L, Zhuo X J, Guo Y, et al. Synchronous fluorescence determination ofciprofoxacin in the pharmaceutical formulation and human serum based on theperturbed luminescence of rare-earth ions[J]. Journal of Luminescence,2010,130(11):2100-2105.
    [56] Davydov N, Zairov R, Mustafina A, et al. Determination of fluoroquinoloneantibiotics through the fluorescent response of Eu(III) based nanoparticlesfabricated by layer-by-layer technique[J]. Analytica Chimica Acta,2013,784:65-71.
    [57] Rossi B, Verrocchio P, Viliani G, et al. Vibrational properties ofibuprofen-cyclodextrin inclusion complexes investigated by Raman scatteringand numerical simulation [J]. Journal of Raman Spectroscopy,2009,40(4):453-458.
    [58] McNally A, Forster R J, Keyes T E. Interfacial supramolecularcyclodextrin-fullerene assemblies: host reorientation and guest stabilization[J].Physical Chemistry Chemical Physics,2009,11(5):848-856.
    [59]黄怡,杨振,黄方千,等.新型环境敏感性β-环糊精水凝胶的合成及性能研究[J].功能材料,2007,5(38):778-786.
    [60]张晓云,乔华,倪京满.阿司匹林-β-环糊精包合物的实验研究[J].兰州大学学报(医学版),2005,31(2):17-19.
    [61]马文瑾. β-环糊精在分析化学中的应用[J].理化检验-化学分册,2000,38(6):319-322.
    [62] Zou G Z, Qian M, Zhang X L. Determination of Chlorobenzene byHydroxypropyl-β-Cyclodextrin Sensitized Fluorescence Quenching Methodwith Neutral Red as a Fluorescence Probe[J]. Journal of Environmental Scienceand Engineering,2010,4(2):9-13.
    [63] Halperin W P. Quantum size effects in metal particles[J]. Reviews ofModern Physics,1986,58(3):533-606.
    [64] Nakamura S, Mukai T, Senoh M. Candela-class high brightness In GaN/AIGaNd-ouble heterostructure blue light emitting diodes[J]. Applied Physics Letters,1994,64(13):1687-1689.
    [65] Eychmüller A. Structure and Photophysics of Semiconductor Nanocrystals[J].The Journal of Physical Chemistry B,2000,104(28):65l4-6528.
    [66]唐爱伟,滕枫,王元敏,等. II-VI族半导体量子点的发光特性及其应用研究进展[J].液晶与显示,2005,20(4):302-308.
    [67]孙宝全,徐咏蓝,衣光舜,等.半导体纳米晶体的光致发光特性及在生物材料荧光标记中的应用[J].分析化学,2002,30(9):1130-1136.
    [68]常鹏,刘肃,王秀华,等.水热法制备硫化锌纳米线及性能研究[J].人工晶体学报,2007,36(4):817-820.
    [69]岳光辉.低维纳米功能材料制备及研究[D].兰州:兰州大学学位论文,2007:79-80.
    [70]仲维卓,华素坤.纳米材料及其水热法制备[J].上海化工,1998,23(11):25-27.
    [71]李凤生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002:97-98.
    [72]梁新惠.纳米硫化锌表面修饰及性能研究[D].青岛:中国海洋大学学位论文,2008:4-9.
    [73]李兰英,郭峰,古国华,等.水热法制备均分散的硫化锌纳米晶聚集体[J].青岛科技大学学报,2005,26(3):211-214.
    [74] Jiang C L, Zhang W Q, Zou G F, et al. Hydrother-mal synthesis an-dcharacterization of ZnS microspheres and hollow nanospheres[J]. MaterialsChemistry and Physics,2007,103(1):24-27.
    [75]王鹏飞,袁媛,刘华,等.纳米硫化锌的制备及其研究进展[J].化学世界,2003,44(8):441-444.
    [76]邹明强,杨蕊,李锦丰,等.量子点的光学特性及其在生命科学中的应用[J].分析测试学报,2005,24(6):133-137.
    [77]李娟娟.功能化ZnS纳米粒子制备及其在分子荧光分析中的应用[D].杭州:浙江大学学位论文,2010:13-14.
    [78] Li Y X,Chen J L,Zhuo S J, et al. Application of L-Cysteine-Capped ZnSnanoparticles in the determination of nucleic acids using the resonance lightscattering method[J]. Microchimica Acta,2004,146(1):13-19.
    [79] Tu R Y, Liu B H, Wang Z Y, et al. Amine-Capped ZnS-Mn2+nanocrystals forfluorescence detection of Trace TNT Explosive[J]. Analytical Chemistry,2008,80(9):3458-3465.
    [80] He Y, Wang H F, Yan X P. Exploring Mn-Doped ZnS quantum dots for theRoom-Temperature phosphorescence detection of enoxacin in biologicalfluids[J]. Analytical Chemistry,2008,80(10):3832-3837.
