果糖联合高脂饮食对叙利亚金黄地鼠糖脂代谢影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     近年来,由于物质生活水平的提高、体力劳动的减少和口老龄化进程加快,糖尿病在世界范围内的患病率呈急剧上升趋势,已经成为继心脑血管疾病、恶性肿瘤之后导致人类整体健康水平下降的罪魁祸首之一。目前全球拥有超过2.4亿人已经被诊断为糖尿病,专家预测到2025年,全球估计将有3.5亿人以上罹患糖尿病。2009年公布的“中国糖尿病及代谢综合征流行病学调查”的最新数据显示,20岁以上的城市、乡镇和富裕农村人群中,糖尿病患病率已达9.7%,另外还有15%的人处于糖调节异常阶段。如果不采取有效的防治手段,糖尿病可能成为21世纪人类将面临的一场新的灾难。
     果糖(Fructose, FRU)一般制成晶体或者糖浆作为商业用途。在过去的20年里,果糖作为甜味剂在加工食品及软性饮料中从20%增加至30%,这和同期剧烈上升的肥胖发生率相似。有研究提示,日常高脂饮食、喝大量果糖的软饮料所导致的超重和肥胖,与高果糖高脂导致的高甘油三酯血.症、代谢综合征、糖耐量受损、胰岛素抵抗的发生密切相关,但果糖如何导致甘油三酯增高、非酒精性脂肪肝,如何导致胰岛素抵抗、使机体出现胰岛素敏感性降低,继而出现糖耐量受损,其确切的分子机制尚未完全阐明。所以,对此作进一步的研究,阐明其机制并针对其发生机制采取相应的干预措施,对预防肥胖、糖尿病及代谢综合症的发病意义重大。而对其相关发病机制的进一步研究,就需要建立一种与现代人饮食模式相似、糖脂代谢亦与人类相似的动物模型。既往有文献指出:兔、大鼠或小鼠模型在脂质代谢方面均与人类有较大差别,小鼠血量少,不利于血生化分析及实验设计,用上述动物作为研究现代社会人类高糖高脂饮食的动物模型,具有一定的局限性。另一方面,有研究表明,叙利亚金黄地鼠,特别是雄性金黄地鼠,在糖脂代谢方面与人类最接近,可能是糖脂代谢紊乱建模的新选择。
     大量证据表明脂肪组织不仅是能量的储存所更是重要的内分泌器官,脂肪组织生成和释放许多生物活性分子,通过局部和全身作用,协调能量代谢、胰岛素敏感性、炎症和血管反应等。脂肪型脂肪酸结合蛋白(Adipocyte fatty acid binding protein, A-FABP)主要表达于脂肪细胞和巨噬细胞,它作为脂肪酸的转运蛋白,影响着脂肪酸的代谢及脂肪酸信号,与糖尿病和动脉粥样硬化密切相关。是成熟脂肪细胞中的量最大的蛋白,属于脂肪酸绑定蛋白家族中的一员,在组织细胞间脂肪酸运输及能量代谢中有重要作用。最近有动物模型研究提不A-FABP可能在糖自动调节机能中有重要作用,且发现糖代谢紊乱与A-FABP水平显著相关。本实验通过检测A-FABP在不同膳食组中的变化,探讨其与血糖升高、胰岛素抵抗、胰岛素敏感性降低之间的相关性。
     综上所述,本课题选择叙利亚金黄地鼠为研究对象,通过不同高脂膳食成分饲料诱导方式,建立更接近现代人膳食成分糖脂紊乱的动物模型,为目前糖尿病、肥胖、代谢综合征、高甘油三酯血症、非酒精性脂肪肝的发生机制及其早期干预研究提供动物模型。并同时了解在不同膳食喂养条件下A-FABP浓度变化,研究其与胰岛素抵抗的关系。
     研究目的
     以不同成分膳食喂养叙利亚金黄地鼠,通过设正常对照组、高脂组、高脂+葡萄糖组、高脂+果糖组,观测叙利亚金黄地鼠体重、血清糖脂水平、胰岛素、A-FABP浓度、肝指数及肝脏和胰腺组织形态变化。对比分析正常与病理状态下叙利亚金黄地鼠糖脂变化可能发生机制。旨在建立更接近现代人饮食习惯的糖脂代谢异常动物模型。
     研究方法
     1.随机选取12周健康雄性叙利亚金黄地鼠,分为四组,每组6只。正常对照组(N组)用普通饲料喂养,单纯高脂组(HF组)用单纯高脂饲料喂养,葡萄糖高脂组(HF+GLU组)用20%葡萄糖糖溶液+高脂饲料喂养,高脂果糖组(HF+FRU)用20%果糖溶液+高脂饲料喂养。共喂养12周,分别在第0、1、2、6、12周测体重、酶法测定金黄地鼠血清甘油三酯、胆固醇、血糖水平。
     2.12周末处死金黄地鼠,暴露腹腔,心脏取血3-4mL,室温下静置30min 3000rP离心15min,取血浆10μL分装保存于-80℃冰箱备检。肉眼观察肝及胰腺,肝脏称重,计算肝指数(肝指数=肝脏质量/体质量×100%)。留取肝脏叶、分离胰腺,立即投入10%甲醛溶液固定,逐级乙醇脱水,二甲苯透明,石蜡包埋切片,HE染色,光学显微镜下观察各组金黄地鼠肝组织学变化。
     3. ELISA法测定各组金黄地鼠血清胰岛素及A-FABP浓度:采用美国R&D公司大鼠血清A-FABP试剂盒及血清胰岛素试剂盒,即酶联免疫吸附法测定血清A-FABP及胰岛素浓度。严格按说明书操作,批内差异11%,批间差异10%。计算胰岛素敏感指数:胰岛素敏感指数ISI=LIN 1/(空腹血糖值FBG×空腹血清胰岛素值FIN)。
     4.统计学分析:采用SPSS 13.0统计软件进行分析,数据以X±s表示,多组比较方差齐采用one-way ANOVA,组间多重比较采用LSD法,不齐则采用Welch检验,多重比较采用Tamhane检验,不同时间指标比较采用重复测量方差分析。P<0.05认为差异有统计学意义。
     研究结果
     1.不同膳食成分各组叙利亚金黄地鼠的体重变化:各组体重水平均持续上升,12周时达最高峰。HF组、HF+GLU组、HF+FRU组与N组相比升幅更大(P<0.01)。各个时间点HF+FRU组体重均较高于其余三组(P<0.01)。
     2.不同膳食成分各组叙利亚金黄地鼠的血生化特点:
     甘油三酯:N组12周甘油三酯水平基本持平。HF组第2周显著升高,第6周时下降,到第12周显著上升。HF+GLU组呈持续上升趋势,12周达峰值。HF+FRU组在2周已达到一平台,12周时达最高峰。入组时四组甘油三酯水平无显著差异,不同膳食成分喂养后一周始,各个时间点均以HF+FRU组甘油三酯高于其余三组(P<0.01)。
     胆固醇:HF组、HF+GLU组及HF+FRU胆固醇均在1周后显著升高,HF+GLU组及HF组在2周达最高峰,6周及12周时稍有下降。HF+FRU组呈持续上升趋势,12周达峰值。HF组、HF+GLU组、HF+FRU组的胆固醇从入组时2mmol/L左右上升至12周的7.5mmol/L左右,而正常组则从基本维持在1.95左右。HF组、HF+GLU组、HF+FRU组胆固醇上升显著高于正常组(P<0.01)。
     血糖:正常组在研究的12周内血糖变化无统计学意义(P>0.05)。HF、HF+FRU、HF+GLU糖组与正常组血糖变化幅度不同,血糖最大值在12周,最小值在0周,在1周即明显升高,6周升高后出现平台,其中HF+FRU组血糖升高幅度比HF、HF+GLU组更显著(P<0.01)。
     3.各组金黄地鼠肝脏及胰腺组织形态学改变:
     肝脏:肉眼:正常组肝脏无异常变化;Hf组及HF+GLU组肝脏颜色黄紫红色相间,边缘钝,部分肝脏表面呈沙粒样改变,体积增大;HF+FRU组地鼠肝脏呈黄白褐色,肝脏体积显著增大,边缘圆钝,包膜紧张。光镜:正常对照组形态未见明显变化。HF组及HF+GLU组,肝细胞明显肿胀增大,有大量脂肪滴存在,部分肝细胞呈空泡状,肝中央静脉和小叶间静脉含有少量红细胞,肝细胞间见炎性细胞;HF+FRU组与HF及HF+GLU组相比较脂肪样变更显著,脂肪滴弥漫累积大多数小叶,细胞核深染,细胞明显肿胀,肝细胞排列不整齐,见大量炎性细胞,并可见脂肪囊形成。
     胰腺:肉眼未见明显差异,光镜:正常对照组,胰岛大小数量正常,大小均一,形状规则,界限清楚;HF组、HF+GLU组,HF+FRU组胰岛增生,体积普遍增大,数量增多,但三组间差别不显著。肝指数:与正常组相比,HF组、HF+GLU组、HF+FRU组肝指数(肝指数=肝脏质量/体质量×100%)明显升高,差异有显著性(P<0.01);与HF组、HF+GLU组比较,HF+GLU组肝指数水平升高更显著(P<0.01)。
     4.胰岛素及胰岛素敏感指数:
     血清胰岛素:HF组、HF+GLU组、HF+FRU组的血清胰岛素水平均高于正常对照组,与HF及HF+GLU组相比,HF+FRU组胰岛素水平升高更显著(P<0.01)。
     胰岛素敏感指数:胰岛素敏感指数[ISI=LIN 1/(空腹血糖值FBG×空腹血清胰岛素值FIN)]:HF组、HF+GLU组、HF+FRU组均低于N组,差异具有显著性(P<0.01),其中HF+FRU组与HF组、HF+GLU组相比,胰岛素敏感指数更低,差异具有显著性(P<0.01)。
     6.血清A-FABP:
     血清A-FABP:四组金黄地鼠血清A-FABP水平,HF组、HF+GLU组、HF+FRU组血清A-FABP浓度均高于N组,差异具有显著性。其中HF+FRU组与HF组、HF+GLU组相比,血清A-FABP浓度更高,差异具有显著性,P值均<0.01。
     研究结论
     1.经一定周期不同成分的高脂饲料喂养,叙利亚金黄地鼠可形成典型的血脂紊乱、高糖血症、胰岛素抵抗、非酒精性脂肪肝及胰岛增生。其中,高脂高果糖金黄地鼠模型组与高脂模型组及高脂高葡萄糖模型组相比较,甘油三酯、胆固醇、血糖升高、胰岛素分泌增多、胰岛素敏感性降低更明显,非酒精性脂肪肝及胰岛增生现象更显著。
     2.高脂高果糖雄性金黄地鼠模型的膳食成分更好地模拟人类饮食结构及人类糖脂代谢紊乱的病理过程,为现代人高脂高果糖饮食所导致糖耐量受损、高脂血脂、代谢综合征的研究提供更有优势的实验动物模型。
     3.血清A-FABP水平在胰岛素分泌增高、胰岛素敏感性降低更显著的高脂高果糖地鼠组中显著增加,血清A-FABP可能是糖尿病、代谢综合征的发生、发展一个标志物。
Background
     In recent years, as the improvement of living standards, reducing labor and increasing aging population the proportion of diabetes in the world showed a sharp rise in the prevalence of the trend of diabetes. Diabetes has become one of the culprit of malignant tumors which decline hunman health level, that after heart and cerebrovascular diseases. Currently more than 240 million people around the world have been diagnosed with diabetes, experts predict that in 2025, there is estimated to be more than 3.5 million people suffer from diabetes. What published in 2009 saying, "China epidemiological survey of diabetes and metabolic syndrome, the latest data show that over the age of 20 cities, towns and prosperous rural population, diabetes prevalence has reached 9.7%, plus 15% in glucose regulation stage. If do not take effective means for prevention and treatment, diabetes may become the 21st century new disaster.
