25k a B.P.以来黑潮流域古环境演化对高频全球变化事件的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用黑潮流域主流轴上的两个柱状沉积物岩芯MD05-2908以及PC-1为研究材料,在AMS~(14)C测年的基础上,利用高分辨率的有机地球化学分析记录结合浮游有孔虫氧、碳同位素,恢复并重建了过去25,000 cal a BP以来黑潮流域古海洋环境演化的历史。以及表层海水生产力以及物质输送状况的演化历史。通过利用U_(37)~(k’)古海水温度以及盐度指标恢复重建了过去25,000 cal a BP以来海洋表层海水温度、盐度;通过机碳、氮含量以及同位素变化、长链正构烷烃以及正构烷醇等指标重建了过去7000a B.P.以来的陆源物质输入历史;通过长链不饱和烯酮含量以及有机碳同位素指标恢复了过去7000a B.P.以来海水表层生产力的历史。此外,通过基于以上各种指标的环境信息与区域以及全球其它气候记录进行对比研究以及不同环境指标的时间系列分析,探讨了该区表层环流系统以及生产力的演化对于全球气候变化的响应,揭示了不同尺度的短周期高频率全球变化事件在黑潮流域的具体作用过程和响应机制。通过这些研究取得了以下的主要认识:
     基于有机地球化学指标的古气候环境记录与黑潮流域已有的研究成果有很好的对应关系,从我们高分辨率的有机地球化学记录中可以识别出全新世黑潮强弱变化的几次明显的事件;25000a B.P.以来黑潮流域的环境变化与全球环境变化有着很好的对应性,黑潮强弱演化总体趋势与全球气候背景演化相一致,黑潮对高频气候变化事件的记录与全球记录具有同步性,这种同步性尤其体现在末次冰消期以来的气候快速高频振荡以及全新世以来的气候突变事件上。
     全球性的高频气候事件对黑潮主体本身及黑潮流域的相邻区域的大气和海洋环流都具有重要的控制作用,这种控制作用主要通过副高、ITCZ以及季风三种气候要素之间相互关联、彼此影响造成的。具体表现为:太阳辐射量的减少导致热力差异减小,这种相对减小弱化了热带西太平洋的对流活动,造成了西太平洋副热带高压长期偏南、偏东,ITCZ平均北界位置偏南,降雨带长时间集中在南部地区,增强的降雨量提高了风化剥蚀以及沉积物向海洋搬运的能力,陆源物质供应量增加;同时,辐射量以及热力差的减小又与加强的东亚冬季风相联系,增强的冬季风导致了近底层“雾状层”物质的向海传输,物质传输效率增高。这种物源供应以及搬运量的双重增加导致了冲绳海槽流域物质通量的增加。
     基于有机地球化学指标的海洋表层生产力的变化与陆源物质供应量以及黑潮流的强弱变化存在着对应关系,通常情况增加的海洋表层生产力对应着高的陆源物质输入以及相对较弱的黑潮。这种变化与东亚夏季风的以及冬季风的强弱都有很好的一致性。陆源物质的输入增加了表层营养物质的含量,导致生产力的勃发;陆源物质的输入增加又对应着减少的太阳辐射量,偏南的ITCZ北界位置以及副热带高压,这些对应于减弱的东亚夏季风(增强的东亚冬季风)。
     黑潮流域的高沉积速率事件对应于减弱的黑潮强度和增加的ENSO频度,这些事件与上述的副热带高压、ITCZ位移和强弱的变化相一致。黑潮流域过去25000a B.P.以来南北温度的差异有冰期加大而全新世减小的趋势,但这种冰期与全新世的差异很小,我们认为末次盛冰期的时候黑潮主流轴没有移出冲绳黑潮,只是由于强度的减弱受陆架水体的影响有所加大。
     黑潮流域很好的记录到了包括数千年尺度的D/O旋回周期到大气——海洋系统内部振荡所致的PDO、NAO等数十年尺度的高频振荡,说明黑潮流域对过去全球及区域环境变化事件有很好的响应。黑潮流域各古海洋指标所记录周期上的一致性说明这些环境因子控制机理上具有的一致性,即大背景上受太阳活动所引起的辐射量变化控制,局部的高频快速气候波动又受到局域性的气候因素如海气相互作用的放大影响。
Two gravity cores MD05-2908 and PC-1, which are under the main axis of Kuroshio Current (KC), are adopted in this thesis. Based on detailed AMS~(14)C dates, by using high-resolution organic geochemistry records (such as the content and isotopic composition of carbon and nitrogen, the content of long-chain n-alkane, n-alkanol and unsaturated alkenone) we reconstructed the history of sea surface environmental evolution of the Kuroshio Current main flow for the past 25,000a B.P.. In this study, sea surface temperature (SST) and salnity (SSS) of the past 25,000a B.P. were calculated by using the U_(37)~(k’)-derived paleo-thermometer index and the foraminifer oxygen isotopic composition. The evolution of history of terrigenous material input during the last 7,000a B.P. was reconstructed via the content and composition of carbon and nitrogen and biomarkers. And the history of sea-surface paleoproductivity for the last 7,000a B.P. was reconstructed by using long-chain unsaturated alkenone and organic carbon isotopic composition. By correlation with records from north hemisphere ice-raft events, GRIP2 ice core and records from Okinawa trough, we analyzed the response mechanisms of sea surface circulation on the past global climate changes. By correlation with those global high frequency climate events we discussed the responses of Kuroshio Current evolution to the global high-frequency climate events. In assistant with spectrum and wavetest methods, we discussed the controlling mechanisms of high-frequency climatic events recorded in the Okinawa Trough. By all these methods and approaches we got the following viewpoints and conclusions.
     There are good correlations between our organic geochemical based paleoenvironmental records and those reported records in the Kuroshio Current flow. Those former reported Kuroshio variation events (especially during the middle to late Holocene) can be recognized from our high-frequency geochemistry records. There are good correspondings between the Kuroshio variations and global climate changes for the past 25,000 a B.P.. The variation trend of Kuroshio strength is similar to that of global climate changes, and the records of high-frequency climate events identified from our organic geochemistry records are synchronous with those records reported elsewhere in the world. This synchronization reveals the fact that the climate changes in the Kuroshio Current is influenced by global climate changes and there is no obvious time lag or leading.
     Global high-frequency events show prominent controls on both the main flow of the Kuroshio Current and the atmospheric and oceanic circulation in the nearby areas. This controlling pattern is carried on by the three climatic controlling factors in this area, namely the western Pacific subtropic high (WPSH), the intertropical convergence zone (ITCZ) and the East Asian monsoon (EAM). These three factors correlate and restrict each other, and they are dominated by the solar radiant intensity . Concretely, the decrease of the solar radiant intensity induces a reduced heat-difference between the tropical western pacific ocean and the high latitude land area, which weakens the convection activities in the tropical western pacific, as a result, the WPSH is restricted to the south and east part of China, heavy and concentrated rainfall maintains at the east and south part of China. The intensified rainfall enhances the weathering velocity and the river discharges, which together results a increased mass supply into the East China Sea. Furthermore, the East Asian winter monsoon (EAWM) is influenced by the solar radiant intensity. An intensified EAWM always corresponds to a reduced solar radiant intensity, which results in an increasing of“nepheloid layer”transportation. In the South Okinawa Trough (SOT), this kind of“nepheloid layer”transportation is the primary contribution to the mass accumulated in SOT. Thus, intensified EAWM leads the increasing of material supply in the past 7000a B.P..