    [81]曹凤岐,李丹,严拯宇.功能性硫化镉纳米粒子荧光增敏法测定诺氟沙星[J].光谱学与光谱分析,2009,29(8):2222-2226.
    [82] Niu H Y, Zhang D., Zhang S X, et al. Humic acid coated Fe3O4magneticnanoparticles as highly efficient Fenton-like catalyst for completemineralization of sulfathiazole[J]. Journal of Hazardous Materials,2011,190(1-3):559-565.
    [83] Liu T, You H, Chen Q W. Heterogeneous photo-Fenton degradation ofpolyacrylamide in aqueous solution over Fe(III)-SiO2catalyst[J]. Journalof Hazardous Materials,2009,162(2-3):860-865.
    [84] Guo L, Chen F, Fan X Q, et al. S-doped α-Fe2O3as a highly activeheterogeneous Fenton-like catalyst towards the degradation of acid orange7and phenol[J]. Applied Catalysis B: Environmental,2010,96(1-2):162-168.
    [85] Navarro S, Fenoll J, Vela N, et al. Removal of ten pesticides from leachingwater at pilot plant scale by photo-Fenton treatment[J]. Chemical EngineeringJournal,2011,167(1):42-49.
    [86] Li B, Zhang T. Biodegradation and adsorption of antibiotic in the activatedsludge process[J]. Environmental Science&Technology,2010,44(9):3468-3473.
    [87] Radjenovi J, Petrovi M. Barceló D. Fate and Distribution of pharmaceuticalsin wastewater and sewage sludge of the conventional activated Sludge (CAS)and advanced membrane bioreactor (MBR) treatment[J]. Water Research,2009,43(3):831-841.
    [88] Bel E D, Dewulf J, Witte B D, et al. Influence of pH on the sonolysis ofciprofloxacin: biodegradability, ecotoxicity and antibiotic activity of itsdegradation products[J]. Chemosphere,2009,77(2):291-295.
    [89]赵旺胜,唐新,童明庆.活性炭体外对万古霉素等7种抗生素吸附的实验研究[J].中华医院感染学杂志,2002,12(1):18-20.
    [90] Carabineiroa S A C, Thavorn-amornsri T, Pereiraa M F R, et al. Comparisonbetween activated carbon, carbon xerogel and carbon nanotubes for theadsorption of the antibiotic ciprofloxacin[J]. Catalysis Today,2012,186(1):29-34.
    [91] Ahmed M J, Theydan S K. Fluoroquinolones antibiotics adsorption ontomicroporous activated carbon from lignocellulosic biomass by microwavepyrolysis[J]. Journal of the Taiwan Institute of Chemical Engineers,2014,45(1):219-226.
    [92] Westerhoff P, Yoon Y, Snyder S A, et al. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinkingwater treatment processes[J]. Environmental Science&Technology,2005,39(17):6649-6663.
    [93] Picó Y, Andreu V. Fluoroquinolones in soilrisks and challenges[J]. Analyticaland Bioanalytical Chemistry,2007,387(4):1287-1299.
    [94] Zhang J Q, Dong Y H. Effect of low-molecular-weight organic acids on theadsorption of norfloxacin in typical variable charge soils of China[J]. Journalof Hazardous Materials,2008,151(2-3):833-839.
    [95] Carrasquillo A J, Bruland G L, Mackay A A, et al. Sorption of ciprofloxacinand oxytetracycline zwitterions to soils and soil minerals: influence ofcompound structure [J]. Environmental Science&Technology,2008,42(20):7634-7642.
    [96] Wang Z Y, Yu X D, Pan B, et al. Norfloxacin in Sorption and Thermodynamicson Surface-modified Carbon Nanotubes[J]. Environmental Science&Technology,2010,44(3):978-984.
    [97]顾维,赵玲,董元华,等.针铁矿吸附诺氟沙星特征的研究[J].中国环境科学2011,31(8):1314-1320.
    [98]莫测辉,黄显东,吴小莲,等.蒙脱石对喹诺酮类抗生素的吸附平衡及动力学特征[J].湖南大学学报(自然科学版),2011,38(6):64-68.
    [99]高鹏,莫测辉,李彦文,等.高岭土对喹诺酮类抗生素吸附特性的初步研究[J].环境科学,2011,32(6):1740-1744.
    [100] Koyuncu I, Arikan O A, Wiesner M R, et al. Removal of hormones andantibiotics by nanofiltration membranes[J]. Journal of Membrane Science,2008,309(1-2):94-101.
    [101] Ko uti K, Dolar D, A perger D, et al. Removal of antibiotics from a modelwastewater by RO/NF membranes[J]. Separation and Purification Technology,2007,53(3):244-249.
    [102]顾俊璟.化学氧化和膜分离技术处理抗生素制药废水研究[D].天津:天津大学学位论文,2006:23-35.
    [103] Ternes T A, Stüber J, Herrmann N, et al. Ozonation: a tool for removal ofpharmaceuticals, contrast media and musk fragrances from wastewater?[J].Water Research,2003,37(8):1976-1982.
