新型生物分子固定技术用于构建电化学免疫传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,由于电化学免疫传感器具有设计制造简单、高灵敏度、价格低廉而被广泛研究并已在生物检测中逐步得到了应用。然而,如何将生物活性组分有效地固定在电极表面上的固定化方法、降低甚至消除蛋白质在传感器上的非特异性吸附以及免疫传感器的重现性和重复使用性能等方面存在的问题阻碍了电化学免疫传感器的发展和应用。其中有效的生物活性组分的固定方法是构建性能优良的生物传感器的关键步骤,据此本研究论文发展了五种新型的生物活性组分在电极上的固定化技术,并以此来构建电化学免疫传感器。主要内容如下:
     (1)在第二章和第三章发展了基于邻氨基硫酚在金电极上进行自组装和电催化聚合形成低聚合物膜技术的电容型电化学免疫传感器。采用邻氨基硫酚低聚合物膜固定生物活性组分,构建电容型免疫传感器的优势在于一方面其表面存在自由的氨基可以用戊二醛活化或结合纳米金来固定抗体构建电容免疫传感器;另一方面,邻氨基硫酚低聚合物膜可完全封闭金电极表面,而且所形成的低聚合膜为一种有机半导体膜,可赋予传感器具有较高的初始电容值,以提高其检测范围及检测灵敏度。采用循环伏安法研究这类传感器的基本性能如法拉第电流效应、离子的不可通透性等,均表明该低聚合膜能很好的满足构建电容免疫传感器的要求。采用恒电位脉冲计时安培法可确定传感器的电容值,实验结果表明,用戊二醛活化邻氨基硫酚低聚合物膜固定转铁蛋白抗体而构建的传感器,对溶液中转铁蛋白检测的浓度的线性范围为1.25-80.0ng/ml,检测下限为0.12ng/ml。而采用结合纳米金来进一步固定转铁蛋白抗体所构建的电容免疫传感器,对溶液中转铁蛋白的测定的浓度线性范围为0.1-1000ng/ml,检测下限达0.08ng/ml。
     (2)κ型角叉皂素(κ-LC)为带磺酸基的天然聚电解质,是一种具有强电负性的物质,将κ-LC与蛋白质偶联,可以增强蛋白质的负电荷性而使通过静电自组装技术固定的蛋白质的稳定性得到提高。本论文的第四章采用此技术构建了亲和柱用于流动免疫分析方法检测了溶液中NH IgG,其检测的浓度的线性范围为0.1-1000μg/ml,该亲和柱用于免疫分析具有重复性较好、非特异性吸附影响低等特点。
     褐藻酸钠与壳聚糖之间可通过静电自组装而形成牢固的小分子可透过性的天然高分子膜。可利用褐藻酸钠这一特性可构建电化学免疫传感器,即将褐藻酸钠通过EDC活化与目标生物活性组相联,将壳聚糖通过包埋技术固定在碳糊电极里;这样,负载有生物活性组分的褐藻酸钠与固定在电极表面的壳聚糖分子之间发生静电自组装的同时也将
    
    摘要
    生物组分固定到电极表面而完成了电化学免疫传感器的构建。第五章描述了采用该技术
    固定日本血吸虫抗体构建了一种新的日本血吸虫电化学免疫传感器。实验结果表明该传
    感器对日本血吸虫抗原检测的浓度线性范围为0.64一40雌/m1,检测下限为0.40阳
    /m1,且该固定化方法具有重复性好、蛋白质的非特异性吸附影响较低的特点。
     (3) TriS改性的褐藻酸钠或通过肤胺而固定在金电极表面上的TriS改性的褐藻酸
    钠在CaZ十存在下引发固定抗体构建了电化学免疫传感系统和免疫传感器。通过对转铁蛋
    白免疫反应体系来评价这两种技术固定抗体技术的可行性。实验证明此免疫传感器具有
    重现性好、重复使用性能良好及蛋白质的非特异性吸附影响低等特点。用该传感器检测
    溶液中转铁蛋白的浓度的线性范围为0.2一30阳/m1,其检测下限可达0.05雌/m1;
    而采用免疫传感系统分析转铁蛋白的浓度线性范围为5.0一35协g/m1,其检测下限为
    2.3雌/ml,也具有蛋白质的非特异性吸附影响低等特点,但实验操作较传感器稍繁
    琐。
     (4)纳米金(胶体金)可用于吸附固定抗体,己在免疫分析中得到广泛的应用。近
    年来的研究发现,纳米金能降低一些物质在电极上发生反应的氧化还原电位,并催化这
    些物质在电极上的电化学氧化还原反应。利用纳米金的上述特征,第八章设计了非标记
    的电化学免疫传感器用于直接测定溶液中的对氧磷含量。研究发现在纳米金存在下,对
    氧磷分子上的硝基能在一165mV的电位下被还原,在一O,smV电位下可被氧化;而无纳米
    金存在下,其电化学还原电位大于一800mV.应用该传感器检测溶液中对氧磷浓度的上限
    为1920林g/L,其检测下限可达12哪/L。
     (5)该电极用于吸附固定转铁蛋白抗体构建了转铁蛋白电化学免疫传感器。实验表
    明,采用该电极研制的传感器在检测溶液中电活性组分时,较石蜡碳糊电极具有更高的
    灵敏度,且该电极能用简单的抛光技术处理而重复使用;采用竞争免疫分析方法及计时
    安培测量技术,该传感器能在浓度范围为0.5一70.。协g/ml实现对转铁蛋白的检测,其
    检测下限达0.35林g/m1,且具有良好的重现性、重复使用性和较低的蛋白质非特性吸
    附性能。
Electrochemical immunosensor are widely used for the assay of biological analytes. The advantages of this approach including their simple-design, high-sensitivity and low-cost attract substantial research efforts directed to the developments of some new electrochemical immunosensors in the last two decades. However, the method of immobilization, the prevention or elimination of nonspecific interactions, the reproducibility and the reusability still remain to be solved in the design and applications of these sensors.
    Focused on these said topics, several new methods for immobilizing immuno-species to construct immunosensor have been developed in the presented paper and described as follows:
    (1) Development of capacitance immunosensors based on the oligomer of o-aminobenzenethiol polymerized electrochemically was described in both the chapter 2 and 3. The main advantage of this strategy can be described as follows: the oligomer of o-aminobenzenethiol has been chem-adsorbed firmly on the surface of crystalline gold electrode and the organic semiconductor with free amino-groups formed can be employed as a platform to react with glutareldehyde or combined with nano-Au for immobilization of transferrin antiserum. Its above-described performances can meet the requirements for fabricating capacitance immunosensor such as impermeability to electroactive species in solution and as thin as possible to guarantee the sensitivity of immunosensor. The cyclic voltammetry set up was applied to evaluate the performances of the immunosensor (such as impermeability). The potentiostatic pulse technique was applied to measure the capacitance value of the immunosensor. The transferrin was determined in the range of
    1. 25 - 80.0 ng/ral with detection limit of 0. 12 ng / ml for immunosensor employed glutareldehyde for immobilization of antibodies as well as in the range of 0. 1 ?lOOng/ml with detection limit of 80 pg /ml
    
    
    Abstract
    for immunosensor employed nano-Au for immobilization of antibodies.
    (2.1) K - Lambda-carrageenan ( K -LC ) or alginate is the negatively charged natural polyelectrolyte with numerous negatively charged sulphonate groups on their backbone. Cross-linked with K -LC or alginate , proteins can be further negatively charged and immobilized on the substrate further firmly by the self-assembly technique. The proposed method was realized by flow immunoassay strategy in an immunoaffinity column based on electrostatic self-Assembly (see chapter 4). The flow immunoassay system was used to detect the concentration of NH IgG in the range of 0. 1-1000 g/ml.
    (2.2) A self-assembly event between chitosan and alginate is a known phenomena. The strategy of self-assembly event was exploited to fabricate the electrochemical immunosensor in chapter 5. The interesting proteins were modified with alginate by cross-linking technique employing EDC as the promoter. Chitosan was encapsulated in carbon paste electrode. The self-assembly events between Chitosan and alginate loaded with proteins will complete the immobilization of interesting proteins on the transducer. The chronoamperometric set up was applied to measure the reduced current values of 1, 4-benzo quinone at peak potential of - 0. 150mV when horseradish peroxidase as a label as well as both hydroquinone and hydrogen peroxide (H202) as the substrates were employed in electrochemical immunoassay.
    It is in chapter 5 that the schistosoma japonium (Sj) system was employed to test the feasibility of the above-mentioned strategy. The sensor exhibited a linear response to SjAg in the concentration range 0.64 to 40 gmL-1 with the detection limit of 0.64 gmL-1.