     The organic geochemistry-induced sea-surface paleo-productivity records show similar variations to that of land-material input for the past 7000a B.P.. The increase in land material greatly enriches the nutrient supplement in the sea surface, which stimulates the primary productivity. For the past 7000 a B.P., the increase of primary productivity always correlates to increased land materials input and decreased Kuroshio current. Indicates the increased influences of land nutrient supplement together with diluted land water.
     The high-sedimentation rate events correspond to the decreased Kuroshio intensity and the increased ENSO frequency. There are closely relationships with ENSO and the WPSH, the EAM and the migrations of ITCZ.
     The Kuroshio current shows a decreased SST difference between the middle and the north part of Okinawa Trough from the past 25000a B.P. to present, the maximum difference occurred in the LGM, indicates a decreased Kuroshio Current influences over that time. However, the SST differences between the middle and north part of the Okinawa trough show very little variations between LGM and the Holocene, suggests the Kuroshio Current had always been in the Okinawa Trough both in the Holocene and in the LGM.
     Periodicity analysis shows the Kuroshio Current give a good records of global high-frequency cycles including the millennial scale D/O cycle and the atmosphere—ocean inter-oscillation induced multi-decadal cycles such as the PDO and NAO, reveals quite sensitive corresponds to the global and regional high-frequency climate events. Periods records picked-up from different proxies show similar periods, which reveals these paleo-environmental proxies have the same controlling factors. The periodicities show that the solar activity has the basic influences on the Kuroshio current and the adjacent areas while those regional climate factors superimposed their influences on the backgroud climate variations and enlarged those high-frequency climate changes.
引文
[1] WILLIAMS D G, EHLERINGER J R. Carbon isotope discriminiation in three semi-arid woodland species along a monsoon gradient [J]. Oecologia, 1996, 106(455-60.
    [2] DANSGAARD W, WHITE J W C, JOHNSON S J. The abrupt termination of the Younger Dryas climatic event [J]. Nature, 1989, 339(532-3.
    [3] MURRAY J, MITCHELL J. An overview of climatic variability and its causal Mechanisms [J]. Quaternary Research, 1976, 6(481-93.
    [4]刘东生.第四纪环境[M].北京;科学出版社. 1997.
    [5] BROECKER W S, ADGRGE M, WOLFLI W, et al. The chronology of the last deglaciation:Implication to the cause of the Younger Dryas Event [J]. Paleoceanography, 1988, 3(1): 1-19.
    [6] BOND G, SHOWERS W, CHESEBY M, et al. A Pervasive millennial-scale cycle in the North Atlanitic Holocene and glacial climate [J]. Science, 1997, 278(1257-66.
    [7] ALLEY R B, CLARK P U. The deglaciation of the Northern Hemisphere: A global perspective [J]. Annual Review of Earth and Planetary Science, 1999, 27(149-82.
    [8] DANSGAARD W, JOHNSEN S J, CLAUSEN H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record [J]. Nature, 1993, 364(218-20.
    [9] BOND G, HEINRICH H, BROECKER W, et al. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period [J]. Nature, 1992, 360(245-9.
    [10] HEINRICH H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130 000 years [J]. Quaternary Research, 1988, 29(142-52.
    [11] BOND G, BROECKER W S, JOHNSEN S, et al. Correlations between climatic records from North Atlantic sediments and Greenland ice [J]. Nature, 1993, 365(143-7.
    [12] ELLIOT M, LABEYRIE L. Millennial-scale iceberg discharges in the Irminger Basin during the last glacial period: Relationship with the Heinrich events and environmental setteings [J]. Paleoceanography, 1998, 13(433-46.
    [13] BOND G C, LOTTI R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation [J]. Science, 1995, 267(1005-10.
    [14] SCHULZ H, RAD U-V, ERLENKEUSER H. Correlation between Arabian sea and Greenland climate oscillations of the past 110,000 years [J]. Nature, 1998, 393(54-7.
    [15] MOY C M, SELTZER G O, AL E. Variability of El Nino/Southern Oscillation activity at millennial time scales during the Holocene epoch [J]. Nature, 2002, 420(162-5.
    [16] OPPO D W, MCMANUS J F, CULLEN J L. Deepwater variability in the Holocene epoch [J]. Nature, 2003, 422(277-8.
    [17] BOND G C, KROMER B, BEER J, et al. Persistent solar influence on North Atlantic climate during the Holocene [J]. Science, 2001, 294(2130-6.
    [18] FRIEDRICH M, KROMER B, SPURK M, et al. Palaeo-environmental and radiocarbon calibration as derived from Late glacial/Early Holocen tree-ring chronologies [J]. Quaternary International, 1999, 61(27-39.
    [19] ALLEY R B, MAYEWSHI P A, SOWERS T, et al. Holocene climatic instability: a prominent, widespread event 8200 yr ago [J]. Geology, 1997, 25(483-6.
    [20] LEUENBERGER M C, LANG C, SCHWANDER J. Delta 15Nmeasurements as a calibration tool for the paleothermometer and gas-ice age differences: A case study for the 8200B.P. event on GRIP ice[J]. Journal of Geophysical Research, 1999, 25(483-6.
    [21] HU F S, SLAWINESKI D, WRIGHT JR H E, et al. Abrupt changes in North American climate during early Holocene times [J]. Nature, 1999, 400(437-40.
    [22] TINNER W, LOTTER A F. Central European vegetation response to abrupt climate change at 8.2ka [J]. Geology, 2001, 29(551-4.
    [23] SPOONER I, DOUGLAS M S V, TERRUSI L. Multiproxy evidence of an early Holocene (8.2kyr) climate oscillation in central Nova Scotia, Canada [J]. Journal of Quaternary Sciences, 2002, 17(639-45.
    [24] GASSE F. Hydrological changes in the African tropics since the last glacial maximum [J]. Quaternary Science Reviews, 2000, 19(189-211.
    [25] THOMPSON L G. Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa [J]. Science, 2002, 298(589-93.
    [26] NEFF U, BURNS S J, MANGINI A, et al. Strong coherence between solar variability and themonsoon in Oman between 9 and 6 kyr ago [J]. Nature, 2001, 411(290-3.
    [27] ARZ H W, LAMY F, PATZOLD J, et al. Mediterranean moisture source for early-Holocene humid period in the Red Sea [J]. Science, 2003, 300(118-21.
    [28] ALLEY R B, AGUSTSDOTTIR A M. The 8k event: cause and consequences of a major Holocene abrupt climate change [J]. Quaternary Science Reviews, 2005, 24(1123-49.
    [29] LIU J, SAITO Y, WANG H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea [J]. Marine Geology, 2007, 236(165-87.
    [30] DAHL-JENSEN D. Past temperatures directly from the Greenland ice sheet [J]. Science, 1998, 282(268-71.
    [31] BRADLEY R S, JONES P D. "Little ice age" summer temperature variations: their nature and relevance to recent global warming trends [J]. The Holocene, 1993, 3(367-76.
    [32] MATTHEWS J A. Little Ice Age` glacier variations in Jotunheimen, southern Norway: a study in regionally controlled lichenometric dating of recessional moraines with implications for climate and lichen growth rates [J]. The Holocene, 2005, 15(1-19.
    [33] JOHANNES K, ROLF K. Little Ice Age` glacier fluctuations, Gran Campo Nevado, southernmost Chile [J]. The Holocene, 2005, 15(20-8.