    [104] Akmehmet B I, Otker M. Treatment of pharmaceutical wastewater containingantibiotics by O3and O3/H2O2processes[J]. Chemosphere,2003,50(1):85-95.
    [105] Cokgor E U, Alaton I A, Karahan O, et al. Biological treatability of raw andozonated penicillin formulation effluent [J]. Journal of Hazardous Materials,2004,116(1-2):159-166.
    [106]袁芳,胡春,李礼. UV/H2O2工艺降解环丙沙星的研究[J].环境工程学报,2011,5(9):1968-1972.
    [107] Naik P N, Chimatadar S A, Nandibewoor S T. Kinetics and oxidation offluoroquinolone antibacterial agents, norfloxacin, by alkaline permanganate:amechanistic study[J]. Industrial&Engineering Chemistry Research,2009,48(5):2548-2555.
    [108] Wang P, He Y L, Huang C H. Oxidation of fluoroquinolone antibiotics andstructurally related amines by chlorine dioxide: reaction kinetics, productpathway evaluation[J]. Water Research,2010,44(20):5989-5998.
    [109] Zhang H C, Huang C H. Oxidative Transformation of fluoroquinoloneantibacterial agents and structurally related amines by manganese oxide[J].Environmental Science&Technology,2005,39(12):4474-4483.
    [110] Zhang H C, Chen W R, Huang C H. Kinetic modeling of oxidation ofantibacterial agents by manganese oxide[J]. Environmental Science&Technology,2008,42(15):5548-5554.
    [111] An T C, Yang H, Li G Y, et al. Kinetics and mechanism of advanced oxidationprocesses (AOPs) in degradation of ciprofloxacin in water[J]. AppliedCatalysis B: Environmental,2010,94(3-4):288-294.
    [112] Sun J H, Song M K, Feng J L, et al. Highly efficient degradation of ofloxacinby UV/Oxone/Co2+oxidation process[J]. Environmental Science and PollutionResearch,2012,19(5):1536-1543.
    [113] Li Y, Niu J, Wang W. Photolysis of enrofloxacin in aqueous systems undersimulated sunlight irradiation: kinetics, mechanism and toxicity of photolysisproducts[J]. Chemosphere,2011,85(5):892-897.
    [114] Charles W K, Zhang W, Belinda S M, et al. Fate and effects of enrofloxacinin aquatic systems under different light conditions[J]. Environmental Science&Technology,2005,39(23):9140-9146.
    [115] Fisher J M, Reese J G, Pellechia P J, et al. Role of Fe(III), phosphate,dissolved organic matter, and nitrate during the photodegradation of domoicacid in the marine environment[J]. Environmental Science&Technology,2006,40(7):2200-2205.
    [116] Haque M M, Muneer M. Photodegradation of norfloxacin in aqueoussuspensions of titanium dioxide[J]. Journal of Hazardous Materials,2007,145(1-2):51-57.
    [117] Wood P, Glasser F P. Preparation and properties of pigmentary grade BiVO4precipitatedfrom aqueous solution[J]. Ceramics International,2004,30(6):875-882.
    [118] Rullens F, Laschewsky A, Devillers M. Bulk and thin films of bismuthvanadates prepfrom hybrid materials made from an organic polymer andinorganic salts [J]. Chemistry of Materials,2006,18(3):771-777.
    [119] Murcia-López S, Hidalgo M C, Navío J A. Photocatalytic activity of singleand mixed nanosheet-like Bi2WO6and TiO2for Rhodamine B degradationunder sunlike and visible illumination[J]. Applied Catalysis A: General,2012,423-424:34-41.
    [120] Gui M S, Zhang W D. Preparation and modification of hierarchicalnanostructured Bi2WO6with high visible light-induced photocatalyticactivity[J]. Nanotechnology,2011,22(26):265601.
    [121] Gotic M, Music S, Ivanda M, et al. Synthesis and characterisation of bismuth(III) vanadate[J]. Journal of Molecular Structure,2005,744:535-540.
    [122] Kudo A, Hijii S. H2or O2evolution from aqueous solutions on layered oxidephotocatalysts consisting of Bi3+with62(2) configuration and d(0) transitionmetal ions[J]. Chemistry Letters,1999,28(10):1103-1104.
    [123] Boullay P, Trolliard G, Mercurio D, et al. Toward a unified approach to thecrystal chemistry of aurivillius-type compounds.: I. the structural model[J].Journal of Solid State Chemistry,2002,164(2):252-260.
    [124] Luo S, Noguchi Y, Miyayama M, et al., Rietveld analysis and dielectricproperties of Bi2WO6-Bi4Ti3O12ferroelectric system[J]. Materials ResearchBulletin,2001,36(3-4):531-540.