    (3) Both the tris-derived alginate and tris-derived alginate fixed on the surface of gold electrode by coupling with cysteine self-assembled layer on the gold electrode were employed as the platforms for immobilizing antibody to develop the electrochemical immunoassay system or electrochemical immunosensor in the presence of Ca2+. The reproducibility of the immunosensor was realized by being washed in 0. 1 0
引文
[1] Todd M. Jarvis. Biosensor: Today' s Technology, Tomorrow' s Products, Copupublished by Technial Insights, Inc. and SEAI Technical Publication, 1987.
    [2] 铃木周一编,霍纪文,姜远海译,生物传感器,科学出版社,1988。
    [3] Turner A F P, Karube I and Wilson G S, Biosensor: Fundamentals and Application Oxford University, Press, 1987.
    [4] Pearson J E, Gill A. and Vadgama P, Analytical aspects of biosensors. Ann. Clin. Biochem. 2000,37:119-145.
    [5] Pfeiffer D, Commercial biosensors for medical application. EXS 1997, 81:149-60.
    [6] Newman J D, Turner A P F, Biosensors: the analyst' s dream? Chem. Ind 1994,10:374-378.
    [7] Jun H Z, Hong C, Rui F Y, DNA based biosensors. Biotechnol Adv.,1997,15 (1): 43-58.
    [8] Skladal P, Advances in electrochemical immunosensors. Electroanalysis, 1997,9 (8):737-745.
    [9] Janata J, Twenty years of ion-selective field effect transistors. Analyst, 1994,119 (12):2275-2278.
    [10] 马宝骊,肖祥 主编,医学免疫学,同济大学出版社,1987。
    [11] Vanderlaan M, Watkins B E, Stanker L, Environmental monitoring by immunoassay. Environmental Science and Technology. 1998, 22(1-2): 247-254.
    [12] Meulenberg E P, Mulder W H, Stoks P G, Immunoassay for pesticides. Environmental Science and Technology. 1995, 29(4): 553-561.
    [13] Frannek M, Kolar V, Eremin S A, Enzyme immunoassay for s-triazine herbicids and their application in environmental and food analysis. Analytica Chimica Acta, 1995, 311(3):349-356.
    [14] Van Emon J P, Lopeaz Avila V, Immunochemical methods for environmental analysis. Anal. Chem., 1992,64(2):79A-88A.
    [15] Sadik O A, Van Emon J M, Applications of electrochemical immunosensors to
    
    environmental monitoring. Biosensor and Bioelectronics, 1996,11(1): Ⅰ-Ⅺ
    [16] Bumner A J, Schmid R D, Development of a New Immunosernsor for Pesticide Detection: A Disposable System with Liposome-Enhancement and Amperometric Detection. Biosensors and Bioelectroics,1998,13 (5):519-529.
    [17] Gonzalez-Martinez M A, Penalva J, Puchades R, et al. An immunosensors for the automatic determination of the antifouling agent irgarol 1051 in natural waters. Environmental Science and Bioelectronics, 1998,32:3442-3447
    [18] Klotz A, Brecht A, Barzen C, et al. Immunofluorescence sensor for water analysis. Sensors and Actuators, B: Chemical, 1998, B51:181-187
    [19] Darwish I A, Blake D A, One-step competitive immunoassay for cadmium ions:development and validation for environmental water Samples. Anal. Chem.,2001,73(8):1889-1895
    [20] Mallat E, Barceló D, Immunosensors for pesticide determination in natural waters. Trends in Analytical Chemistry, 2001, 20(2):124-132
    [21] Parellada J, Narváez A, López M A, et al. Amperometric immunosensors and enzyme electrodes for environmental applications. Analytical Chimica Acta, 1998,362 (1):47-57
    [22] Claudia B, Andreas B, Guenter G, Optical Multiple-analyte immunosensor for water pollution control. Biosensors and Bioelectronics,2002,17(4):289-295.
    [23] Killard A J, Dasy B, O' kennedy R, et al. Antibodies: production functions and application in biosensors. Trends in Analytical Chememistry, 1995,149(3) 257-266.
    [24] Frtzpatrick J, Fnanning L, Hearty S, et al. Applications and recent developments in the immobilization of antibodies for analysis. Analytical Letters, 2000,33(7):2563-2609.
    [25] 徐宜为编著,免疫检测技术,科学出版社,1991。
    [26] Price C P, David D, Newman J, Principles and practice of immunoassay, Macmillan Publishers Ltd., 1991.