    [34] HENDY E J. Abrupt Decrease in Tropical Pacific Sea Surface Salinity at End of Little Ice Age [J]. Science, 2002, 295(1511-4.
    [35] KREUTZ K J, MAYEWSKI P A, MEEKER L D, et al. Biopolar changes in atmospheric circulation during the Little Ice Age [J]. Science, 1997, 277(1294-6.
    [36] BROECKER W S. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? [J]. Science, 1997, 278(1582-8.
    [37] O`BRIEN S R, MAYEWSKI P A, MEEKER L D, et al. Complexity of Holocene climate as reconstructed from a Greenland ice core [J]. Science, 1995, 270(1962-4.
    [38] MANN M E, PARK J, BRADLEY R S. Global interdecadal and century-scale climate oscillations during the past five centuries [J]. Nature, 1995, 378(266-70.
    [39] SCHLESINGER M E, RAMANKUTTY N. An oscillation in the global climate system of period 65-70 years [J]. Nature, 1994, 367(723-6.
    [40] BARNETT T P, PIERCE D W, LATIF M, et al. Interdecadal interactions between the tropics and midlatitudes in the Pacific basin [J]. Geophysical Research Letters, 1999, 26(615-618):
    [41] MINOBE S. A 50-70 year climatic oscillation over the North Pacific and North America [J].Geophysical Research Letters, 1997, 24(683-6.
    [42] ROSENTHAL Y, BROCCOLI A J. In Search of Paleo-ENSO [J]. Science, 2004, 304(219-21.
    [43]李建平.海气耦合涛动与中国气候变化[M]//秦大河.中国气候与环境演变(上卷).北京;气象出版社. 2005: 324-33.
    [44]苍树溪,阎军.西太平洋特定海域古海洋学[M].青岛, 1992.
    [45] LI T, LIU Z, HALL M A, et al. Heinrich event imprints in the Okinawa Trough: evidence from oxygen isotope and planktonic foraminifera [J]. Paleogeography Paleoclimatology Paleoecology, 2001, 176(133-46.
    [46] LI B, JIAN Z, WANG P. Pulleniatina obliqueloculata as a paleoceanographic indicator in the southern Okinawa Trough during the last 20 000 years [J]. Marine Micropaleontology, 1997, 32(59-69.
    [47] UJIIéH, TANAKA Y, ONO T. Late Quaternary paleoceanographic record from the middle Ryukyu Trench slope, northwest Pacific [J]. Marine Micropaleontology, 1991, 18(115-28.
    [48] JIAN Z M, WANG P X, YOSHIKI S. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean [J]. Earth and Planetary Science Letters, 2000, 184(305-19.
    [49] XU X, ODA M. Surface-water evolution of the eastern East China Sea during the last 36000 years [J]. Marine Geology, 1999, 156(285-304.
    [50] IJIRI A, WANG L, OBA T, et al. Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years [J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 219(239-61.
    [51] TADA R, IRINO T, KOIZUMI I. Land-ocean linkages over orbital and millennial timescales record in late Quaternary sediments of Jappan Sea [J]. Paleoceanography, 1999, 14(2): 236-47.
    [52] UJIIéH, UJIIéY. Late Quaternary course changes of the Kuroshio Current in the Ryukyu arc region, northwestern Pacific Ocean [J]. Marine Micropaleontology, 1999, 37(23-40.
    [53] SUN Y B, OPPO D W, XIANG R, et al. Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate [J]. Paleoceanography, 2005, 20(A4005. doi:10.1029/2004PA001061.
    [54] CHANG F, ZHUANG L, LI T G, et al. Radiolarian fauna in surface sediments of the northeastern East China Sea [J]. Marine Micropaleontology, 2003, 48(3-4): 169-204.
    [55] CHANG F, LI T G, ZHUANG L, et al. A Holocene paleotemperature record based on radiolaria from the northern Okinawa Trough (East China Sea) [J]. Quaternary International, 2007, doi:10.1016/j.quaint.2006.12.007.
    [56]陈金霞,李铁刚,曹奇原, et al. 7500aBP以来冲绳海槽北部孢粉组合及古环境意义[J].海洋与湖沼, 2005, 36(5): 475-80.
    [57]陈金霞,张德玉,张文亲, et al.末次冰期以来冲绳海槽北部古气候变化的孢粉记录[J].海洋学报, 2006, 28(1): 85-91.
    [58] MǘLLER P J, SUESS E. Productivity, sedimentation rate and sedimentary organic carbon in the oceans-Ⅰ.organic carbon preservation [J]. Deep Sea Research, 1979, 26(1347-62.
    [59] MEYERS P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes [J]. Organic Geochemistry, 1997, 27(213-50.
    [60] BERNER R A. The long-term carbon cycle, fossil fuels and atmospheric composition [J]. Nature, 2003, 426(323-6.
    [61] WALSH J J, ROWE G T, IVERSON R L, et al. Biological export of shelf carbon is a sink of the global CO2 cycle [J]. Nature, 1981, 291(196-201.
    [62] PELEJERO C. Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments [J]. Chemical Geology, 2003, 200(89-103.
    [63] VOLKMAN J K. A review of sterol markers for marine and terrigenous organic matter [J]. Organic Geochemistry, 1986, 9(83-9.
    [64] HOLTVOETH J, WAGNER T, HORSFIELD B, et al. Late-Quaternary supply of terrigenous organic mater to rhe Congo deep-sea fan (ODP site 1075): Implications for equatorial African paleoclimate [J]. Geo-Marine Letters, 2001, 21(23-33.
    [65] PRAHL F G, LANGE DE G J, LYLE M. Post-depositional stability of long-chain alkenones under contrasting redox conditions [J]. Nature, 1989, 341(434-7.
    [66] VILLANUEVA J, CALVO E, PELEJERO C, et al. A latitudinal productivity band in the central North Atlantic over the last 270 kyr: An alkenone perspective [J]. Paleoceanography, 2001, 16(6): 617-26.
    [67] PETERS K, MOLDOWAN J M. The biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments [M]. New Jersey: Prentice Hall, 1993.
    [68] TERNOIS Y, KAWAMURA K, KEIGWIN L. A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years [J]. Geochimica et Cosmochimica Acta, 2001, 65(791-802.
    [69] BRASSELL S C, EGLINTON G, MARLOWE I T, et al. Molecular stratigraphy: a new tool for climatic assessment [J]. Nature, 1986, 320(129-34.
    [70] PRAHL F G, WAKEHAM S G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment [J]. Nature, 1987, 330(367-9.
    [71] SIBUET J-C, DEFFONTAINES B, HSU S-K, et al. Okinawa Trough backarc basin: early tectonic and magmatic evolution [J]. Geophysical Research Letters, 1998, 103(30245-67.
    [72]周祖翼,廖宗廷,金性春.冲绳海槽弧后背景下大陆张裂的最高阶段[J].海洋地质与第四纪地质, 2001, 21(1): 51-5.
    [73]金翔龙,喻普之.冲绳海槽的构造特征与演化[J].中国科学(B辑), 1987, 2(196-203.
    [74] GONG G-C, CHEN Y-L L, LIU K K. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics [J]. Continental Shelf Research, 1996, 16(1561-90.
    [75] CHEN C T A, RUO R, PAI S C, et al. Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan [J]. Continental Shelf Research, 1995, 15(19-39.