    [125] Bordun O M, Kukharsky I Y, Antonyuk V. Luminescence of thin filmsbismuth and lead complex oxide compounds[J]. Radiation Measurements,2007,42(4-5):569-571.
    [126] Rangel R, Bartolo-Perez P, Gomez-Cortetz A, et al. Study ofmicrostructureand catalytic activity of gamma-Bi2MoO6and Bi2WO6compounds[J]. Surface Review and Letters,2002,9(5-6):1779-1783.
    [127] Zhang S C, Zhang C, Man Y, et al. Visible-light-driven photocatalyst ofBi2WO6nanoparticles prepared via amorphous complex precursor andphotocatalytic properties[J]. Journal of Solid State Chemistry,2006,179(1):62-69.
    [128] Wu L, Bi J H, Li Z H, et al. Rapid preparation of Bi2WO6photocatalyst withnanosheet morphology via microwave-assisted solvothermal synthesis[J].Catalysis Today,2008,131(1-4):15-20.
    [129] Yu J G, Xiong J F, Cheng B, et al. Hydrothermal preparation and visible-lightphotocatalytic activity of Bi2WO6powders[J]. Journal of Solid State Chemistry,2005,178(6):1968-1972.
    [130] Liu S W, Yu J G. Cooperative self-construction and enhanced opticalabsorption of nanoplates-assembled hierarchical Bi2WO6flowers[J]. Journal ofSolid State Chemistry,2008,181(5):1048-1055.
    [131] Fu H B, Zhang L W, Yao W Q, et al. Photocatalytic properties of nanosizedBi2WO6catalysts synthesized via a hydrothermal process[J]. Applied CatalysisB: Environmental,2006,66(1-2):100-110.
    [132] Guo Y D, Zhang G K, Gan H H. Synthesis, characterization and visible lightphotocatalytic properties of Bi2WO6/rectorite composites[J]. Journal of Colloidand Interface Science2012,369(1):323-329.
    [133] Chen M J, Chu W. Efficient Degradation of an antibiotic norfloxacin inaqueous solution via a simulated solar-light-mediated Bi2WO6process[J].Industrial&Engineering Chemistry Research,2012,51(13):4887-4893.
    [134] Sheng J Y, Li X J, Xu Y M. Generation of H2O2and OH Radicals on Bi2WO6for phenol degradation under visible light[J]. Catalysis,2014,4(3):732-737.
    [135] Min Y L, Zhang K, Chen Y C, et al. Synthesis of nanostructured ZnO/Bi2WO6heterojunction for photocatalysis application[J]. Separation and PurificationTechnology2012,92:115-120.
    [136] Ding X, Zhao K, Zhang L Z. Enhanced photocatalytic removal of sodiumpentachlorophenate with self-doped Bi2WO6under visible light by generatingmore superoxide ions[J]. Environmental Science&Technology,2014,48(10):5823-5831.
    [137] Cui Z K, Zeng D W, Tang T T, et al. Enhanced visible light photocatalyticactivity of QDS modified Bi2WO6nanostructures[J]. CatalysisCommunications,2010,11(13):1054-1057.
    [138] Xiao Q, Zhang J, Xiao C, et al. Photocatalytic degradation of methylene blueover Co3O4/Bi2WO6composite under visible light irradiation[J]. CatalysisCommunications,2008,9(6):1247-1253.
    [139] Zhang S C, Shen J D, Fu H B, et al. Bi2WO6photocatalytic films fabricated bylayer-by-layer technique from Bi2WO6nanoplates and its spectral selectivity[J].Journal of Solid State Chemistry,2007,180(4):1456-1463.
    [140] Zhang L, Chen D R, Jiao X L. Monoclinic structured BiVO4nanosheets:hydrothermal preparation, formation mechanism, and coloristic andphotocatalytic properties [J]. The Journal of Physical Chemistry B,2006,110(6):2668-2673.
    [141] Lin X, Li H J, Yu L L, et al. Efficient removal Rhodamine B overhydrothermally synthesized fshbone like BiVO4[J]. Materials ResearchBulletin,2013,48(10):4424-4429.
    [142] Obregón S, Colón G. On the different photocatalytic performance of BiVO4catalysts for Methylene Blue and Rhodamine B degradation[J]. Journal ofMolecular Catalysis A: Chemical,2013,376:40-47.
    [143] Shang M, Wang W, Sun S, et al. Bi2WO6Nanocrystals with highphotocatalytic activities under visible light[J]. The Journal of PhysicalChemistry C,2008,112(28):10407-10411.
    [144] Wu J, Duan F, Zheng Y, et al. Synthesis of Bi2WO6nanoplate-builthierarchical nest-like structures with visible-light-induced photocatalyticactivities[J]. The Journal of Physical Chemistry C,2007,111(34):12866-12871.
    [145] Zhang L S, Wang W Z, Zhou L, et al. Bi2WO6nano-and microstructures:shape control and associated visible-light-driven photocatalytic activities[J].Small,2007,3(9):1618-1625.