    [27] 高军,李元宗,常文保,慈云祥.甲基睾酮的控温相分离免疫分析.分析化学,2000,28(1):1~5.
    
    
    [28] 姜世益,张鲁雁,免疫化学,上海医科大学出版社,1996。
    [29] 王重庆,分子免疫学基础,北京大学出版社。
    [30] 张得源,马宝骊,现代免疫学,上海科学技术出版社。
    [31] Krica J L, Multianalyte testing. Clinical Chemistry, 1992, 38(3): 327-328。
    [32] Trbojevic-Cepe M, Vogrinc Z, and Brinar V, Diagnostic significance of methemoglobin determination in colorless cerebrospinal fluid, Clinical Chemistry, 1992, 38 (8): 1404-1408.
    [33] Kakabakos S E, Christopoulos T K, and Diamandis E P, Multianalyte immunoassay based on spatially distinct fluorescent areas quantified by laser-excited solid-phase time-resolved fluorometry, Clinical Chemistry, 1992, 38(3): 338-342.
    [34] Rongen H A H, Bult A and van Bennekom W P, Liposomes and immunoassays, Journal of immunological methods, 1997, 204 (2): 105-133.
    [35] Multiplexing DELFIA assays using lanthanide-labeled probe. www. perkinelmer. com/life sciences
    [36] Kim R Rogers, Principles of Affinity-Based Biosensor. Molecular Biotechnology, 2000, 14: 109-130.
    [37] Meusel M, Renneberg R, Spener F, et al. Development of heterogeneous amperometric immunosenosr for the determination of apolipoprotein E in serum. Biosensor and Bioelectronics, 1995,10(2): 577-586.
    [38] Kreuzer M P, OsULLIVAN C K, Parvda M, et al. Development of an immunosensor for the determination of allergy antibody(IgE) in blood samples. Analytica Chimica Acta, 2001,442(1): 45-53.
    [39] Abdal Hamid I, Ivnitski D, Atanasov P, et al. Fast Amperometric Assay for E. Coli. 0157:H7 Using Partially Immersed Immunelectrodes. Electroanalysis 1998, 10(11):758-763.
    [40] Lopez M A, Ortega F, Dominguze E, Electrochemical immunosensor for the detection of atrazine. J. Mol. Recognit., 1998,11(1): 178-181.
    [41] AboulEnein H Y, Stefan R I, Radu G L, et al. The construction of an amperometric immunosensor for the thyroid hormone(+)-3,3' ,5-triiodo-L-thyronine (L-T3). Analytical Letters, 1999,32(2):447-455.
    
    
    [42] Benkert A, Scheller F, Schosslre W, Development of a cretinine ELISA and an amperometric antibody based creatinine sensor with a detection limit in the nanomolar range, Analytical Chemistry, 2000,72 (5): 916-921.
    [43] Pemberton R M, Hart J P, and Mottram T T, in electrochemical immunosensor for milk progesterone using a continuous flow system. Biosensors and Bioelectronics, 2001,16(9-12):715-723.
    [44] Rebecca J W, Richard N Z, Analysis of Biomolecular Interaction Using a Miniaturized Surface Plasma Resonance Sensor. Analytical Chemistry, 2002,74(17):4570-4576.
    [45] 张新荣,封满良,章竹君,流动注射化学发光免疫分析研究Ⅰ:血清中乙型肝炎表面抗原的测定。化学学报,1994,52(1):83-86。
    [46] 邵谦,马望百,章竹君,流动注射化学发光免疫分析研究,Ⅱ偶合反应测定HRP及其标记物。化学学报,1997,55(6):590-594。
    [47] Slovack R E, Mass N, Love W F, Multiple output referencing system for evanescent wave sensor, US patent 5,525,466,1996.
    [48] Herron J N, Chritensen D A, Caldwell K D, Waveguide immunosensors with Coating chemistry providing enhanced sensitivity, US patent 5,512,492,1996.
    [49] Andres R T and Narayanaswamy R, Fibre-optic pesticide biosensor based on covalently immobilised acetylcholinesterase and thymol blue, Talanta, 1997,44(6): 1335-1352.
    [50] Yong Z D and Curtis S, Heterogeneous Immunosensing Using Antigen and Antibodies Monolayers on Gold Surfaces with Electrochemical and Scanning Probe Detection. Analytical Chemistry, 2000, 72(11): 2371-2376.