    [76] WONG G T F, CHAO S Y, LI Y H, et al. The Kuroshio edge exchange processes (KEEP) study----an introduction ot hypotheses and highlights [J]. Continental Shelf Research, 2000, 20(335-47.
    [77] ZHANG J. Nutrient elements in large Chinese estuaries [J]. Continental Shelf Research, 1996, 16(1023-45.
    [78] BEARDSLEY R C, LIMBURNER R, YU H, et al. Discharge of the Changjing (Yangtze River) into the East China Sea [J]. Continental Shelf Research, 1985, 4(57-76.
    [79]金翔龙.东海海洋地质[M].北京:海洋出版社, 1992.
    [80] HSUEH Y. The Kuroshio in the East China Sea [J]. Marine Syst, 2000, 24(131-9.
    [81] NITANI H. Beginning of the Kuroshio [M]//STOMMEL H, YOSHIDA K. Kuroshio, Its Physical Aspects. Tokyo; University of Tokyo Press. 1972.
    [82] LIE H J, CHO C H, LEE J H, et al. Seperation of the Kuroshio and its penetration onto the continental shelf west of Kyushu [J]. Journal of Geophysical Research, 1998, 103(2963-76.
    [83] LIN S, LIU K K, CHEN M P, et al. Distribution of organic carbon in the KEEP area continentalmargin sediments [J]. Terrestrial, Atmospheric and Oceanic Sciences, 1992, 3(3): 365-78.
    [84] LIU K K, GONG G-C, LIN S W, et al. The year-round upwelling at the shelf break near the northern tip of Taiwan as evidenced by chemical hydrography [J]. Terrestrial, Atmospheric and Oceanic Sciences, 1992, 3(243-76.
    [85] CHEN C T A. The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf [J]. Oceanologica Acta, 1996, 19(523-7.
    [86] SUN X P, SU Y F. On the variation of Kuroshio in East China Sea [M]//ZHOU D, LIANG Y B, ZENG C K. Oceanol China Seas. Dordrecht; Kluwer Academic Publishers. 1994: 49-58.
    [87] WONG G T F, CHAO S-Y, LI Y-H, et al. KEEP-exchange processes between the Kuroshio and the East China Sea Shelf [J]. Continental Shelf Research, 2000, 20(331-4.
    [88] YAMADA M, AONO T. 210Pb and 234Th in settling particles collected by time-series sediment traps in the Okinawa Trough [J]. Deep Sea Research II, 2003, 50(487-501.
    [89] YAMADA M, AONO T. 238U, Th isotopes, 210Pb and 239+240Pu in settling particles on the continental margin of the East China Sea: Fluxes and particle transport processes [J]. Marine Geology, 2006, 227(1-12.
    [90] HU D X, TSUNIGAI S. Margin flux in East China Sea [M]. Beijing: Chinese Ocean Press, 1999.
    [91]杨作升,郭志刚,王兆祥, et al.黄东海陆架悬浮体向其东部深海区输送的宏观格局[J].海洋学报, 1992, 14(2): 81-90.
    [92] HOSHIKA A, TANIMOTO T, MISHIMA Y, et al. Variation of turbidity and particle transport in the bottom layer of the East China Sea [J]. Deep Sea Research II, 2003, 50(443-55.
    [93] SIBUET J C, DEFFONTAINES B, HSU S K, et al. Okinawa trough backarc basin: early tectonic and magmatic evolution [J]. Journal of Geophysical Research, 1998, 103(30245-67.
    [94]刘焱光.近4万年来冲绳海槽物质来源的定量估计及其对气候变化的响应[D].青岛;中国海洋大学, 2005.
    [95]刘焱光,石学法,吕海龙.日本海、鄂霍次克海和白令海的古海洋学研究进展[J].海洋科学进展, 2004, 22(4): 519-30.
    [96]秦蕴珊.冲绳海槽的火山沉积和浊流沉积[M].北京:学苑出版社, 2000.
    [97] CHUNG Y C, HUNG G W. Particulate fluxes and transports on the slope between the southern East China Sea and the South Okinawa Trough [J]. Continental Shelf Research, 2000, 20(571-97.
    [98] WEBSTER P J, MAGANA V O, PALMER T N, et al. Monsoons: Processes, predictability, and the prospects for prediction [J]. Journal of Geophysical Research, 1998, 103(14451-510.
    [99]朱乾根,林锦瑞,寿绍文, et al.天气学原理和方法[M].北京:气象出版社, 1992.
    [100]北京大学地球物理系气象教研室.天气分析和预报[M].北京:科学出版社, 1978.
    [101]慕巧珍,王绍武,朱锦红, et al.近百年夏季西太平洋副热带高压的变化[J].大气科学, 2001, 25(6): 787-97.
    [102] HOLLAND G J. Global Guide to Tropical Cyclone Forecasting [M]. Geneva: WMO, 1993.
    [103] HUANG R, WU Y. The influence of ENSO on the summer climate change in China and its mechanism [J]. Advance in Atmospheric Sciences, 1989, 6(21-32.
    [104]黄荣辉.关于我国重大气候灾害的形成机理和预测理论研究[J].中国基础科学, 2001, 8(4-8.
    [105]陈月娟,周任君,简俊.东亚夏季风环流与ENSO循环的关系[J].高原气象, 2002, 21(6): 536-45.
    [106] CHEN W, GRAF H F. The interannual variability of East Asian winter monsoon and its relationship to the summer monsoon [J]. Advance in Atmospheric Sciences, 1998, 17(48-60.
    [107]康志明,鲍媛媛,陈晓红. 2005年6月我国南方雨带异常偏南的分析[J].气象, 2006, 32(4): 91-6.
    [108] WEI K Y. Leg195 Synthesis: Site 1202-Late Quaternary Sedimentation and Paleoceanography in the Southern Okinawa Trough; proceedings of the Proceedings of the Ocean Drilling Program, Scientific Results, F, 2004 [C].
    [109] BARD E. Correction of accelerator mass spectrometry 14C ages measured in plantkonic foraminifer: paleoceanographic implications [J]. Paleoceanography, 1988, 3(635-45.
    [110] HEDGES J I. Carbon and nitrogen determinations of carbonate-containing solids [J]. Limnology and Oceanography, 1984, 29(657-63.
    [111]SEKI O, IKEHARA M, KAWAMURA K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30kyr [J]. Paleoceanography, 2004, 19(1-18.
    [112] ZHAO M, HUANG C Y, WANG C C, et al. A millennial-scale UK`37 sea-surface temperature record from the South China Sea (8°N) over the last 150kyr: Monsoon and sea-level influence [J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 236(39-55.
    [113] SCHULZ M, MUDELSEE M. REDFIT:Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series [J]. Computer & Geoscience, 2002, 28(421-6.
    [114] HASSELMANN K. Stochastic climatic models: PartI. Theory [J]. Tellus, 1976, 28(6): 473-85.
    [115] TORRENCE C, COMPO G. A practical guide to Wavelet Analysis [J]. Bull Amer Meteor Soc, 1998, 79(61-78.
    [116] SHEU D D, JOU W C, CHUNG Y-C, et al. Geochemical and carbon isotopic characterization of particles collected in sediments from the East China Sea continental slope and the Okinawa Trough northeast of Taiwan [J]. Continental Shelf Research, 1999, 19(183-203.
    [117] LYLE M. Climatically forced organic carbon butial in equatorial Atlantic and Pacific oceans [J]. Nature, 1988, 335(529-32.