    [146] Wang C Y, Zhang H, Li F, et al. Degradation and mineralization of bisphenolA by mesoporous Bi2WO6under simulated solar light irradiation[J].Environmental Science&Technology,2010,44(17):6843-6848.
    [147] Li Y Y, Liu J P, Huang X T, et al. Hydrothermal synthesis of Bi2WO6uniformhierarchical microspheres[J]. Crystal Growth&Design,2007,7(7):1350-1355.
    [148] Liu Y M, Tang H B, Lv H, et al. Self-assembled three-dimensionalhierarchical Bi2WO6microspheresby sol-gel-hydrothermal route[J]. CeramicsInternational2014,40(4):6203-6209.
    [149] Saison T, Gras P, Chemin N, et al. New insights into Bi2WO6properties as avisible-light photocatalyst[J]. The Journal of Physical Chemistry C,2013,117(44):22656-22666
    [150] Shang M, Wang W Z, Xu H L. New Bi2WO6nanocages with highvisible-light-driven photocatalytic activities prepared in refluxing EG[J].Crystal Growth&Design,2009,9(2):991-996.
    [151] Ma D K, Huang S M, Chen W X, et al. Self-assembled three-dimensionalhierarchical umbilicate Bi2WO6microspheres from nanoplates: controlledsynthesis, photocatalytic activities, and wettability[J]. The Journal of PhysicalChemistry C,2009,113(11):4369-4374.
    [152] Mann A K P, Skrabalak S E. Synthesis of single-crystalline nanoplates byspray pyrolysis: ametathesis route to Bi2WO6[J]. Chemistry of Materials,2011,23(4):1017-1022.
    [153] Zhang C, ZhuY F. Synthesis of square Bi2WO6nanoplates as high-activityvisible-light-driven photocatalysts[J]. Chemistry of Materials,2005,17(13):3537-3545.
    [154] Ge M, Li Y F, Liu L, et al. Bi2O3-Bi2WO6Composite Microspheres:Hydrothermal Synthesis and Photocatalytic Performances[J]. The Journal ofPhysical Chemistry C,2011,115(13):5220-5225.
    [155] Zhu G Q, Que W X. Hydrothermal Synthesis and Characterization ofVisible-Light-Driven Dumbbell-Like BiVO4and Ag/BiVO4Photocatalysts[J]. Journal of Cluster Science,2013,24(2):531-547.
    [156] Wang W Z, Huang X W, Wu S, et al. Preparation of p-n junction Cu2O/BiVO4heterogeneous nanostructures withenhanced visible-light photocatalyticactivity[J]. Applied Catalysis B: Environmental,2013,134-135:293-301.
    [157] Tian Y L, Chang B B, Lu J L, et al. Hydrothermal synthesis of graphiticcarbon nitride-Bi2WO6heterojunctions with enhanced visible lightphotocatalytic activities[J]. Applied Materials&Interfaces,2013,5(15):7079-7085.
    [158] Xu J H, Wang W Z, Gao E P, et al.Bi2WO6/Cu0: a novel coupled system withenhanced photocatalytic activity by Fenton-like synergistic effect[J]. CatalysisCommunications,2011,12(9):834-838.
    [159]李园园.铋系光催化剂纳米-微米结构的制备、修饰及可见光催化性能研究[D].武汉:华中师范大学学位论文,2009:66-80.
    [160] Fu H B, Zhang S C, Xu T G, et al. Photocatalytic degradation of RhB byfluorinated Bi2WO6and distributions of the intermediate products[J].Environmental Science&Technology,2008,42(6):2085-2091.
    [161] Wu Q S, Feng Y, Zhang G Y, et al. α-Fe2O3modifed Bi2WO6fower-like mesostructures with enhanced photocatalytic performance[J]. MaterialsResearch Bulletin,2014,49:440-447.
    [162] Wang W Z, Xu J H, Zhang L, et al. Bi2WO6/PANI: An efficientvisible-light-induced photocatalytic composite[J]. Catalysis Today,2014,224:147-153.
    [163] Zhu S B, Xu T G, Fu H B, et al. Synergetic effect of Bi2WO6photocatalystwith C60and enhanced photoactivity under visible irradiation[J].Environmental Science&Technology,2007,41(17):6234-6239.
    [164] Zhang L, Wang W Z, Shang M, et al. Bi2WO6@carbon/Fe3O4microspheres:preparation, growth mechanism and application in water treatment[J]. Journalof Hazardous Materials,2009,172(2-3):1193-1197.
    [165] Lam F L Y, Hu X J. A high performance bimetallic catalyst for photo-Fentonoxidation of orange II over awide pH range[J]. Catalysis Communications,2007,8(12):2125-2129.
    [166] Li H Y, Gong Y H, Huang, Q Q, et al. Degradation of orange II byuv-assistedadvanced Fenton process: response surface approach, degradation pathway, and biodegradability[J]. Industrial&Engineering Chemistry Research,2013,52(44):15560-15567.