    [51] Suleiman A A, Guilbault G G, Recent Developments in Piezoelectric Immunosensors. Analyst, 1994,119(11): 2279-2282.
    [52] Guibault G G, Hock B, The Quartz Crystal Microbalance as Biosensor. A Status Report on its Future Analytical Letters, 1995, 28(5): 749-764.
    [53] Geddes N J, Paschinger E M, Furlong D N, et al. Piezoelectric Crystal for the Detection of Immuno-Reactions in Buffer Solutions. Sensors and Actuators B, 1994,157(17) 171: 125-131.
    [54] Carter R M, Jacobs M B, Lubrano G J, Guibault G G, Piezoelectric detection of ricin and affinity purified goat anti-ricin. Analytical. Letters,
    
    1995,28(8): 1379-1386.
    [55] Pizziconi V B, Page D L, A Cell Based Immunobiosensor with Engineered Molecular Recognition Design Feasibility Biosensors and Bioelectronics, 1997,12(3): 287-299.
    [56] Xie B, Meckklenburg M, Danielesson B, et al. Development of an Integrated Thermal Biosensor for the simultaneous Determination of Multiple Analytes. Analyst, 1995,120 (1): 155-160.
    [57] Segeyeva T A, Lavrik N V, Rachkov A E, et al. An approach to conductometric imunsensor based on phthalocyanine thin film. Biosensor and Bioelectronics, 1998,13(3): 359-369.
    [58] Kanungo M, Srivastava D N, Kumar A, et al. Conductimetric immunosensor based on poly(3,4-ethylenedioxythiophene). Chemical Communications, 2002,8(4): 680-681.
    [59] Kim J H, Cho J H, Cha G S, et al. Conductimetric membrane strip immunosensor with polyaniline-bound gold colloids as signal generator. Biosensors and Bioelectroncs, 2000,14(12): 907-915.
    [60] Sandberg R G, A conductive polymer based immunosensor for the analysis of pesticide residues. Am. Chem. Soc. Symp. Ser., 1992,511(1): 81-88.
    [61] Thompson J C, Mazoh J A, Enzyme amplified rate condutimetric immunoassay. Analytical Biochemistry, 1991,194(2):295-301.
    [62] Yagiuda K, Hemmi A, Ito S, et al. Develpoment of a conductivity- based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosensor and Bioelectronics, 1996, 8(8): 703-707.
    [63] Konchi R, Owczarek A, Dzwolak W, et al. Immunoenzymatic sensitization of membrane ion-selective electrodes. Sensors and Actuators B, 1998,47(1-3): 246-250.
    [64] Sergeyeva T A, Soldatkin A P, Rachkov A E, et al. B-Lactamase label based potentiometric biosensor for a -2 interferon detection. Analytica Chimica Acta, 1999, 390(1-3): 73-81.
    [65] 彭图治,祝方猛等,活化高分子膜免疫电极检测乳腺癌抗原。分析化学,2001,29(4):383-386。
    [66] Hassan S S M, Rizk N M H, Miniaturized graphite sensors doped with
    
    metal-bathophenanthroline complexes for the selective potentiometric determination of uric acid in biological fluids. Analyst, 197,122(8): 815-819.
    [67] Tsuruta H, Yamada H, Motoyasfoort Y, et al. An automated ELISA system using a pipette tip as a detector. Journal of Immunology Methods, 1995, 183(1-3): 221-229.
    [68] Vankerkhof J C, Bergveld P, Schasfoort R B M, The ISEFET based heparin sensor with a monolayer of protamine as affinity ligand. Biosensors and Bioelectroics, 1995,10(3): 269-282.
    [69] Treloar P H, Nkohkwo A T, Kane J W, et al. Electrochemical immunoassay: simple kinetic detection of alkaline phosphatase enzyme labels in limited and excess reagent systems. Electroanalysis, 1994, 6(4): 561-566.
    [70] Athey D, Ball M, McNeil C J, Avidin based electrochemical immunoassay for thyrotrophin. Ann. Clinical Biochemistry, 1993,30(4): 570-577.
    [71] Smith A M, Ducey M W, Meyerhoff M E, Nature of immobilized antibody layers linked to thioctic acid treated gold surfaces, Biosensors and Bioelectronics, 2000,15(3-4): 193-192.