     Fructose (Fructose, FRU) generally made of crystal or syrup for commercial purposes. In the past 20 years, as a sweetener in processed foods and soft drinks fructose increased from 20% to 30%, which increase similar to is the rate of increasesing obesity over the same period. Some studies suggest that daily high-fat diet, drink plenty of soft drinks, fructose caused overweight and obesity, high fat and high fructose induced hypertriglyceridemia is closely related to metabolic syndrome, impaired glucose tolerance, insulin resistance. However, how higher fructose cause triglyceride, non-alcoholic fatty liver disease, and insulin resistance, insulin sensitivity which was followed by impaired glucose tolerance, the related molecular mechanism has not been fully elucidated. Therefore, this study further clarify the mechanism and the mechanism for its take appropriate interventions to prevent obesity, diabetes and metabolic syndrome is of great significance. And their further study of the pathogenesis related to a need for a modern dietary patterns with similar glucose and lipid metabolism are similar to animal and human models. With previous literature suggests, rabbit, rat or mouse models of human lipid metabolism are very different, less blood in mice, is not conducive to biochemical analysis and experimental design, the use of such animals as the study of modern society, human high- sugar high-fat diet in animal models, with some limitations. On the other hand, studies have shown that Syrian hamster, especially the male hamster, glucose and lipid metabolism in the nearest human, therefore, this study is more similar to human lipid metabolism in the golden hamster as experimental animals, give 12 weeks of the different components of the high fat, sugar fat diet, observed hamster body weight, serum glucose and lipid metabolism, insulin, serum lipid fatty acid binding protein, the insulin sensitivity, liver index, liver and observed pathological changes of pancreatic tissue. Look closer to human due to the high sugar and fat diet caused abnormal lipid metabolism and insulin resistance in animal models. As obesity, metabolic syndrome, hypertriglyceridemia, diabetes, non-alcoholic fatty liver mechanism and early intervention (such as drug screening, nutritional factors, dietary intervention, etc.) to provide a new animal model.
     Considerable evidence that adipose tissue is not only the energy storage is more important endocrine organ, releasing a large number of biologically active substances into the blood stream. These adipose tissue-derived bioactive molecules, through the local and systemic role in coordinating energy metabolism, insulin sensitivity, inflammation and vascular response. Fat-type fatty acid binding protein (Adipocyte fatty acid binding protein, A-FABP) expressed mainly in fat cells and macrophages, as fatty acid transport protein, affecting the metabolism of fatty acids and fatty acid signal, with diabetes and atherosclerosis are closely related. Mature fat cells is the largest protein [2], fatty acid binding protein is a member of the family, between the fatty acid transport in cells and plays an important role in energy metabolism [3,4]. Recently, animal models suggest A-FABP may function in the automatic adjustment of sugar have an important role. In recent years, studies have found that glucose metabolism and A-FABP levels were significantly related. In this study, by detecting the A-FABP in different dietary groups, and to explore with the blood sugar, insulin resistance, insulin sensitivity, the correlation between reduced.
     In summary, our study group selected Syrian hamster as the research object, feed ingredients by high fat diet induced in different ways, the establishment of the modern dietary components closer to the animal model of lipid disorders, the current diabetes, obesity, metabolic syndrome, hypertriglyceridemia, non-alcoholic fatty liver disease pathogenesis and animal models of early intervention research. And also understand the feeding conditions in the different dietary concentrations of A-FABP was studied with insulin resistance.
     Purpose
     1. Through different components of diet to fed Syrian golden hamsters, establish a animal model which is close to modern human diet, the Syrian hamster is fat and high fructose, fatty liver, lipid metabolism model, and compare different diet components fed to the golden Hamster model of glucose and lipid metabolism.
     2. To explore the normal control group (N), high-fat group (HF), high fat+ glucose group (HF+GLU), high fat+fructose group (HF+FRU).Check the Syrian hamster body weight, serum glucose and lipid levels, Insulin, A-FABP levels, liver index and morphological changes in liver and pancreas. Compara and analysis the normal and pathological conditions changes the Syrian hamster and its glycolipids possible mechanism.
     Methods
     1. Randomly selected 12 male Syrian golden hamsters, divided into four groups, n= 6. The normal control group (fed with normal diet), pure fat group (fed with high fat diet alone), glucose fat group (with 20% glucose solution+high fat diet sugar), fructose, high-fat group (with 20% fructose solution+high fat diet). Were fed for 12 weeks, respectively, measured at 0,1,2,6,12 weeks, body weight, enzymatic determination of hamster serum triglycerides, cholesterol, blood sugar levels.