    [167] Xu T Y, Liu Y, Ge F, et al. Application of response surface methodology foroptimization of azocarmine B removal by heterogeneous photo-Fenton processusing hydroxy-iron-aluminum pillared bentonite[J]. Applied Surface Science,2013,280:926-932.
    [168] Soon A N, Hameed B H. Heterogeneous catalytic treatment of syntheticdyesin aqueous media using Fenton and photo-assisted Fenton process[J].Desalination,2011,269(1-3):1-16.
    [169] Chen Q, Wu P, Li Y, et al. Heterogeneous photo-Fenton photodegradation ofreactive brilliant orange X-GN over iron-pillared montmorillonite under visibleirradiation[J]. Journal of Hazardous Materials,2009,168(2-3):901-908.
    [170] Iurascua B, Siminiceanua I, Vioneb D, et al. Phenol Degradation in Waterthrough a Heterogeneous Photo-Fenton Process Catalyzed by Fe-treated Laponite[J]. Water Research,2009,43(5):1313-1322.
    [171] Namkung, K C, Burgess, A E, Bremner, D H, et al. Advanced Fentonprocessing of aqueous phenol solutions: a continuous system study includingsonication effects[J]. Ultrasonics Sonochemistry,2008,15(3):171-176.
    [172] Pariente M I, Martinez F, Melero J A, et al. Heterogeneous photo-Fentonoxidation of benzoic acid in water: effect of operating conditions, reactionby-products and coupling with biological treatment[J]. Applied Catalysis B: Environmental,2008,85(1-2):24-32.
    [173] Elmolla E S, Chaudhuri M, Eltoukhy M M. The use of artificial neuralnetwork (ANN) for modeling of COD removal from antibiotic aqueous solutionby the Fenton process[J]. Journal of Hazardous Materials,2010,179(1-3):127-134.
    [174] Elmolla E, Chaudhuri M. Optimization of Fenton process for treatment ofamoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J].Journal of Hazardous Materials2009,170(2-3):666-672.
    [175] Elmolla E S, Chaudhuri M. Degradation of the antibiotics amoxicillin,ampicillin and cloxacillin in aqueous solution by the photo-Fenton process[J]. Journal of Hazardous Materials,2009,172(2-3):1476-1481.
    [176] Wang A M, Li Y Y, Estrada A L. Mineralization of antibioticsulfamethoxazole by photoelectro-Fenton treatment using activated carbonfiber cathode and under UVA irradiation[J]. Applied Catalysis B:Environmental,2011,102(3-4):378-386.
    [177] González O, Sans C, Esplugas S. Sulfamethoxazole abatement byphoto-Fenton Toxicity, inhibition and biodegradability assessment ofintermediates[J]. Journal of Hazardous Materials,2007,146(3):459-464.
    [178] Trovó A G, Nogueira R F P, Agüera A, et al. Degradation of sulfamethoxazolein water by solarphoto-Fenton chemical and toxicological evaluation[J]. WaterResearch,2009,43(16):3922-3931.
    [179] González O, Sans C, Esplugas S, et al. Application of solar advancedoxidation processes to the degradation of the antibiotic sulfamethoxazole[J].Photochemical&Photobiological Sciences,2009,8(7):1032-1039.
    [180] Pérez-Moya M, Graells M, Castells G, et al. Characterization of thedegradation performance of the sulfamethazine antibiotic by photo-Fentonprocess[J]. Water Research,2010,44(8):2533-2540.
    [181] Bautitz I R, Pupo Nogueira R F. Degradation of tetracycline by photo-Fentonprocess-solar irradiation and matrix effects[J]. Journal of Photochemistry andPhotobiology A: Chemistry,2007,187(1):33-39.
    [182] Rozas O, Contreras D, Angélica Mondaca M, et al. Experimental design ofFenton and photo-Fenton reactions for the treatment of ampicillin solutions[J].Journal of Hazardous Materials,2010,177(1-3):1025-1030.
    [183] Hu J M, Liu S Y. Engineering responsive polymer building blocks withhost-guest molecular recognition for functional applications[J]. Accounts ofChemical Research,2014,47(7):2084-2095.
    [184] Cheng M J, Liu Q, Xian Y M, et al. Programmable macroscopicsupramolecular assembly through combined molecular recognition andmagnetic field-assisted localization[J]. Applied Materials&Interfaces,2014,6(10):7572-7578.
    [185] Thiele C, Auerbach D, Jung G, et al. Inclusion of chemotherapeutic agents insubstituted β-cyclodextrin derivatives[J]. Journal of Inclusion Phenomenaand Macrocyclic Chemistry,2011,69(3-4):303-307.
    [186] Shuang S M, Yang Y, Pan J H. Study on molecular recognition ofpara-aminobenzoic acid species by α-, β-and hydroxypropyl-β-cyclodextrin[J].Analytica Chimica Acta,2002,458(2):305-310.