    [118] BRUMMER G J A, VAN EIJDEN A J M. "Blue-ocean" paleoproductivity estimates from pelagic carbonate mass accumulation rate [J]. Marine Micropaleontology, 1992, 19(99-117.
    [119] MǘLLER P J. C/N ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays [J]. Geochimica et Cosmochimica Acta, 1977, 41(765-776):
    [120] PRAHL F G, MUEHLHAUSEN L A, ZAHNLE D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions [J]. Geochimica et Cosmochimica Acta, 1988, 52(2302-10.
    [121] CONTE M H, VOLKMAN J K, EGLINTON G. Lipid biomarkers of the Haptophyta [M]//GREEN J C, LEEDLBEATER B S C. The Haptophyta Algae, Systematics Association Special. Oxford; Clarendon Press. 1994: 351~77.
    [122] VOLKMAN J K, BARRETT S M, BLACKBOM S I. Alkenones in Gephyrocapsa oceanica: Implications for atudies of paleoclimate [J]. Geochimica et Cosmochimica Acta, 1995, 59(513-20.
    [123] MǘLLER P J, KIRST G, RUHLAND G, et al. Calibration of the alkenone paleotemperature index UK`37 based on core-tops from the eastern South Atlantic and the global ocean(60°N-60°S). [J]. Geochimica et Cosmochimica Acta, 1998, 62(1757-72.
    [124] PELEJERO C, GRIMALT J O. The correlation between the UK`37 index and sea surface temperautures in the warm boundary: the South China Sea [J]. Geochimica et Cosmochimica Acta, 1997, 61(4789-97.
    [125] EPSTEIN S, BUCHSBAUM R, LOWENSTAM H A, et al. Revised carbonate water isotopic temperature scale [J]. Bulletin of the Geological Society of America, 1953, 64(1315-26.
    [126] SHACKLETON N. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the lasst glacial [M]. Centre National de la Recherche Scientifique. Coll. Inter. 1974: 203-9.
    [127] FAIRBANKS R G, SVERDLOVE M, FREE R, et al. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin [J]. Nature, 1982, 298(841-4.
    [128] HERBERT T D, SCHUFFERT J D, THOMAS D, et al. Depth and seasonality of alkenone production along the California margin inferred from a core top transect [J]. Paleoceanography, 1998, 13(263-71.
    [129] MORIMOTO M, ABE O, KAYANNE H, et al. Salinity records for the 1997-98 El Nino from Western Pacific corals [J]. Geophysical Research Letters, 2002, 29(1540, doi:10.029/2001GL013521.
    [130] MORIMOTO M, KAYANNE H, ABE O, et al. Intensified mid-Holocene Asian monsoon recorded in corals from Kikai Island, subtropical northwestern Pacific [J]. Quaternary Research, 2007, 67(204-14.
    [131] WAELBROECK C, LABEYRIE L, MICHEL E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records [J]. Quaternary Science Review, 2002, 21(295-305.
    [132] OBA T. Paleoceanographic information abtained by the isotopic measurement of individual foraminiferal specimens [M]. Proc First China Int Conf Oceanic Asian Mar Geol. 1990: 169-80.
    [133] FUKASAWA H. Non-glacial varved lake sediment as a natural timekeeper and detector on environmental changes [J]. Quternary Research (Japanese), 1995, 34(3): 135-49.
    [134] UJIIéY, UJIIéH, TAIRA A, et al. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21,000 years: evidence from planktonic foraminifera [J]. Marine Micropaleontology, 2003, 49(335-64.
    [135] REIMER P. IntCal04 terrestrial radiocarbon age calibration, 26-0 ka BP [J]. Radiocarbon, 2004, 46(1029-58.
    [136] NAIR R R, ITTEKKOT V, MANGANINI S J, et al. Increased particle flux to the deep ocean related to monsoons [J]. Nature, 1989, 338(749-51.
    [137] HONJO S, SPENCER D W, FARRINGTON J W. Deep advective transport of lithogenic particles in Panama Basin [J]. Science, 1980, 216(516-8.
    [138] ITTEKKOT V, NAIR R R, HONJO S, et al. Enhanced particle fluxes in Bay of Bengal induced by injection of fresh water [J]. Nature, 1991, 351(385-7.
    [139] JENG W-L, HUH C-A. A comparison of sedimentary aliphatic hydrocarbon distribution between the southern Okinawa Trough and a nearby river with high sediment discharge [J]. Estuarine, Coastal and Shelf Science, 2006, 66(217-24.
    [140] HUH C-A, SU C-C, WANG C-H, et al. Sedimentation in the Southern Okinawa Trough-Rates, turbidites and a sediment budget [J]. Marine Geology, 2006, 231(129-39.
    [141] JENG W L. Aliphatic hydrocarbon concentrations in short sediment cores from the southeen Okinawa Trough: Implications for lipid deposition in a complex environment [J]. Continental Shelf Research, 2007, 27(2066-78.
    [142] CHUNG Y, CHANG W C. Pb-210 fluxes and sedimentation rates on the lower continental slope between Taiwan and South Okinawa Trough [J]. Cont Shelf Res, 1995, 15(149-64.
    [143] HSU S-C, LIN F-J, JENG W-L, et al. The effect of a cyclonic eddy on the distribution oflithogenic particles in the southern East China Sea [J]. Journal of Marine Research, 1998, 56(813-32.
    [144] HSU S-C, LIN F J, JENG W-L, et al. Observed sediment fluxes in the southwesternmost Okinawa Trough enhanced by episodic events: flood runoff from Taiwan rivers and large earthquakes [J]. Deep Sea Research PartⅠ, 2004, 51(979-97.
    [145] KAO S J, LIN F J, LIU K K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the Wast China shelf and the southern Okinawa Trough [J]. Deep Sea Research, 2003, PartⅡ,50(1203-17.
    [146] LI Y H. Denudation of Taiwan island since the Pliocene epoch [J]. Journal of Geology, 1976, 4(105-7.
    [147] MILLIMAN J D. Flux and fate of fluvial sediment and water in coastal seas [M]//MANTOURA R F C, MARTIN J M, WOLLAST R. Ocean Margin Processes in Global Change. Chichester, England; Wiley. 1991: 69-89.
    [148] WATER-RESOURCES-PLANNING-COMMISSION. Hydrological Year Book of Taiwan, Republic of China 1994 [M]. Taipei, Taiwan, Republic of China: Ministry of Economic Affairs, 1996.
    [149] OLIVEIRA A, VITORINO J, RODRIGUES A, et al. Nepheloid layer dynamics in the northern Portuguese shelf [J]. Progress in Oceanography, 2002, 52(195-213.
    [150] WATER-RESOURCES-BUREAU. Hydrological Year Book of Taiwan, ROC,1998 [M]. Taipei, Taiwan, ROC: Ministry of Economic Affairs, 1999.
    [151] YUAN Y, LIU Y, LIU C T, et al. The Kuroshio east of Taiwan and the currents east of the Ryukyu-gunto during October of 1995 [J]. Acta Oceanol Sinica, 1998, 17(1-13.
    [152] SHAW P-T, CHAO S-Y. Surface circulation of the South China Sea [J]. Deep Sea Research PartⅠ, 1994, 41(1663-83.
    [153] SHAW P-T, CHAO S-Y, LIU K K, et al. Winter upwelling off Luzon in the northeastern South China Sea [J]. Journal of Geophysical Research, 1996, 10(16435-48.