     2.12 over the weekend killed hamster, exposure to the abdominal cavity, heart blood 3-4mL, room temperature for 30min 3000rP Centrifuge 15min, the plasma stored at -80℃10μL refrigerator equipment seized. Visual observation of liver and pancreas, liver weight, liver index (HSI=liver mass/body mass×100%). Specimens from the liver lobe, separating the pancreas,10% formaldehyde solution immediately put into a fixed, sequential ethanol dehydration, xylene, paraffin embedded sections, HE staining were observed under light microscope hamster liver.
     3.ELISA method hamsters in each group serum concentrations of insulin and A-FABP:American R & D companies in serum A-FABP and serum insulin kit kit, in strict accordance with manual operation,11% of intra differences, differences between batches 10%. Using enzyme-linked immunosorbent assay of serum A-FABP and insulin concentrations. Insulin sensitivity index:insulin sensitivity index ISI= LIN 1/(fasting plasma glucose FBG×fasting insulin levels FIN).
     4. Statistical analysis:SPSS 13.0 statistical software to analyze data toⅩ(-)±s that homogeneity of variance with multiple comparison one-way ANOVA, multiple comparisons between groups using LSD method, missing the test with Welch, by Tamhane multiple comparison test was used to compare different time indices repeated measures analysis of variance. P<0.05 considered significant difference.
     Results
     1. Fed different dietary components Syrian golden hamsters in each group changes of body weight:The average body weight of water continued to rise, reached the peak at 12 weeks. HF group, HF+GLU group, HF+FRU group compared with the increase of N greater (P<0.01). Each time point compared with HF+FRU body weight than the other three groups (P<0.01).
     2. Composition of different dietary groups fed Syrian golden hamsters of the blood biochemical characteristics:
     TG:N Group 12-week triglyceride levels flat. HF group was significantly higher 2 weeks,6 weeks down to 12 weeks increased significantly. HF+GLU group has continued to rise,12 Zhou Dafeng value. HF+FRU group increased at 2 weeks Da Houda to a platform, reached the peak at 12 weeks. Group into four groups no significant difference in triglyceride levels, one week after feeding different dietary ingredients before, each time point are HF+FRU triglyceride was higher than other three groups (P<0.01).
     Cholesterol:HF group, HF+GLU group and HF+FRU cholesterol were significantly increased after 1 week, HF+GLU group and HF group reached a peak in 2 weeks,6 weeks and 12 weeks fell slightly. HF+FRU group process continued upward trend,12 Zhou Dafeng value. HF group, HF+GLU group, HF+FRU group into the group of cholesterol from 2mmol/L up to 12 weeks is about 7.5mmol/L, while the normal group from remaining at 1.95 or so. HF group, HF+GLU group, HF+FRU group of cholesterol increased significantly in the normal group (P<0.01).
     Glucose:normal groups during the 12 weeks no significant changes in blood glucose (P> 0.05). HF, HF+FRU, HF+GLU group and normal glucose range of different levels of blood glucose changes, blood glucose in the 12 weeks maximum, minimum,0 weeks, which significantly increased at 1 week,6 weeks after elevated platform, where the HF+FRU group than in blood sugar range HF, HF+GLU group more significantly (P<0.01).
     3. Hamsters in each group morphological changes in liver and pancreas:
     Liver:the naked eye:normal no abnormal changes in liver; HF group and HF+ GLU group of liver color yellow purple intersection, blunt the edge of some sand-like surface of the liver changes, the volume increases; HF+FRU group of hamster liver was yellow and white brown, liver volume increased significantly, blunt edge, coated tension. Light microscopy:the normal control group, no significant morphological changes. HF group and HF+GLU group, swelling of liver cells was increased, there is a large number of lipid droplets, some vacuolization of liver cells, liver interlobular vein central vein and a small amount of red blood cells, liver cells, see inflammatory cells; HF+FRU group and the HF and HF+GLU group compared to significant changes in fat-like, fat droplets accumulate most of the diffuse lobular nuclei stained cells were significantly swollen, irregular arrangement of hepatic cells, see a large number of inflammatory cells, and capsule formation of visible fat.
     Pancreas:no significant difference in the naked eye, light microscopy:the normal control group, the number of normal islet size, size uniformity, shape rules, clear boundaries; HF group, HF+GLU group, HF+FRU group of islet hyperplasia, the volume generally increases, the number of increased, but differences among the three groups was not significant.
     4. Liver Index:Compared with normal group, HF group, HF+GLU group, HF +FRU group, the liver index:(liver index=liver mass/body mass Water 100%) was significantly higher, the difference was significant (P<0.01); with the HF group, HF +GLU group, HF+GLU group more significantly elevated levels of liver index (P <0.01).
     5. Insulin and insulin sensitivity index:
     Serum insulin:HF group, HF+GLU group, HF+FRU in the serum insulin levels were higher than the control group, with HF and HF+GLU group, HF+FRU group more significantly elevated insulin levels (P<0.01.) Insulin sensitivity index:insulin sensitivity index [ISI=LIN 1/(fasting plasma glucose FBG×fasting serum insulin FIN)]:HF group, HF+GLU group, HF+FRU group were lower than the N group, the difference was significant (P<0.01), in which HF+FRU group and HF group, HF+GLU group, a lower insulin sensitivity index, the difference was significant (P<0.01).
     6. Serum A-FABP:
     Serum A-FABP:four hamster serum A-FABP levels, HF group, HF+GLU group, HF+FRU serum A-FABP concentrations were higher than N group, the difference was significant. One group and HF HF+FRU group, HF+GLU group, higher serum A-FABP levels, the difference was significant, P values were<0.01.
     Conclusion
     1. After a certain period of different components of the high fat diet, the Syrian hamster can form the typical dyslipidemia, hyperglycemia, insulin resistance, non-alcoholic fatty liver and islet hyperplasia. Among them, high-fat high-fructose hamster model group and model group and model group, high fat compared with high glucose, triglycerides, cholesterol, blood sugar, increase insulin secretion, insulin sensitivity significantly decreased, non-alcoholic fatty liver and more significant phenomenon of islet hyperplasia.
     2. High-fat and high fructose male hamster model can simulate the human dietary ingredients and dietary glucose and lipid metabolism disorders of human pathological process better, the modern high-fat high-fructose diet caused impaired glucose tolerance, fat lipids, research of metabolic syndrome advantage of the experimental animal models.
     3. Serum A-FABP levels increased in group which insulin secretion increase, insulin sensitivity decrease, reduce fat and high fructose more significant to a significant increase in the rat group, the serum A-FABP may be diabetes, metabolic syndrome, the occurrence and development of a marker.
引文
[1]Basciano H, Federico L, Adeli K, et al. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond),2005,2:5.
    [2]Coe NR,Bemlohr DA. Physiological properties and functions of intracellulary acid-binding proteins [J]. Biochim Biophys Acta,1998,1391:287-306.
    [3]ZimmeHnaIl Aw,Veerkamp JH. New insights into the stmcture and function of fatty acid-binding proteins [J]. Cell Mol Life Sci,2002,59:1096-1116.
    [4]Gregoire FM, CM Smas, HS Sul.Understanding adipocyte differentiation [J]. Physiol Res,1998,78:783-809.
    [5]Emerson H, Larimore LD 1924 Diabetes mellitus:acontribution to its epidemiology based chiefly on mortality statistics. [J] Arch Intern Med 34:585-630
    [6]Charles R 1907 Diabetes in the tropics. [J] Br Med 19:1051-1064
    [7]Yusuf S, Reddy S, Ounpuu S, An and S 2001 Global burden of cardio vascular diseases. Part I:General considerations, theepidemiologic transition, risk factors, and impact of urbanization. [J] Circulation104:2746-2753
    [8]Yach D, Stuckler D, Brownell KD 2006 Epidemiologicand eco nomic consequences of the global epidemics of obesity and diabetes. [J] Nat Med 12:62-66
    [9]Smyth S, Heron A 2006 Diabetes and obesity:the tw in epidemics. [J] Nat Med12:75-80
    [10]Allen FM 1913 Studies concerning glycosuria and diabetes. [J] Cambridge, MA: Harvard University Press.