    [187] Ganea G M, Kolic P E, El-Zahab B, et al. Ratiometric coumarin-neutral red(CONER) nanoprobe for detection of hydroxyl radicals[J]. AnalyticalChemistry,2011,83(7):2576-2581.
    [188] Muthu Vijayan Enoch I V, Swaminathan M. Inclusion complexation of2-amino-7-bromofuorene by β-cyclodextrin: spectral characteristics and theeffect of pH [J]. Journal of Fluorescence,2004,14(6):751-756.
    [189] Antony Muthu Prabhu A, Venkatesh G, Rajendiran N. Azo-hydrazotautomerism and inclusion complexation of1-pheny-lazo-2-naphthols withvarious solvents and β-cyclodextrin[J]. Journal of Fluorescence,2010,20(4):961-972.
    [190]中华人民共和国药典(二部)[M].北京:化学工业出版社,2010,753.
    [191] Li D, Yan Z Y, Cheng W Q. Determination of ciprofloxacin withfunctionalized cadmium sulfide nanoparticles as a fluorescence probe[J].Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2008,7l(4): l204-1211.
    [192] Wang M L, Wang C H, Wang W. Preparation of porous ZrO2/Al2O3macrobeads from ion-exchange resin templates[J]. Journal of Materials Science,2011,46(5):1220-1227.
    [193]鲁俊东,龙超,高冠道,等.废弃离子交换树脂基炭化树脂的制备与特性[J].离子交换与吸附,2005,21(5):397-405.
    [194] Xie T H, Sun X Y, Lin J. Enhanced photocatalytic degradation of RhB drivenby visible light-induced MMCT of Ti(IV)-O-Fe(II) formed in Fe-dopedSrTiO3[J]. The Journal of Physical Chemistry C,2008,112(26):9753-9759.
    [195] Li G S, Zhang D Q, Yu J C. Ordered mesoporous BiVO4through nanocasting:A superior visible light-driven photocatalyst[J]. Chemistry of Materials,2008,20(12):3983-3992.
    [196] Colón G, Hidalgo M C, Munuera G, et al. Structural and Surface Approach tothe Enhanced Photocatalytic Activity of Sulfated TiO2Photocatalyst. AppliedCatalysis B: Environmental,2006,63(1-2):45-59.
    [197] Kulkarni G U, Rao C N R, Roberts M W. Nature of the Oxygen Species atNi(110) and Ni(100) Surfaces Revealed by Exposure to Oxygen andOxygen-Ammonia Mixtures: Evidence for the Surface Reactivity of O-TypeSpecies. The Journal of Physical Chemistry,1995,99(10):3310-3316.
    [198] Hong H L, Jiang W T, Zhang X L, et al. Adsorption of Cr(VI) onSTAC-modified rectorite[J]. Applied Clay Science,2008,42(1-2):292-299.
    [199] Sun Y F, Xie Y, Wu C Z, et al. First experimental identification ofBiVO4·0.4H2O and its evolution mechanism to final monoclinic BiVO4[J].Crystal Growth&Design,2010,10(2):602-607.
    [200] Jia X, Chen D, Jiao X, et al. Environmentally-friendly preparation ofwater-dispersible magnetitenanoparticles[J]. Chemical Communications,2009,8:968-970.
    [201] Liu Y, Ren Z Y, Wei Y L, et al. Synthesis and applicationsof graphite carbon sphere with uniformly distributed magneticFe3O4nanoparticles (MGCSs) and MGCS@Ag, MGCS@TiO2[J]. Journal ofMaterials Chemistry,2010,23:4802-4808.
    [202] Chen Y L, Cao X X, Kuang J D, et al. The gas-phase photocatalyticmineralization of benzene over visible-light-driven Bi2WO6@Cmicrospheres[J]. Catalysis Communications,2010,12(4):247-250.
    [203] Guo S, Li X F, Wang H Q, et al. Fe-ions modified mesoporous Bi2WO6nanosheets with high visible light photocatalytic activity[J]. Journal of Colloidand Interface Science,2012,369:373-380.
    [204] Li Y Y, Liu J P, Huang X T, et al. Hydrothermal synthesis of Bi2WO6uniformhierarchical microspheres[J]. Crystal Growth&Design,2007,7(7):1350-1355.
    [205] Shang M, Wang W Z, Sun S M, et al. Efficient Visible Light-InducedPhotocatalytic Degradation of Contaminant by Spindle-like PANI/BiVO4. TheJournal of Physical Chemistry C,2009,113(47):20228-20233.
    [206] Fu H B, Pan C S, Yao W Q, et al. Visible-light-induced degradation ofRhodamine B by nanosized Bi2WO6[J]. The Journal of Physical Chemistry B,2005,109(47):22432-22439.
    [207] Gumy D, Morais C, Bowen P, et al. Catalytic activity of commercial of TiO2Powders for the abatement of the bacteria (E.coli) under solar simulated light:Influence of the isoelectric point. Applied Catalysis B: Environmental,2006,63(1-2):76-84.