    [154] LEE S-Y, HUH C-A, SU C-C, et al. Sedimentation in the southern Okinawa Trough: enhanced particle scavenging and teleconnection between the equatorial Pacific and western Pacific margins [J]. Deep Sea Research PartⅠ, 2004, 51(1769-80.
    [155] ISEKI K, OKAMURA K, KIYOMOTO Y. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in teh East China Sea [J]. Deep Sea Research II, 2003, 50(457-73.
    [156] TANAKA Y. Coccolith flux and species assemblages at the shelf edge and in the Okinawa Trough of the East China Sea [J]. Deep Sea Research Part 2 Tropical Studies in Oceanography, 2003, 50(503-11.
    [157] DEMASTER D J, MCKEE B A, NITTROUER C A, et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea [J]. Continental Shelf Research, 1985, 4(143-58.
    [158] SIBUET J C, LETOUZEY J, BARBIER F, et al. Back arc extension in the Okinawa Trough [J]. Journal of Geophysical Research, 1987, 92(14041-63.
    [159]孙有斌,高抒,鹿化煜.前处理方法对北黄海沉积物粒度的影响[J].海洋与湖沼, 2001, 32(6): 665-71.
    [160]陈忠,颜文.海洋沉积粘土矿物与古气候、古环境演化响应的研究进展[J].海洋科学, 2000, 24(25-7.
    [161] XIAO S, LI A, LIU J P, et al. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2-4): 293-304.
    [162] KENNEDY J A, BRASSELL S C. Molecular records of twentieth-century El Nino events in laminated sediments from the Santa Barbara basin. [J]. Nature, 1992, 357(62-4.
    [163] OSTLE N J, BOL R, PETZKE K J, et al. Copound specificδ15N values: amino acids in grassland and arable soils [J]. Soil Bio Biochem, 1999, 31(1751-5.
    [164] DEGENS E T, BEHRENDT M, GOTTHARDT B, et al. Metabolic fractionation of carbon isotopes in marine plankton.Ⅱ.Data on samples collected off the coasts of Peru and Ecuader [J]. Deep Sea Research, 1968, 15(11-20.
    [165] STUIVER M, BRAZIUNAS T F. Tree cellulose 13C/12C isotope ratios and climate change [J]. Nature, 1987, 328(58-60.
    [166] HIGGINSON M J, ALTABET M A, MURRAY D W, et al. Geochemical evidence for abrupt changes in relative strength of the Arabian monsoons during a stadial/interstadial climate transition [J]. Geochimica et Cosmochimica Acta, 2004, 68(3807-26.
    [167] HIGGINSON M J, MAXWELL J R, ALTABET M A. Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea: remote vs. local forcing of millennial- and orbital-scale variability [J]. Marine Geology, 2003, 201(223-50.
    [168] ALTABET M A. Nitrogen and carbon isotopic tracers of the source and transformation of particles in the deep sea [M]//ITTEKOT V, SCHAFER P, HONJO S, et al. Particle Flux in the Ocean. Hoboken, N.J.; John Wiley. 1996: 155-84.
    [169] PERTERSON B J, HOWARTH R W. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia [J]. Limnology and Oceanography, 1987, 32(1195-213.
    [170] THORNTON S F, MCMANUS J. Application of organic carbon and nitrogen isotopes and C/N ratios as source indicators of organic provenance in estuarine systems: evidence from the tay estuary, Scoland [J]. Estuarine, Coastal and Shelf Science, 1994, 38(219-33.
    [171] KIENAST M. Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climate cycle:Global implications [J]. Paleoceanography, 200, 15(2): 244-53.
    [172] ALTABET M A, PILSKALN C, THUNELL R, et al. The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific [J]. Deep Sea Research, 1999, 46(655-79.
    [173] SCHUBERT C J, CALVERT S E. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition [J]. Deep Sea Research I, 2001, 48(789-810.
    [174] COLLISTER J W, RIELEY G, STEM B, et al. Compound-specificδ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms [J]. Org Geochem, 1994, 21(619-27.
    [175] EGLINTON G, HAMILTON R J. Leaf epicuticar waxes. [J]. Science, 1967, 156(1322-35.
    [176] SIMONEIT B R T, CHESTER R, EGLINTON G. Biogenic lipids in particulates from the lower atmosphere over the eastern Atlantic. [J]. Nature, 1977, 267(682-5.
    [177] GAGOSIAN R B, PELTZER E T, ZAFIRIOU O C. Atmospheric transport of continentally derived lipids to the tropical North Pacific [J]. Nature, 1981, 291(312~4.
    [178] HUANG Y S, DUPONT L, SAMTHEIN M, et al. Mapping of C-4 plant input from North West Africa into North East Atlantic sediments [J]. Geochimica et Cosmochimica Acta, 2000, 24(25-33.
    [179] ZHAO M, DUPONT L, EGLINTON G, et al. n-alkane and pollen reconstruction ofterrestrial climate and vegetation for N.W. Africa over the last 160 kyr [J]. Organic Geochemistry, 2003, 34(131-43.
    [180] BIRD M I, SUMMONS R E, GAGAN M K, et al. Terrestrial vegetation change inferred from n-alkanesδ13C analysis in the marine environment [J]. Geochimica et Cosmochimica Acta, 1995, 59(2853~7.
    [181] PELEJERO C, KIENAST M, WANG L, et al. The flooding of Sundaland during the last deglaciation: imprints in hemipelagic sediments from the southern South China Sea [J]. Earth and Planetary Science Letters, 1999, 171(661~71.
    [182] FERNANDES M B, SICRE M A. The importance of terrestrial organic carbon inputs on Kara Sea shelves as revealed by n-alkanes, OC andδ13C values [J]. Organic Geochemistry, 2000, 31(363-74.
    [183] ZHAO M, HUANG C-Y, WANG C-C, et al. A millennial-scale U37K' sea-surface temperature record from the South China Sea (8[degree sign]N) over the last 150 kyr: Monsoon and sea-level influence [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1-2): 39-55.
    [184] RUDDIMAN W F. Tropical Atlantic terrigenous fluxes since 25,000 yrs BP [J]. Marine Geology, 1997, 136(189-207.
    [185] VILLANUEVA L, GRIMALT J O, CORTIJO E, et al. A biomarker approach to the organic matter deposited in the North Atlantic during the last climatic cycle [J]. Geochimica et Cosmochimica Acta, 1997, 61(4633-46.
    [186] POYNTER J G, FARRIMOND P, ROBINSON N, et al. Aeolian-derived higher plant lipids in the marine sedimentary record: Links with palaeoclimate. [M]. Kluwer Academic Publ, 1989.
    [187] SICRE M A, TERNOIS Y, PATERNE M, et al. Biomarker stratigraphic records over the last 150 kyrs off the NW African coast at 25oN [J]. Organic Geochemistry, 2000, 31(577-88.
    [188] VOLKMAN J K, BARRETT S M, BLACKBURN S I. Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 m-alcohols and C28-C32 n-alkyl diols in freshwater environments [J]. Organic Geochemistry, 1999, 30(307-18.
    [189] CACHO I, GRIMALT J O, SIERRO F J, et al. Evidence for enhanced Mediterranean thermohaline circulation during rapid cliamatic coolings [J]. Earth and Planetary Science Letters, 2000, 183(419-29.
    [190] MILLIMAN J D, SHEN H T, YANG Z S, et al. Transport and deposition of river sediment in Changjiang estuary and adjacent continental shelf [J]. Continental Shelf Research, 1985, 4(37-45.