    [11]Campbell GD 1963 Diabetes in Asians and Africansin and around Durban. [J] SAfr MedJ 37:1195-1208
    [12]Campbell GD, Batchel or EL, Goldberg MD 1967 Sugar in take and diabetes. [J] Diabetes 16:62-63
    [13]Cleave TL, Campbell GD 1967 Thesaccharine disease. [J] Am J Proctol 18:202-210
    [14]Yudkin J 1967 Evolutionary and historical changes in dietary carbohydrates. [J] Am J Clin Nutr 20:108-115
    [15]Yud kin J 1972 Sugar and disease. [J] Nature239:197-199
    [16]Havel PJ 2005 Dietary fructose:implications for dysregulation of energy home ostasis and lipid/carbohydrate metabolism. [J] NutrRev 63:133-157
    [17]Nakagawa T, Hu H, Zhari kov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ 2006 Acausal role for uric acid infructose-induced metabolic syndrome. [J] AmJ Physiol 290:F625-F631
    [18]Stanhope KL, Havel P J 2008 Fructose consumption:potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. [J] Curr Opin Lipidol 19:16-24
    [19]Wolfe BM, Ahuja SP 1977 Effects of intravenously administered fructose and glucose on splanchnic secretion of plasma triglyce ridesinhyper triglyceride micmen. [J] Metabolism 26:963-978
    [20]Swarbrick MM, Stanhope KL, Elliott SS, Graham JL, Krauss RM, Christiansen MP, Griffen SC, Keim NL, Havel PJ 2008 Consumption of fructose-sweetened beverages for 10 weeks increases post prandial triacylglycerol and apolipoprotein-Bconcentrationsin over weight and obese women. [J] Br J Nutr 100:947-952
    [21]Ackerman Z, Oron-Herman M, Grozovski M, Rosenthal T, Pappo O, Link G, Sela BA 2005 Fructose-induced fatty liver disease:hepatic effects of bloodpressure and plasma triglyceride reduction. [J] Hypertension 45:1012-1018
    [22]Ouyang X, Cirillo P, Sautin Y, Mc Call S, Bruchette JL, Diehl AM, Johnson RJ, Abdelmalek MF 2008 Fructose consumption as a risk factor for non-alcoholic fattyliver disease. [J] Hepato 148:993-999
    [23]Johnson RJ, Sautin YY, Oliver WJ, Roncal C, Mu W, Gabriela Sanchez-LozadaL, Rodriguez-Iturbe B, Nakagawa T, Benner SA 23 July 2008 Lessons from comparative physiology:coulduric acid represent a physiological arm signal gone awry in western society? [J]Comp Physiol [B] 10.1007/s00360-008-0291-7
    [24]Korieh A, Crouzoulon G 1991 Dietary regulation of fructose metabolism in the intestine and in the liver of the rat. Duration of the effects of a high fructose diet after the return to the standard diet. [J] Arch Int Physiol Biochim Biophys 99:455-460
    [25]Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, WillettWC,HuFB 2004 Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women.[J] AMA 292:927-934
    [26]Kahn BB, Flier JS 2000 Obesity and insulin resistance. [J]. Clin Invest 106:473-481
    [27]李雪梅,吴符火.几类高脂血症动物模型比较[J].中琵医结合学报,2004,2(2):132.134.
    [28]Spady DK, Cuthbert JA. Regulmion ofhepatic sterol metabolism in the rat, Parallel regulation of activity and mRNA for 7 alpha-hydroxylase but not 3-hydroxy-3-methylyiglutary 1-coenzy meA reductase or low dencity lipoprotein receptor[J]. Biol Chem,1992,267(8):5584—5591.
    [29]周晓军,张丽华主编.肝脏诊断病理学.南京:江苏科学技术出版社,2006.
    [30]Van den Berghe G, Fructose:metabolism and short-term effects on carbohydrate and purine metabolic pathways. [J] Prog Biochem Pharmacol 1986,21:1-32
    [31]Shapiro A, Mu W, Roncal CA, et al. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high fat feeding. Am [J] Physiol Regul Integr Comp Physiol,2008,295:R1370-R1375
    [32]tanhope K.L, Havel P J. Fructose consumption:potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. [J] Curr Opin Lipidol 2008,19:16-24
    [33]Segal MS, Gollub E, Johnson RJ 2007 Is the fructose index more relevant with regards to cardiovascular disease than the glycemic index? Eur [J] Nutr 46:406-117
    [34]Katakam PV, U jhelyi MR, Hoenig ME, Miller AW 1998 Endothelial dysfunction precedes hypertension indiet-induced insulin resistance.Am [J] Physiol 275:R788-R792
    [35]Basciano H, Federico L, Adeli K. [J]. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab(Lond) 2005;2:5.
    [36]Teff KL, Elliott SS, Tschop M, et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. [J]. Clin Endocrinol Metab 2004;89:2963-72.
    [37][4]Elliott SS, Keim NL, Stern JS, et al. Fructose, weight gain, and the insulin resistance syndrome. [J]. Am J Clin Nutr 2002;76:911-22.
    [38]Jurgens H, Haass W, Castaneda TR, etal. Consuming fructose-sweetened beverages increases body adiposityinmice. Obes Res 2005;13:1146-56.
    [39]Avramoglu RK, Qiu W, Adeli K. Mechanisms of metabolic dyslipidemia in insulin resistant states:deregulation of hepaticand intestinal lipoprotein secretion. [J]. Front Biosci 2003;8:d464-76.
    [40]Badimon J J, Badimon L, Fuster V, et al. Regression of atherosclerotic lesions by high density lipoprotein plas2 ma fraction in the cholesterol2 fed rabbit [J]. J Clin In2 vest,1990.85:1234.
    [41]Shefer S L,Nguyen B, Salen G, et al. Differing effects of cholesterol and taurocholate on steady state hepatic HMG2 CoA reductase and cholesterol 72 a2 hydroxylase activities and mRNA levels in the rat [J]. J Lipid Res, 1992,33:1193.
    [42]FernandezM L,Vergara2 JimenezM, Conde K, et al. Reg2 ulation of apolipoprotein B2 containing lipoproteins by dietary soluble fiber in guinea pigs[J]. Am J Clin Nutr,1997,65:814.
    [43]Nicolosi RJ,Wilson TA. The anti2 atherogenic effect of dietary soybean protein concentrate in hamsters[J]. Nu2 tr Res 1997,17:1457.
    [44]Kohen-Avramoglu R, Theriault A, Adeli K. [J].Emergence of the metabolic syndrome in childhood:an epidemiological overview and mechanistic link to dyslipidemia. Clin Biochem 2003;36:413-20.
    [45]Spady DK, Dietchy JM. Sterol synthesis in vivo in 18 tissues of the squirrel monkdy, guinea pig, rabbit, hamster, and rat [J]. J Lipid Res,1983,24:303.
    [46]Lihe Zhang, German Perdomo, Dae Hyun Kim, Shen Qu, Steven Ring quist, Massimo Trucco, H.HenryDong.Proteomic analysis of fructose-induced fatty liver in hamsters.[J].Metabolism Clinical and Experimental 2008;57:1115-1124
    [47]Hotamisligil GS,Johnson RS,Distel RJ, et al. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2,the adipocyte fatty acid binding protein[J]. Science,1996,274:1377-1379.
    [48]Makowski L, BooId JB, Maede K, et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipopIDtein E against atherosclerosis. [J] Nat Med,2001,7:699-705.
    [49]Pelton PD, Zhou L, Demarest KT, et al. PPAR activation induces the elpression of the adipocyte fatty acid binding pmtein gene in human monocytes. [J] Biochem Biophys Res Commun,1999,261:456-458.