    [72] Disley D M, Cullen D C, You H X, et al. Lowe and Covalent coupling of immunoglobulin G to self-assembled monolayers as a method for immobilizing the interracial recognition layer of a surface plasmon resonance immunosensor. Biosensors and Bioelectronics. 1998,13(11): 1213-1225.
    [73] Shriver Lake L C, Donner B, Edelstein R, et al. Antibody immobilization using heterobifunctional crosslinkers. Biosensors and Bioelectronics, 1997,12 (11): 1101-1106.
    [74] Willliams R A, Blanch H W, Covalent immunobilization of protein monolyers for biosensor applications. Biosensors and Bioelectronics, 1994,9 (3-4): 159-167.
    [75] Rishpon J, Gottesfeld S, Campbell C, et al. Amperometric Glucose Sensor Based on Glucose Oxidase Immobilized in Nafion. Electroanalys 1994,6(1): 17-21.
    [76] Gunasingham H, Tan C B, Platinum dispersed Nafion Film Modified Glassy Carbon as an Electrocatalytic Surface for an Amperometric Glucose Enzyme Electrode. The Analyst, 1989,114 (6-8): 695-699.
    
    
    [77] Mermut O, Barrett J C, Stable sensor layer-assembled onto surfaces using azobenzene-containing polyelectrolytes. The Analyst, 2001,126(11): 1861-1865.
    [78] Santandren M, Sole S, Martinez-Fabregas E, et al. Development of electrochemical immunosensing systems with renewable surfaces. Biosensors and Bioelectronics, 1998,13(1): 7-17.
    [79] Wang J, Pamidi P V A, Rogers K R, Sol-gel derived thick-filmamperometric immunosenosrs. Analytical Chemistry, 1998,70(6): 1171-1175.
    [80] Sadik O A, Jahn M J, Wallance G G, et al. Pulsed Amperometric Detection of Thaumatin using Antibody-containing poly(pyrrole) Electrodes. The Analyst 1994,119(9): 1997-2000.
    [81] Lei C H and Deng J Q. Hydrogen Peroxide Sensor Based on Coimmobilized Methylene Green and Horseradish Peroxidase in the same Montmorillonite Modified Bovine Serum Albumin-Glutaraldehyde Matrix on a Glassy Carbon Electrode Surface, Analytical Chemistry, 1996,68(19): 3344-3349.
    [82] 陈丹丹,刘宝红,孔继烈,三氧化二铝溶胶—凝胶固定过氧化氢生物传感器.分析化学,2003,30(8):958-961.
    [83] Ram M K, Adami M, Paddeu S, et al. Nano-Assembly of Glucose-Oxidase on the in-situ Self-Assembled Films of Polypyrrole and it' s Optical, Surface and Electrochemical Characterizations. ANOTECHNOL 2000, 11(2): 112-119.
    [84] Caruso F, N, Furlong D N, Assembly of alternating polyelectrolyte and protein multiplayer film for immunosensing. Langmuir, 1997, 13(18): 3427-3433.
    [85] Zhou Y M, hiu G D, Wu Z Y, et al. An Amperometric Imuunosensor Based on a Conducting Immunocomposite Electrode for the Determination of Schistosoma Japonicum Antigen. Analytical Sciences, 2002, 18(1): 155-159.
    [86] Parellada J, Katakis I, A new type of hydrophilic carbon paste electrode for biosensor manufacturing: binder paste electrodes. Biosensor and Bioelectronics, 1997,12(2): 267-275.
    [87] Christian K W, Andreas H, and Wolfgang S, Immobilization Method for the Preparation of Biosensors Based on pH Shift-Induced Deposition of Biomolecule-Containing Polymer Films, Analytical Chemistry, 2002, 74(2): 355-361.
    
    
    [88] Robert M, Frank J, Miniaturized Electrospraying as a Technique for the Production of Microarrays of Reproducible Micrometer-Sized Protein Spots. Analytical Chemistry, 2001,73(10): 2183-2189.
    [89] Willne I, Blonder R, Dagan A, Application of Photoisomerizable Antigenic Monolayer Electrodes as Reversible Amperometric Immunosensors. J. Am. Chem. Soc. 1994, 116 (20): 9365-9366.
    [90] Blonder R, Levi S, Tao G L, et al. Development of Amperometric and Microgravimetric Immunosensors and Reversible Immunosensors Using Antigen and Photoisomerizable Monolayer Electrodes, J. Am. Chem. Soc. 1997, 119 (43): 10467-10478.