    [191] LIN C-S. Particle distribution characters in the Okinawa Trough [D]. Taipei; National Taiwan University, 2004.
    [192] HAUG G H, HUGHEN K, SIGMAN D M, et al. Southward migration of the Intertropical Convergence Zone through the Holocene [J]. Science, 2001, 293(1304-8.
    [193] STUIVER M, GROOTES P M, BRAZIUNAS T F. The GISP2δ18O climate record of the past 16,500 years and the role of the Sun, ocean, and volcanoes [J]. Quaternary Research, 1995, 44(341-54.
    [194] YANGCHEVA G, NOWACZYK N, MINGRAM J, et al. Influence of the intertropical convergence zone on the East Asian monsoon [J]. Nature, 2007, 445(74-7.
    [195]蒋尚城,温士顿.长江流域旱涝的OLR特征[J].气象学报, 1989, 47(4): 479-82.
    [196]蒋尚城,戴志远.卫星观测的西太平洋副热带高压的气候学特征[J].科学通报, 1989, 34(19): 1492-3.
    [197] WANG Y, CHENG H, EDWARDS R L, et al. The Holocene Asian monsoon: links to solarchanges and North Atlantic climate [J]. Science, 2005, 308(854-7.
    [198] TAKAHASHI S, YANAGI T, HOSHIKA A, et al. Seasonal variation of suspended matter transport in the East China Sea [M]. Margin Flux in the East China Sea. Beijing; China Ocean Press. 1999: 68-76.
    [199] PENG M C, HU D. Preliminary study on suspended material flux in teh East China Sea [M]//HU D, TSUNOGAI S. Margin Flux in the East China Sea. Beijing; China Ocean Press. 1999: 49-55.
    [200]朱诚,于世永,卢春成.长江三峡及江汉平原地区全新世环境考古与异常洪涝灾害研究[J].地理学报, 1997, 52(3): 268-78.
    [201]姚擅栋,施雅风, THOMPSON L G, et al.祁连山敦德冰心记录的全新世气候变化[M]//施雅风.中国全新世大暖期气候与环境.北京;海洋出版社. 1992: 206.
    [202]杨梅学,姚檀栋.季风现象与ENSO事件研究[J].环境科学进展, 1999, 7(4): 96-101.
    [203]中国科学院地质研究所14C实验室.天然放射性碳年代测定(一) [J].地质科学, 1974, 4(383-4.
    [204]何华春,王颖,李书恒.长江南京段历史洪水位追溯[J].地理学报, 2004, 59(6): 938-47.
    [205]朱诚,于世永,张兵, et al.南京宝华山地区全新世沉积环境研究[J].地理科学, 1997, 17(3): 253-8.
    [206]张之恒.中国新时期时代文化[M].南京:南京大学出版社, 1988.
    [207]周凤琴.从红花套遗址的发掘探讨该区新构造运动特征及古地理环境[M]//主编林.葛洲坝工程文物考古成功汇编.武汉;武汉大学出版社. 1990.
    [208] WYRTKI K. Some thoughts about the West Pacific Warm Pool; proceedings of the Proceedings of Western Pacific International Meeting and Workshop on TOGA-COARE ORSTOM, F, 1989 [C].
    [209]翁学传,张启龙,颜廷壮.热带西太平洋暖池及其与南方涛动和副热带高压关系[J].海洋科学集刊, 1998, 40(35-41.
    [210] MATSUURA T, IIZUKA S. Zonal migration of the Pacific Warm-Pool tongue during El Nino events [J]. Journal of Physical Oceanography, 2000, 30(1): 582-600.
    [211] HWANG C, KAO R. TOPEX/POSEIDON- derived space-time variations of the Kuroshio current: applications of a gravimetric geoid and wavelet analysis [J]. Journal of Geophysical Research, 2002, 105(23943-65.
    [212]何发祥,洪华生.厄尔尼诺现象与东海黑潮区及其邻近海域水温结构和环流的变异[J].海洋湖沼通报, 1999, 4(16-24.
    [213] AKITOMO K, AWAJI T, IMASATO N. Kuroshio path variation south of Japan: 1 Barotropic inflow-outflow model [J]. Journal of Geophysical Research, 1991, 96(2549-60.
    [214] SAWADA K, HANDA N. Variability of the path of the Kuroshio ocean current over the past 25,000 years [J]. Nature, 1998, 392(592-5.
    [215] STOTT L, CANNARIATO K G, THUNELL R, et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch [J]. Nature, 2004, 431(56-9.
    [216] ZHAO M, MERCER J L, EGLINTON G, et al. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa [J]. Organic Geochemistry, 2006, 37(72-97.
    [217] BROECKER W S, PENG T-H. The causes of the glacial to interglacial atmospheric CO2 change: a polar alkalinity hypothesis [J]. Global Biogeochemical Cycles, 1989, 3(215-39.
    [218] BERGER W H, SMETACEK V S, WEFER G. Ocean productivity andPalaeoproductivity-An Overview [M]//BERGER W H, SMETACEK V S, WEFER G. Produtivity of the Ocean: Present and Past. London; John Wiley and Sons Limited. 1989: 1-34.
    [219]汪品先.气候演变中的冰和碳[J].地学前缘, 2002, 9(1): 85-93.
    [220] ANDERSON R F, CHASE Z, FLEISHER M Q, et al. The Southern Ocean`s biological pump during the Last Glacial Maximum [J]. Deep Sea Research PartⅡ, 2002, 49(1909-38.
    [221] ABRANTES F. 200,000 yr diatom records from Atlantic upwelling sites reveal maximum productivity during LGM and a shift in phytoplankton community structure at 185,000yr [J]. Earth and Planetary Science Letters, 2000, 176(7-16.
    [222] SARNTHEIN M, PFLAUMANN U, ROSS R, et al. Transfer functions to reconstruct ocean paleoproductivity: a comparison [M]//SUMMERHAYES C P, PRELL W L, EMEIS K C. Upwelling Systems: Evolution since the early Miocene. London; Geological Society. 1992.
    [223] DE LEEUW J W, VAN DER MEER F W, RIJPSTRA W I C. Advance in Organic Geochemistry, 1979, eds Douglas, A.G. & Maxwell, J.R.): 211-7.
    [224] VOLKMAN J K, EGLINTON G, CORNER E D S, et al. Novel unsaturated straight chain C37-C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi [M]//DOUGLAS A G, MAXWELL J R. Advances in Organic Geochemistry 1979. Oxford, UK. 1980: 219-27.
    [225] MARLOWE I T, BRASSELL S C, EGLINTON G. Long chain unsaturated ketones and esters in living alage and marine sediments [J]. Organnic Geochemistry, 1984, 6(135-41.
    [226] SUN M Y, WAKEHAM S G. Molecular evidence for degradation and preservation of organic matter in anoxic Black Sea basin [J]. Geochimica et Cosmochimica Acta, 1994, 58(3395-406.
    [227] CALVO E, PELEJERO C, LOGAN G A, et al. Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles [J]. Paleoceanography, 2004, 19(1-10.
    [228] MARTIN J H, FITZWATER S E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic [J]. Nature, 1988, 331(341-3.
    [229] PRICE N M, MOREL F M M. Cadmium and cobalt substitution for zinc in a marine diatom [J]. Nature, 1990, 344(658-60.