    [50]Coe NR, Bernlohr DA:Physiological properties and functions of intracellular fatty acid-binding proteins. [J] Biochim Bio-physActa 1391:287-306,1998
    [1]Smyth S,Heron A 2006 Diabetes and obesity:the twin epidemics. NatMed12:75-80
    [2]YachD, StucklerD, Brownell KD 2006 Epidemiologicand economic consequences of the global epidemics of obesity and diabetes.NatMed12:62-66
    [3]Quinones GA, Natali A, Baldi S, Frascerra S, Sanna G, Ciociaro D, Ferrannini E 1995 Effect of insulin on uric acid excretion in humans. AmJPhysio 1268:E1-E5
    [4]Prout W 1848 On the nature and treatment of stomach and renal diseases; beingan inquiry into the connexion of diabetes, calculus, and other affections of the kidney and bladder, within digestion,5thed.London:JohnChurchill
    [5]Duckworth D 1889 Atreatiseongout. London:CGriffin Co.
    [6]Osler W 1893 The principles and practice of medicine. New York:D.Appleton and Co.
    [7]Emerson H, Larimore LD 1924 Diabetes mellitus:acontribution to its epidemiology based chiefly on mortality statistics. Arch Intern Med 34:585-630
    [8]Charles R 1907 Diabetes in the tropics. Br Med J 19:1051-10646. Yusuf S, Reddy S, Ounpuu S, An and S 2001 Global burden of cardiovascular diseases. PartⅠ:General considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104:2746-2753
    [9]Hossain P, Kawar B, El Na has M 2007 Obesity and diabetes in the developing world—a growing challenge. N Engl J Med 356:213-215
    [10]Kahn B B, Flier J S 2000 Obesity and insulin resistance. J Clin Invest 106:473-481
    [11]Grundy S M 2007 Metabolic syndrome:a multiplex cardiovascular risk factor. J Clin Endocrinol Metab 92:399-404
    [12]Ford E S, Giles W H, Mokdad A H 2004 Increasing prevalence of the metabolic syndrome:among U.S. adults. DiabetesCare27:2444-2449
    [13]Grundy S M 2006 Does the metabolic syndrome exist? Diabetes Care 29:1689-1692; discussion,1693-1696
    [14]Kahn R, Buse J, Ferrannini E, Stern M 2005 The metabolic syndrome:time for acritical appraisal:joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care28:2289-2304
    [15]Pladevall M, Singal B, Williams LK, Brotons C, Guyer H, Sadurni J, Falces C, Serrano-Rios M, Gabriel R, Shaw J E, Zimmet P Z, Haffner S 2006 A single factor underlies the metabolic syndrome:a confirmatory factor analysis. Diabetes Care29:113-122
    [16]Johnson R J, Segal M S, Sautin Y, Nakagawa T, Feig D I, Kang D H, Gersch M S, Benner S, Sanchez-Lozada L G 2007 Potential role of sugar(fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86:899-906
    [17]Allen F M 1913 Studies concerning glycosuria and diabetes. Cambridge, M A: Harvard University Press
    [18]Campbell GD 1963 Diabetesin Asians and African sin and around Durban. SA fr Med J 37:1195-1208
    [19]Campbell GD, Batchelor EL, Goldberg MD 1967 Sugar in take and diabetes. Diabetes 16:62-63
    [20]CleaveTL, Campbell GD 1967 Thesaccharine disease.Am J Proctol18:202-210
    [21]YudkinJ 1967 Evolutionary and historical changes indietary carbohydrates. Am J ClinNutr20:108-115
    [22]Yudkin J 1972 Sugar and disease.Nature 239:197-199
    [23]Franz MJ, Bantle JP, Beebe CA, Brunzell J D, Chiasson JL, Garg A, Holzmeister LA, Hoogwerf B, Mayer-Davis E, Mooradian AD, Purnell J Q, Wheeler M 2004 Nutrition principles and recommend dations in diabetes. Diabetes Care 27(Suppll):S36-S46
    [24]Havel PJ 2005 Dietary fructose:implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63:133-157
    [25]Nakagawa T, Hu H, Zharikov S, Tuttle K R, Short R A, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ 2006 Acausal role for uric acid infructose-induced metabolic syndrome. Am J Physio 1290:F625-F631
    [26]Vanden Berghe G 1986 Fructose:metabolism and short-termef-fectson carbohydrate and purine metabolic pathways. ProgBiochem Pharmacol 21:1-32
    [27]Froesch ER 1972 Fructose metabolism in adiposetissue. Acta Med Scand Suppl 542:37-46
    [28]Metabolitesinblood.AmJClinNutr31:1305-1311
    [29]Asipu A, Hayward BE, O'Reilly J, Bonthron DT 2003 Properties of normal and mutant recombinant human ketohexokinases and implications for the pathogenesis of essential fructosuria. Diabetes 52:2426-2432
    [30]CirilloP, Gersch MS, Mu W, Scherer PM, Kim KY, Gesualdo L, Henderson GN, Johnson RJ, Sautin YY, Ketohexokinase-depen-dentpro inflammatory effect of fructose in human proximaltubular cells. J Am Soc Nephrol, inpress
    [31]Maenpaa PH, Raivio KO, Kekomaki MP 1968 Liver adeninenu-cleotides: fructose-induced depletion and its effect on protein synthesis. Sciencel61:1253-1254
    [32]Maenpaa PH, Raivio KO, Kekomaki MP 1968 Liver adeninenu-cleotides: fructose-induced depletion and its effecton proteinsyn-thesis.Science161:1253-1254
    [33]Bode JC, Zelder O, Rumpelt HJ, Wittkamp U 1973 Depletion of liver adenosine phosphates and metabolic effects of intravenous infusion of fructose or sorbitol in man and in the rat. Eur J Clin Invest3:436-441
    [34]Nair S, P Chacko V, Arnold C, Diehl AM 2003 Hepatic ATP reserve and efficiency of replenishing:comparison between obese and nonobesen or mal individuals. Am J Gastroentero 198:466-470
    [35]Stanhope KL, Havel PJ 2008 Fructose consumption:potential mechanisms for its effectsto increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipido 119:16-24
    [36]Wolfe BM, Ahuja S P 1977 Effects of intravenously administered fructose and glucose on splanchnic secretion of plasma triglycerides in hypertriglyceridemic men. Metabolism 26:963-978
    [37]Ackerman Z, Oron-Herman M, Grozovski M, Rosenthal T, Pappo O, Link G, Sela BA 2005 Fructose-induced fatty liver disease:hepatic effects of blood pressure and plasma triglycerider eduction. Hypertension 45:1012-1018
    [38]Ouyang X, Cirillo P, Sautin Y, Me Call S, Bruchette JL, Diehl AM, Johnson RJ, Abdel malek MF 2008 Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepato 148:993-999
    [39]Perheentupa J, Raivio K 1967 Fructose-induced hyperuricaemia. Lancet2:528-531
    [40]Morris Jr RC, Nigon K, Reed EB 1978 Evidence that these verity of depletion of in organic phosphate determines the severity of the disturbance of adenine nucleotide metabolism in the liver and renal cortex of the fructose-loaded rat. J Clin Invest61:209-220
    [41]Fiaschi E, Baggio B, Favaro S, Antonello A, Camerin E, Todesco S,BorsattiA 1977 Fructose-induced hyperuricemia in essential hypertension. Metabolism26:1219-1223
    [42]Stirpe F, Della Corte E, Bonetti E, Abbondanza A, Abbati A, De Stefano F 1970 Fructose-induced hyperuricaemia. Lancet2:1310-1311
    [43]Israel KD, Michaelis 4th OE, Reiser S, Keeney M 1983 Serumuric acid, inorganic phosphorus, and glutamic-oxalacetic transaminase and blood pressure in carbohydrate-sensitive adults consuming three different levels of sucrose. Ann Nutr Metab 27:425-435
    [44]Reiser S, Powell A S, Schol field DJ, P and aP, Ellwood KC, Canary JJ 1989 Blood lipids, lipoproteins, apoproteins, and uric acid in men fed diets containing fructose or high-amylose cornstarch. Am J Clin Nutr49:832-839
    [45]Choi HK, Curhan G 2008 Soft drinks, fructose consumption, and therisk of goutin men:prospective cohort study. BM J336:309-312