    [208] Xiao Q, Zhang J, Xiao C, et al. Photocatalytic degradation of methylene blueover Co3O4/Bi2WO6composite under visible light irradiation[J].CatalysisCommunications,2008,9(6):1247-1253.
    [209] Reshak A H, Chen X A, Kityk I V, et al. X-ray photoelectron spectra and theelectronic band structure for non-centrosymmetric Bi2ZnB2O7nonlinear singlecrystal[J]. Current Opinion in Solid State&Materials Science,2008,12(2):26-31.
    [210] Guo Y D, Zhang G K, Gan H H. Synthesis, characterization and visible lightphotocatalytic properties of Bi2WO6/rectorite composites[J]. Journal of Colloidand Interface Science,2012,369:323-329.
    [211]Yu J G, Xiong J F, Cheng B, et al. Hydrothermal preparation and visible-lightphotocatalytic activity of Bi2WO6powders[J]. Journal of Solid State Chemistry,2005,178(6):1968-1972.
    [212] Caliman A F, Cojocaru C, Antoniadis A. Optimized photocatalytic degradationof Alcian Blue8GX in the presence of TiO2suspensions[J]. Journalof Hazardous Materials,2007,144(1-2):265-273.
    [213] Liu H L, Chiou Y R. Optimal decolorization efficiency of Reactive Red239by UV/TiO2photocatalytic process coupled with response surfacemethodology[J]. Chemical Engineering Journal,2005,112(1-3):173-179.
    [214] Fernandez J, Kiwi J, Lizama C. Factorial experimental design of Orange IIphotocatalytic discolouration[J]. Journal of Photochemistry and PhotobiologyA: Chemistry,2002,151(1-3):213-219.
    [215] Cho I H, Zoh K D. Photocatalytic degradation of azo dye (Reactive Red120)in TiO2/UV system: optimization and modeling using a response surfacemethodology(RSM) based on the central composite design[J].Dyes and Pigments,2007,75(3):533-543.
    [216] Secula M S, Suditu G D, Poulios I, et al. Response surface optimization of thephotocatalyticdecolorization of a simulated dyestuff effluent[J]. ChemicalEngineering Journal,2008,141(1-3):18-26.
    [217] Chen J Q, Hu Z J, Wang D, et al. Photocatalytic mineralization of dimethoatein aqueous solutions using TiO2: Parameters and by-products analysis [J].Desalination,2010,258(53):28-33.
    [218] Sun Z Z, Ma J, Wang L B, et al. Degradation of nitrobenzene in aqueoussolution by ozone-ceramic honeycomb[J]. Journal of Environmental Sciences,2005,17(5):716~721.
    [219]吕永为,郭祥群.荧光分光光度法测定两种中药对羟基自由基的清除作用[J].厦门大学学报(自然科学版),2004,43(2):208-212.
    [220] Gao J J, Xu K H, Hu J X, et al. Determination of trace hydroxyl radicals byflow injection spectrofluorometry and its analytical application[J]. Journal ofArgricultural and Food Chemistry,2006,54:7968-7972.
    [221]李楠.微波强化处理二甲亚砜生产废水工艺及机理研究[D].哈尔滨:哈尔滨工业大学学位论文,2010:70-78.
    [222] Su M H, He C, Sharma V K, et al. Mesoporous zinc ferrite: Synthesis,characterization, and photocatalytic activity with H2O2/visible light[J]. Journalof Hazardous Materials,2012,211-212:95-103.
    [223] Mao Y, Schoneich C, Asmus K D. Identification of organic acids and otherintermediates in oxidative degradation of chlorinated ethanes on TiO2surfacesen route to mineralization. a combined photocatalytic and radiation chemicalstudy[J]. The Journal of Physical Chemistry,1991,95(24):10080-10089.
    [224] Martin S T, Lee A, Hoffmann A R. Chemical mechanism of inorganic oxidantsin the TiO2/UV process: increased rates of degradation of chlorinatedhydrocarbons[J]. Environmental Science&Technology,1995,29(10):2567-2573.
    [225] Chen S J, Li Y J, Lv R J, et al. Preparation, characterization of C/Fe-Bi2WO6nanosheet composite and degradation application of norfloxacin in water[J].Journal of Nanoscience and Nanotechnology,2013,13(8):5624-5630.
    [226] Liu W J, Zeng F X., Jiang H, et al. Composite Fe2O3and ZrO2/Al2O3photocatalyst: Preparation, characterization, and studies on the photocatalyticactivity and chemical stability[J]. Chemical Engineering Journal,2012,180(1):9-18.
    [227] Wang D J, Xue G L, Zhen Y Z, et al. Monodispersed Ag nanoparticles loadedon the surface of spherical Bi2WO6nanoarchitectures with enhancedphotocatalytic activities[J]. Journal of Material Chemistry,2012,22(11):4751-4758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700