    [91] Fernández-Sánchez C, Costa-Garcta A, Competitive enzyme immunosensor developed on a renewable carbon paste electrode support, Analytica Chimica Acta, 1999,402 (1): 119-127.
    [92] Zhou Y M, Hu S Q, Cao Z X, et al. An Amperometric immunosensor Based on an Electrochemically Pretreated Carbon-Paraffin Electrode for Complement Ⅲ(C_3) assay. Biosensors and Bioelectronics, 2002,18(4): 465-471.
    [93] Wang J., Abdel-Nasser K, Magnetic bead-based Label-Free Electrochemical detection of DNA hybridization. The Analyst, 2001,126(11): 2020-2024.
    [94] Buranda T, Huang J M, Larry A S, et al. Biomolecular Recognition on Well-Characterized Beads Packed in Microfluidic Channels. Analytical Chemistry, 2002,74 (5): 1149-1156.
    [95] Susan L R B, David R, Michael J T, et al. Control of Flow Direction in Microfluidic Devices with Polyelectrolyte Multilayers. Analytical Chemistry, 2000, 72 (24): 5925-5929.
    [96] Christian G B, Arkadi V. E, Zeptomole-Detecting Biosensor for Alkaline Phosphatase in an Electrochemical Immunoassay for 2,4-Dichlorophenoxyacetic acid. Analytical Chemistry, 1996,68(15): 2453-2458.
    [97] Brooks J L, Mirhabibollahi B, and Kroll R G, Experimental enzyme-linked amperometric immunosensors for the detection of salmonellas in food. J. Appl. Bacteriol., 1992,73(1-2): 189-196.
    [98] Gosling J P, A decade of development in immunoassay methodology. Clinical Chemistry, 1990, 36(7): 1408-1425.
    
    
    [99] Murielle D, Chantal D, and Benoit L, An Electrochemical Metalloimmunoassay Based on a Colloidal Gold Label. Analytical Chemistry, 2000, 72 (22): 5521-5528.
    [100] Alam, I A, Christian G D, Voltammetric Determination of Lead Labeled Albumin Antiserum by immunoassay. Analytical Letters, 1982,15(B18): 1449-1456.
    [101] Storhoff J, Elghanian R, Mucic R C, et al. One-Pot Colorimetric Differentiation of Polynucleotides with Single Base imperfections Using Gold Nanoparticles Probes. J. Am. Chem. Soc., 1998,120(7): 1959-1964.
    [102] Ni J, Lipert R J, Dawson G B, et al. Immunoassay Readout Method using Extrinsic Raman labels Adsorbed on Immuno-gold colloids. Analytical Chemistry, 1999,71(21): 4903-4908.
    [103] Wang J, Tian B, Rogers K R, Thick-FilmElectrochemical immunosensor Based on Stripping Potentiometric Detection of a metal ion label. Analytical Chemistry, 1998,70(9): 1682-1685.
    [104] Rapicault S, Limoges B, Degrand C, Renewable Perfluorosulfonated ionomer Carbon Paste Electrode for competitive Homogeneous Electrochemical immunoassays Cationic labeled Hapten. Analytical Chemistry, 1996,68(5): 930-935.
    [105] Bordes A L, Limoges B, Brossier P, et al. Simultaneius homogeneous immunoassay of phenytoin and Phenobarbital using a Nafion-loaded carbon paste electrode and two redox cationic labels. Analytica Chimica Acta, 1997,356(2-3): 195-200.
    [106] Yuan J, Matsumoto K, Kimura H, A new Tetradenatate β-Diketonate-Europium Chelate that can be covalently Bound to proteins for Time-Resolved Fluoroimmunoassay. Analytical Chemistry, 1998,70(3): 596-601.
    [107] Murielle D, Chantal D, and Benoit L, An Immunomagnetic Electrochemical Sensor Based on a Perfluorosulfonate-Coated Screen-Printed Electrode for the Determination of 2,4-Dichlorophenoxyacetic Acid. Analytical Chemistry, 1999,71(13): 2571-2577.
    [108] Alfonta L, Anup K S, and Willner I, Liposomes Labeled with Biotin and Horseradish Peroxidase: A Probe for the Enhanced Amplification of Antigen-Antibody or Oligonucleotide-DNA Sensing Processes by the
    
    Precipitation of an Insoluble Product on Electrodes. Analytical Chemistry, 2001, 73 (1): 91-102.