    [46]Choi JW, Ford ES, Gao X, Choi HK 2007 Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level:the Third National Health and Nutrition Examination Survey. Arthritis Rheum 59:109-116 sion50:306-312
    [47]Burant CF, Saxena M 1994 Rapid reversible substrate regulation of fructose transporter expression in rat small in testine and kidney. Am J Physiol267:G71-G79
    [48]Korieh A, Crouzoulon G 1991 Dietary regulation of fructose metabolism in the intestine and in the liver of therat. Duration of the effects of a high fructose diet after the return to the standard diet. Arch Int Physiol Biochim Biophys 99:455-460
    [49]Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC, Hu FB 2004 Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 292:927-934
    [50]Hallfrisch J, Ellwood KC, Michaelis 4th OE, Reiser S,O'Dorisio TM, Prather ES 1983 Effects ofd ietary fructose on plasma glucose and hormone responses in normal and hyper insulin micmen. JNutr113:1819-1826
    [51]Hallfrisch J, Reiser S, Prather ES 1983 Blood lipid distribution of hyper insulin micmen consuming three levels of fructose. Am J Clin Nutr37:740-748
    [52]Stanhope KL, Griffen SC, Keim NL, AiM, Otokozawa S, Nakajima K, Schaefer E, Havel PJ 2007 Consumption of fructose-, but not glucose-sweetened beverages produces an atherogenic lipid profilein overweight/obese men and women. Diabetes 56(Suppll):A16
    [53]Shapiro A, Mu W, Roncal CA, Cheng KY, Johnson RJ, Scarpace PJ 2008 Fructose-induced leptin resistance exacerbates weight gain in response to subsequent thigh fat feeding. Am JPhysiol Regul Integr Comp Physio 1295:R1370-R1375
    [54]Reungjui S, Roncal CA, Mu W, Srinivas TR, Sirivongs D, Johnson RJ, Nakagawa T 2007 Thiazide diuretics exacerbate fructose-in-duced metabolic syndrome. J Am Soc Nephrol 18:2724-2731
    [55]Sanchez-Lozada LG, Tapia E, Bautista-Garcia P, Soto V, Avila-Casado C, Vega-Campos IP, Nakagawa T, Zhao L, Franco M, Johnson RJ 2008 Effects of febuxostat on metabolic and renalalterations in rats with fructose-induced metabolic syndrome. Am J Physiol294:F710-F718
    [56]Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, Vollenweider P, Pedrazzini T, Nicod P, Thorens B, Scherrer U 2001 Insulinresistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation104:342-345
    [57]Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, MuW, Krotova K, Block ER, Prabhakar S, Johnson RJ 2005 Hyperuricemia induces endothelial dysfunction. Kidney Int67:1739-1742
    [58]Kang DH, Park SK, Lee IK, Johnson RJ 2005 Uricacid-induced C-reactive protein expression:implication on cell prolife ration and nitric oxide production of human vascular cells. J Am Soc Nephrol 16:3553-3562
    [59]Feig DI, Nakagawa T, Karumanchi SA, Oliver WJ, Kang DH, Finch J, Johnson RJ 2004 Hypothesis:uricacid, nephronnumber, and the pathogenesis of essential hypertension. Kidney Int66:281-287
    [60]Corry DB, Eslami P, Yamamoto K, Ny by MD, Makino H, Tuck ML 2008 Uric acid stimulates vascular smooth muscle cell prolife ration and oxidative stress via the vascular renin-angiotensin system. J Hypertens 26:269-275
    [61]Sautin YY, Nakagawa T, Zharikov S, Johnson RJ 2007 Adverse effects of the classical antioxida nturic acid inadipocytes:NADPH oxidase-mediated oxidative/nitrosative stress. Am J PhysiolCell Physiol293C584-C596
    [62]Zharikov S, Krotova K, Hu H, Baylis C, Johnson RJ, Block ER, Patel JM 2008 Uric acid decreases NO bioavailablity and increases arginase activity inculture dpulmonary artery endothelial cells. Am J Physiol Cell Physiol 295:C1183-C1190
    [63]Gersch C, Palii SP, Kim KM, Angerhofer A, Johnson RJ, Henderson GN 2008 Inactivation of nitric oxide by uric acid.Nucleosides Nucleotides Nucleic Acids 27:967-978
    [64]Mercuro G, Vitale C, Cerquetani E, Zoncu S, Deidda M, Fini M, Rosano GM 2004 Effect of hyper uricemia upon endothelial function in patients at increased cardiovascular risk. Am J Cardiol 94:932-935
    [65]Butler R, Morris AD, Belch JJ, Hill A, Struthers AD 2000 Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension35:746-751
    [66]Furukawa S, Fujita T, Shimabukuro M, I waki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I 2004 Increased oxidative stress in obesity and its impact on metabolic syndrome. J ClinInvest114:1752-1761
    [67]Cheung KJ, Tzameli I, Pissios P, Rovira I, Gavrilova O, Ohtsubo T, Chen Z, Finkel T, Flier JS, Friedman JM 2007 Ⅹ anthine oxidoreductaseis a regulator of adipogenesis and PPAR(?) activity. Cell Metab5:115-128
    [68]Bruckdorfer KR, Kang SS, Yudkin J 1973 Plasma concentrations of insulin, corticosterone, lipids and sugars in rats fed on meals with glucose and fructose. Proc Nutr Soc32:12A-13A
    [69]Portman OW, Lawry EY, Bruno D 1956 Effect of dietary carbohydrate on experimentally induced hypercholesteremia and hyperbetalipoproteinemia in rats. Proc Soc Exp Biol Med 91:321-323
    [70]al-Nagdy S, Miller DS, Yudkin J 1970 Changes in body composition and metabolism induced by sucrose in therat. Nutr Metab 12:193-219
    [71]Sleder J, Chen YD, Cully MD, Reaven GM 1980 Hyper insulinemia infructose-induced hyperrriglyceridemia in the rat. Metabolism 29:303-305
    [72]Yadav H, Jain S, Prasad GB, Yadav M 2007 Preventive effect of diabegon, apoly herbal preparation, during progression of diabetes induced by high-fructose feeding in rats. JPharmacol Sci 105:12-21
    [73]Rajasekar P, Anuradha CV 2007 Fructose-induced hepatic gluconeogenesis: effectof L-carnitine. LifeSci 80:1176-1183
    [74]Yadav H, Jain S, Sinha PR 2007Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23:62-68
    [75]Lee YC, Ko YH, Hsu YP, Ho LT 2006 Plasmaleptin response to oral glucose tolerance and fasting/re-feeding tests in rats with fructose induced metabolic derangements. LifeSci 78:1155-1162
    [76]Sanchez-Lozada LG, Tapia E, Jimenez A, Bautista P, Cristobal M, Nepomuceno T, Soto V, Avila-Casado C, Nakagawa T, Johnson RJ, Herrera-Acosta J, Franco M 2007 Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physio 1292:F423-F429
    [77]Farah V, Elased KM, Chen Y, Key MP, Cunha TS, Irigoyen MC, Morris M 2006 Nocturnal hypertension in mice consuming a high fructose diet. Auton Neurosci130:41-50
    [78]Katakam PV, U jhelyi MR, Hoenig ME, Miller AW 1998 Endothelial dysfunction precedes hypertension indiet-induced insulin resistance.Am J Physiol 275:R788-R792
    [79]Song D, Hutchings S, Pang CC 2005 Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eur J Pharmacol 508:205-210
    [80]Verma S,Bhanot S, Mc Neill J H 1999 Sympath ectomy prevents fructose-induced hyper insulin mia and hypertension. Eur J Pharmacol 373:R1-R4
    [81]Miatello R, Cruzado M, Risler N 2004 Mechanisms of cardiovascular changes in an experimental model of syndrome Ⅹ and pharmacological intervention on the renin-angiotensin-system. Curr Vasc Pharmacol 2:371-377
    [82]Baret G, Peyronnet J, Grassi-Kassisse D, Dalmaz Y, Wiernsperger N, Geloen A 2002 Increased intra abdominall adipose tissue massin fructose fed rats: correction by metformin. Exp Clin Endocrinol Diabetes 110:298-303