    [230] MILLS M M, RIDAME C, DAVEY M, et al. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic [J]. Nature, 2004, 429(292-4.
    [231] WELLS M L. The level of iron enrichment required to initiate diatom blooms in HNLC waters [J]. Marine Chemistry, 2003, 82(101-14.
    [232] BERTRAND P, SHIMMIELD G, MARTINEZ P, et al. The glacial ocean productivity hypothesis, the importance of regional temporal and spatial studies [J]. Marine Geology, 1996, 130(1-9.
    [233] FLEITMANN D, BURNS S J, MANGINI A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra) [J]. Quternary Science Reviews, 2007, 170-188(
    [234] HUGHEN K, OVERPECK J T, PETERSON L C, et al. Rapid climate changes in the tropical Atlantic region during the last deglaciation [J]. Nature, 1996, 380(51-4.
    [235]刘晓东,安芷生,李小强, et al.最近18ka中国夏季风气候变迁的数值模拟研究[M]//刘东生,安芷生,吴锡浩.黄土-第四纪地质-全球变化(第四集).北京;科学出版社. 1996: 142-50.
    [236]吴文祥,刘东生. 4 000aB.P.前后东亚季风变迁与中原周围地区新石器文化的衰落[J].第四纪研究, 2004, 24(3): 278-84.
    [237] IVANOCHKA T S. Variations in tropical convection as an amplifier of global climate change at the millennial scale [J]. Earth and Planetary Science Letters, 2005, 235(302-14.
    [238] GONG G C, SHIAH F-K, LIU K K, et al. Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrophy in the southern East China Sea [J]. Continental Shelf Research, 2000, 20(411-36.
    [239] LIU C-T. As the Kuroshio turns.Ⅰ.Characteristics of the current [J]. Acta Oceanography Taiwan, 1983, 14(88-96.
    [240] LIE H J, CHO C H. Recent advances in understanding the circulation and hydrography of the East China Sea [J]. Fish Oceanogr, 2002, 11(6): 318-28.
    [241]李青,李铁刚,常凤鸣, et al.近7300a B.P.以来冲绳海槽北部上升流的演化[J].海洋地质与第四纪地质, 2008, 28(2): 65-70.
    [242] PRAHL F G, HERBERT T D, BRASSELL S C, et al. Status of alkenone paleothermometer calibration: Report from working group 3 [M]. Geochemistry Geophysics Geosystems 1, 2000GC000058. 2000.
    [243] TERNOIS Y, SICRE M A, BOIREAU A, et al. Evaluation of long-chain alkenones as paleo-temperature indicators in the Mediterranean Sea [J]. Deep-Sea Research, 1997, 44(271-86.
    [244] HERBERT T D. Review of alkenone calibrations (culture, water column, and sediments) [M]. Geochemistry Geophysics Geosystems 2,2000GC000055. 2001.
    [245] SIKES E L, VOLKMAN J K. Calibration of alkenone unsaturation ratios (UK`37) for paleotemperature estimation in cold polar waters [J]. Geochimica et Cosmochimica Acta, 1993, 57(1883-9.
    [246] VILLANUEVA L, GRIMALT J O. Gas chromatographic tuning of the UK`37 paleothermometer. [J]. Anaytical Chemistry, 1997, 69(3329-32.
    [247] VILLANUEVA J, PELEJERO C, GRIMALT J O. Clean-up procedures for the unbiased estimation of C37-C39 alkenone sea surface temperatures and terrigenous n-alkane inputs in paleoceanography [J]. Journal of Chromatography, 1997, 757(145-51.
    [248] GASSE F, ARNOLD M, LI B Y, et al. A 13000-year climate record from western Tibet [J]. Nature, 1991, 353(24): 742.
    [249]蔡演军,彭子成,安芷生.贵州七星洞全新世石笋的氧同位素记录及其指示的季风气候变化[J].科学通报, 2001, 46(16): 1398-402.
    [250] YU Y. Millennial-scale Holocene climate variability in the NW China drylands and links to the tropical Pacific and the North Atlantic [J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 233(1-2): 149-62.
    [251]徐磐.镇江地区15000年以来古植被与古气候变化[J].地理学报, 1984, 39(3): 205-11.
    [252] HONG Y T, WANG Z G, JIANG H B, et al. A 6000-year record of changes in drought and precipitation in northeastern China based on aδ13C time series from peat cellulose [J]. Earth and Planetary Science Letters, 2001, 185(111-9.
    [253]靳桂云,刘东生.华北北部中全新世降温气候事件与古文化变迁[J].科学通报, 2001, 46(20): 1725-30.
    [254]张玉芳,张俊牌,徐建明, et al.黄河源区全新世以来的古气候演化[J].地球科学, 1995, 20(4): 445-9.
    [255]满志敏.中世纪温暖期我国华东沿海海平面上升与气候变化的关系[J].第四纪研究, 1999, 11(
    [256] YAO T D, THOMPSON L G. Trend and features of climatic changes in the past 5 000 years recorded by the Dunde ice core [J]. Annals of Glaciology, 1992, 16(21-4.
    [257]洪业汤,姜洪波.近5ka温度的金川泥炭δ~(18)O记录[J].中国科学(D), 1997, 27(6):525-30.
    [258] LAMB H H. Climate; Present, Past and Future [M]. Climate history and the future. London; Muthuen and Co. 1977: 376-80.
    [259]刘嘉麒,倪允燕,储国强.第四纪的主要气候事件[J].第四纪研究, 2001, 21(3): 239-48.
    [260] PARTHASARATHY B, PANT G B. The spatial and temporal relationships between the Indian summer monsoon rainfall and the southern oscillation [M]. Tellus 36A, 1984.
    [261] QU T D, KIM Y Y, YAREMCHUK M, et al. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? [J]. Journal of Climate, 2004, 17(3644-57.
    [262] QU T D, LUKAS R. The bifurcation of the North Equatorial Current in the Pacific [J]. Journal of Physical Oceanography, 2003, 33(5-18.
    [263] KIM Y Y, QU T D, JENSEN T, et al. Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM [J]. Journal of Geophysical Research, 2004, 109(
    [264] STOTT L, POULSEN C, LUND S, et al. Super ENSO and global climate oscillations at millennial time scales [J]. Science, 2002, 297(222-6.
    [265] WANG P X. Response of western Pacific marginal seas to glacial cycles:Paleoceanographic and sedimentological features [J]. Marine Geology, 1999, 156(5-39.
    [266]刘振夏,李培英,李铁刚, et al.冲绳海槽5万年以来的古海洋气候事件[J].科学通报, 2000, 45(16)(1776-81.
    [267]江波.末次冰盛期以来黑潮流域的古环境演化[D].北京;中科院海洋所, 2007.
    [268]王绍武.气候系统引论[M].背景:气象出版社, 1994.
    [269] KUTZBACH J, GALLIMORE R, HARRISON S, et al. Climate and biome simulations for the past 21,000 years [J]. Quaternary Science Review, 1998, 17(473-506.
    [270] LI C Y, LI G L. The NAO/NPO and interdecadal climate variation in China [J]. Adv Atmos Sci, 2000, 17(555-61.
    [271] LI J P, WANG J L. A modified zonal index and its physical sense [J]. Geophysical Research Letters, 2003, 30(12): 1632.
    [272] ENFIELD D B, MESTAS-NUNEZ A M, TRIMBLE P J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. [J]. Geophysical Research Letters, 2001, 28(10): 2077-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700