    [83]Shapiro A, Mu W, Roncal CA, Cheng KY, Johnson RJ, Scarpace PJ 2008 Fructose-induced leptin resistance exacerbates weight gain inresponse to subsequent high fat feeding. Am J Physiol Regul Integr Comp Physiol 295:R1370-R1375
    [84]Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, Whelton PK, He J 2004 The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med 140:167-174
    [85]Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, Sautin YY, Johnson RJ, Nakagawa T 2007 Fructose, butnotdextrose, accelerates the progression of chronic kidney disease. Am J Physiol 293:F1256-F 1261
    [86]Vasdev S, Gill V, Parai S, Gadag V 2007 Fructose-inducedhy pertensionin Wistar-Kyotorats:interaction with moderately high dietarysalt. Can J Physiol Pharmaco 185:413-421
    [87]Avena NM, Rada P, Hoebel BG 2006 Sugar bin geing in rats. Cur Protoc Neurosci Chapter9:Unit 9.23C
    [88]Avena NM, Rada P, Hoebel BG 2008 Evidence for sugar addiction behavioral and neurochemical effects of intermittent,excessive sugarintake. Neurosci Biobehav Rev32:20-39
    [89]Wang GJ, Volkow ND, Thanos PK, Fowler JS 2004 Similarity between obesity and drug addiction as assessed by neurofunctional imaging:aconcept review.J Addict Dis 23:39-53
    [90]Le KA, Tappy L 2006 Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care 9:469-475
    [91]Segal MS, Gollub E, Johnson RJ 2007 Is the fructose index more relevant with regards to cardiovascular disease than the glycemic index? Eur J Nutr 46:406-417
    [92]Beck-Nielsen H, Pedersen O, Lindskov HO 1980 Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding innormal subjects. Am J Clin Nutr 33:273-278
    [93]Faeh D, Minehira K, Schwarz JM, Periasamy R, Park S, Tappy L 2005 Effect of fructose over feeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthymen. Diabetes 54:1907-1913
    [94]Le KA, Faeh D, Stettler R, Ith M, Kreis R, Vermathen P, Boesch C, Ravussin E, Tappy L 2006 A 4-wkhigh-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr 84:1374-1379
    [95]Stanhope KL, Keim NL, Hellerstein MK, Beysen C, Mc Gahan JP, Griffen SC, Havel PJ 2007 Consumption of fructose-, but not glucose-sweeten edbeverages for 10 weeks induces glucose intolerance and insulin resistance, and increases visceral adiposityin overweight/obese men and women. Diabetes 57(SupplA):A101
    [96]Bantle JP, Raatz SK, Thomas W, Georgopoulos A 2000 Effects of dietary fructose on plasma lipids inhealthy subjects. Am J Clin Nutr72:1128-1134
    [97]Swanson JE, Laine DC, Thomas W, Bantle J P 1992 Metabolic effects of dietary fructose inhealthy subjects. Am J Clin Nutr 55:851-856
    [98]Swarbrick MM, Stanhope KL, Elliott SS, Graham JL, Krauss RM Christiansen MP, Griffen SC, Keim NL, Havel P J 2008 Consumption of fructose-sweetened beverages for 10 weeks increases postprandial triacylglycerol and apolipoprotein-B concentrations in overweight and obese women. Br J Nutr 100:947-952
    [99]Brown CM, Dulloo AG, Yepuri G, Montani J P 2008 Fructose ingestion acutely elevates blood pressure inhealthy young humans. Am J Physiol 294:R730-R737
    [100]Raben A, Macdonald I, Astrup A 1997 Replacement of dietary fat by sucrose or starch:effect son 14 dad libitum energy intake,energy expenditure and body weight informerly obese and never obese subjects. Int J Obes Relat Metab Disord 21:846-859
    [101]Teff KL, Elliott SS, T schop M, Kieffer T J, Rader D, Heiman M, Townsend RR, Keim NL, D'Alessio D, Have 1 P J 2004 Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 89:2963-2972
    [102]Marchalde Calvi A 1864 R echerchessurles Accidents diabet iques, et essai d'une theorieg en'erale du diab'ete. Paris:Asselin
    [103]Cantle J 1907 Discussionon diabetes in the tropics. Br Med J 19:1063
    [104]Mills CA 1930 Diabetes mellitus:sugar consumption in its etiology. Arch Intern Med 46:582-584
    [105]Yusuf S, Reddy S, Ounpuu S, An and S 2001 Global burden of cardiovascular diseases. Part I:General considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104:2746-2753
    [106]Ziemann H 1907 Discussion on diabetes in the tropics. Discussion. Br Med J 19:1061
    [107]Adams J 1930 Some racial differences in blood pressure and morbidity in a group of white and color edworkers. Am J Med Sci 184:342-350
    [108]Saunders G, Bancroft H 1942 Bloodpressure in African Americans. Nutr Rev 23:410-423
    [109]Tulloch J A 1961 The prevalence of diabetes mellitus in Jamaica. Diabetes10:286-288
    [110]Dresser C 1979 Food consumption profiles of white and black personsaged 1-74 years:United States 1971-1974. Vitaland Health Statistics Series 11, no. 210. Hyattsville, MD:National Center for Health Statistics
    [111]Kerr GR, Amante P, Decker M, Callen PW 1983 Supermarket sales Of high-sugar products in predominantly Black, Hispanic, and white censustracts of Houston, Texas. Am J Clin Nutr 37:622-631
    [112]Healey L A, Skeith MD, Decker JL, Bayani-Sioson PS 1967 Hyperuricemia in Filipinos:interaction of heredity and environment Am J Hum Genet 19:81-85
    [113]Kagan A, Harris BR, Winkelstein Jr W, Johnson KG, Kato H Syme SL, Rhoads GG, Gay ML, Nichaman MZ, Hamilton HB Tillotson J 1974 Epidemiologic studies of coronary heart disease And stroke in Japanese men living in Japan, Hawaii and California demographic, physical, dietary and biochemical characteristics J Chronic Dis 27:345-364
    [114]Bray GA, Nielsen SJ, Popkin BM 2004 Consumption of high fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79:537-543
    [115]Ludwig DS, Peterson KE, Gortmaker SL 2001 Relation between consumption of sugar-sweetened drink sand childhood obesity:a prospective, observation alanalysis. Lancet357:505-508
    [116]Dhingra R, Sullivan L, Jacques PF, Wang TJ, Fox CS, Meigs JB, D'Agostino RB, Gaziano JM, Vasan RS 2007 Soft drink consumption and risk of developing cardiometabolic risk factor sand the metabolic syndrome in middle-aged adults in the community. Circulation 116:480-488
    [117]Mc Naughton SA, Mishra GD, Brunner EJ 2008 Dietary patterns, insulin resistance and incidence of type2 diabetes in the White hall Ⅱstudy. DiabetesCare31:1343-1348
    [118]Montonen J, Jarvinen R, Knekt P, Heliovaara M, Reunanen A 2007 Consumption of sweetened beverage sand intakes of fructose and glucose predict type2 diabetes occurrence. J Nutr 137:1447-1454
    [119]Palmer JR, Boggs DA, Krishnan S, Hu FB, Singer M, Rosenberg L 2008 Sugar-sweetened beverage sand incidence of type2 diabetes mellitus in African American women. Arch Intern Med 168:1487-1492
    [120]Kylin E 1923 [Studies of the hypertension-hyperglycemia-hyperuri-cemiasyndrome] Studien uber das Hypertonie-Hypergly kamie-hyperurikamie syndrome. Zentralblatt fur innere Medizin44:105-127
    [121]Facchini F, Chen YD, Hollenbeck CB, Reaven GM 1991 Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA 266:3008-3011
    [122]Tsouli SG, Liberopoulos EN, Mikhailidis DP, Athyros VG, Elisaf MS 2006 Elevated serum uric acid levels in metabolic syndrome an active component or an innocent bystander? Metabolism 55 1293-1301
    [123]Choi HK, Ford ES 2007 Prevalence of the metabolic syndrome in in dividuals with hyperuricemia. Am J Med 120:442-447
    [124]Choi HK,Ford ES, Li C, Curhan G2007 Prevalence of the metabolic syndrome in patients with gout:the Third National Health and Nutrition Examination Survey. Arthritis Rheum 57:109-115
    [125]Saggiani F, PilatiS, Targher G, Branzi P, Muggeo M, Bonora E 1996 Serum uric acid and related factors in 500 hospitalized subjects. Metabolism 45:1557-1561
    [126]Ford ES, Li C, Cook S, Choi HK 2007 Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation 115:2526-2532
    [127]Denzer C, Muche R, Mayer H, Heinze E, Debatin KM, Wabitsch M 2003 Serum uric acid levels in obese children and adolescents:linkage to testoster on elevels and pre-metabolic syndrome. J Pediatr Endocrinol Metab 16:1225-1232
    [128]Rose BS 1975 Goutin Maoris. Semin Arthritis Rheum5:121-145
    [129]Hoy W, Kelly A, Jacups S, McKendry K, Baker P, MacDonald S, Wa Z, Punguatji N, Kerinauia J, Tipiloura E, Tipiloura E, Harrison C 1999 Stemming the tide:reducing cardiovascular disease and renal failure in Australian Aborigines. Aust NZ J Med 29:480-483
    [130]Buchanan KD 1972 Diabetes mellitus and gout. Semin Arthritis Rheum 2:157-163
    [131]Hochberg MC, Thomas J, Thomas DJ, MeadL, Levine DM, Klag MJ 1995 Racial differences in the incidence of gout. The role of hypertension. Arthritis Rheum 38:628-632
    [132]McKechnie JK 1964 Gout, hyperuricaemia and carbohydrate metabolism. S Afr Med J 38:182-185
    [133]Chan K.H, Segasothy M 2004 Goutyarthritis in Australian Ab-originals:more common than previously suspected. Med J Aust 181:172
    [134]Rosolow sky ET, Ficociello LH, Maselli NJ, Niewczas MA, Binns AL, Roshan B, Warram JH, Krolewski AS 2008 High-normalse-rum uric acid is associated with impaired glomerular filtration rate in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephro 13:706-713
    [135]Bo S, Cavallo-Perin P, Gentile L, Repetti E, Pagano G 2001 Hypouricemia and hyperuricemia in type 2 diabetes:two different phenotypes. Eu J Clin Invest 31:318-321
    [136]Quinones GA, Natali A, Baldi S, Frascerra S, Sanna G, Ciociaro D, Ferrannini E 1995 Effect of insulin on uricacid excretion in humans. Am J Physiol 268:E1-E5
    [137]Muscelli E, Natali A, Bianchi S, Bigazzi R, Galvan AQ, Sironi AM, Frascerra S, Ciociaro D, Ferrannini E 1996 Effect of insulin on renal sodium and uricacid handling in essential hypertension. Am J Hypertens 9:746-752
    [138]Sui X, Church TS, Meriwether RA, Lobelo F, Blair SN 2008 Uric acid and the development of metabolic syndrome in women and men. Metabolism 57:845-852
    [139]Nakagawa T, Tuttle KR,Short RA, Johnson RJ 2005 Fructose-induced hyperuricemia as a casual mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol 1:80-86
    [140]Carnethon MR, Fortmann SP, Palaniappan L, Duncan BB, Schmidt MI, Chambless LE 2003 Risk factors for progression to incident hyperinsulinemia: the Atherosclerosis Risk in Communities Study,1987-1998. Am J E pidemiol 158:1058-1067
    [141]NiskanenL, Laaksonen DE, Lindstrom J, Eriksson JG, Keinanen-Kiukaanniemi S, Ilanne-Parikka P, Aunola S, Hamalainen H, Tuomilehto J, Uusitupa M 2006 Serum uric acid as a harbinger of metabolic out come in subjects with impaired glucose tolerance:the Finnish Diabetes Prevention Study. Diabetes Care29:709-711
    [142]Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML 2003 Serum uric acid and plasma norepinephrine concentration spredict subsequent weight gain and blood pressure elevation. Hypertension 42:474-480
    [143]Lonardo A, Loria P, Leonardi F, Borsatti A, Neri P, Pulvirenti M, Verrone AM, Bagni A, Bertolotti M, Ganazzi D, Carulli N 2002 Fasting insulin and uric acid levels but not indices of iron metabolism are independent predictors of non-alcoholic fatty liver disease. Acase-controlstudy. Dig Liver Dis 34:204-211
    [144]Boyko E J, de Courten M, Zimmet PZ,C hitson P, Tuomilehto J, Alberti KG 2000 Features of the metabolic syndrome predict higher risk of diabetes and impaired glucose tolerance:a prospective study in Mauritius. Diabetes Care 23:1242-1248
    [145]Lin KC, Tsai ST, Lin HY, Chou P 2004 Different progressions of hyperglycemia and diabetes among hyperuricemicmen and women in the kinmen study. J R heuma to 131:1159-1165
    [146]Nakanishi N, Okamo to M, Yoshida H, Matsuo Y, Suzuki K, Tatara K 2003 Serum uricacid and risk for development of hypertension and impaired fasting glucose or typeⅡ diabetes in Japanese male off ice workers. Eur J Epidemio 118:523-530
    [147]Dehghan A, van Hoek M, Sijbrands E J, Hofman A, Witteman JC 2008 High serum uric acid as an ovel risk factor for type 2 diabetes. Diabetes Care 31:361-362
    [148]Perry IJ, Wannamethee SG, Walker MK, Thomson AG, Whincup PH, Shaper AG 1995 Prospective study of risk factors for development of non-insulin dependent diabetes in middle aged British men. BM J 310:560-564
    [149]Ohlson LO, Larsson B, Bjorntorp P, Eriksson H, Svardsudd K, Welin L, Tibblin G, Wilhelmsen L 1988 Riskfactors for type2 (non-insulin-dependent) diabetes mellitus. Thirteen and one-half years of follow-up of the participants in a study of Swedishmen born in 1913. Diabetologia 31:798-805
    [150]Nan H, Qiao Q, Soderberg S, Pitkaniemi J, Zimmet P, Shaw J, Alberti G, Uusitalo U, Pauvaday V, Chitson P, Tuomilehto J 2008 Serum uric acid and incident diabetes in Mauritian Indian and Creole populations. Diabetes Res Clin Pract 80:321-327
    [151]Brand FN, Mc Gee DL, Kannel WB, Stokes3rd J, Castelli WP 1985 Hyper uricemia as a risk factor of coronary heart disease:theFramingham Study. Am J Epidemiol 121:11-18
    [152]Herman JB, Goldbourt U 1982 Uricacid and diabetes:observations in apopulation study. Lancet 2:240-243
    [153]Herman JB, Medalie JH, Goldbourt U 1976 Diabetes, prediabetes and uricaemia. Diabetologia 12:47-52
    [154]Medalie JH, Papier CM, Goldbourt U, Herman JB 1975 Major factors in the development of diabetes mellitusin 10,000 men. Arch Intern Med 135:811-817
    [155]Balkau B, King H, Zimmet P, Raper LR 1985 Factorsassociated with the development of diabetes in the Micronesian population of Nauru. Am J Epidemiol 122:594-605
    [156]Chien KL, Chen MF, Hsu HC, Chang WT, Su TC, Lee YT, Hu FB 2008 Plasma uric acid and the risk of type2 diabetes in a Chinese community. ClinChem 54:310-316
    [157]Choi HK, De Vera MA, Krishnan E 2008 Goutand the risk of type 2 diabetes among men with a high cardiovascular risk profile. Rheumatology (Oxford) 47:1567-1570
    [158]Taniguchi Y, Hayashi T, Tsumura K, Endo G, Fujii S, Okada K 2001 Serum uric acid and the risk for hypertension and type2 diabetesin Japanesemen:the Osaka Health Survey. J Hypertens 19:1209-1215
    [159]Kennedy ET 2005 The global face of nutrition:what can government sand industry do? J Nutrl35:913-915
    [160]Glynn RJ, Campion EW, Silbert JE 1983 Trends in serum uric acid levels 1961-1980. Arthritis Rheum 26:87-93
    [161]Arromdee E, Michet CJ, Crowson CS, O'Fallon WM, Gabriel SE 2002 Epidemiology of gout:is the incidence rising? J Rheumatol 29:2403-2406
    [162]Choi HK, Curhan G 2005 Gout:epidemiology and life style choices. Curr Opin Rheumato 117:341-345

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700