    [109] Wang J, Xu D K, and Ronen P, Magnetically-induced solid-state Electrochemical Detection of DNA Hybrization. J. Am. Chem. Soc. 2002, 124 (16): 4208-4209.
    [110] John J K, Robertson B D, Simultaneous Multianalyte Detection with a Nanometer-Scale Pore. Analytical Chemistry, 2001,73(10): 2268-2272.
    [111] Dijksma M, Kemp B, Hoogvliet J C, et al. Development of an Electrochemical Immunosensor for Direct Detection of Interferon-γ at the Attomolar Level. Analytical Chemistry, 2001,73(5): 901-907.
    [112] Varlan A R, Suls J, Sansen W, et al. Capacitance sensor for the allatostatin direct immunoassay. Sensors and Actuators B, Chemical, 1997,B44 (1-3): 334-340.
    [113] Mirsky V M, Riepl M, Wolfbeis O S, capacitance monitoring of Protein Immobilization and Antigen-Antibody Reactions on Monomolecular Alkylthiol Films on Gold Electrodes. Biosensors and Bioelectronics, 1997,12 (9-10): 977-985.
    [114] Bataillard P, Gardies F, Jaffrezic-Renault N, et al. Direct Detection of Immunospecies by Capacitance Measurements. Analytical Chemistry, 1988, 60(20-21): 2374-2379.
    [115] Billard V, Martelet C, Binder P, et al. Toxin Detection Using Capacitance Measurements on Immunospecies Grafted onto a Semiconductor Substrate. Analytica Chimica Acta, 1991,249 (2): 367-372.
    [116] Gebbert A, Alvarez-Lcaza M, Stocklein W, et al., Real-Time Monitoring of Immunochemical Interactions with a Tantalum Capacitance Flow-Through Cell. Analytical Chemistry, 1992,64(9): 997-1003.
    [117] Berggren C, Johansson G, Capacitance Measurements of Antibody-Antigen Interactions in Flow System. Analytical Chemistry, 1997, 69 (18): 3651-3657.
    [118] Liu M, Rechnitz G A, Li K, et al. Capcitance Immunosensoing of Polycyclic Aromatic Hydrocarbon and Protein Conjugates. Analytical Letters, 1998, 31 (12): 2025-2038.
    
    
    [119] Berggren C, Bjarnason B, Johansson G, An Immunological Interleukine-6 Capacitance Biosensor Using Perturbation with a Potentiostatic Step. Biosensors and Bioelectronics, 1998, 13(10): 1061-1068.
    [120] Zhou Y M, Hu S Q, Shen G L, et al. A Capacitive Immunosensor for the determination of Schistosoma Japonicum Antigen. Analytical Letters, 2002,35, (12): 1919-1930.
    [121] Willner I, Shabtai V H, Electrical Wiring of Glucose Oxidase by Neconstitution of FAD-Modified Monolayers Assembled onto An Electrodes. J. Am. Chem. Soc., 1996,118 (42): 10321-10322.
    [122] Kata E, Andress F, Self-Powered Enzyme-Based Biosensors. J. Am. Chem. Soc.,2001, 123 (43): 10752-10753.
    [123] Mcneil C J, Athey D, Electrochemical sensors Based on Impedance Measurement of Enzyme-Catalyzed Polymer Dissolution: Theory and Applications. Analytical Chemistry, 1995,67(21): 3928-3935.
    [124] Berney H C, Alderman J, Lane W A, et al. Development of a capacitive immunosensor: a comparison of monoclonal and polyclonal capture antibodies as the primary layer. J. Mol. Recognit. 1998,11(1-6): 175-177.
    [125] Mirsky V M, Riepl M and Swoleis O, Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrode. Biosensors and Bioelectronics, 1997,12(9-10): 977-989.
    [126] Li S, Tohnson B, Richard M, Selective electrostatic binding of ions by monolayers of mercaptan derivatives adsorbed to gold substrates. Journal of Physical Chemistry, 1990,94(26): 8869-8871.
    [127] Darren M D, David C C, Covalent coupling Immunoglobulin G to self-assembled monolayers as a method for immobilizing the interfacial-recognition layer of a surface plasma resonance immunosensor. Biosensors and Bioelectronics, 1998,13(11): 1213-1225.
    [128] Alesamder S, Mikeal S, Gillis T S, Double-layer capacitance measurements of self-assembled layers on gold electrodes. Electroanalysis, 1992,4(10): 921-928.
    [129] Rosink J W M, Blauw M A C, Desorption of 4-aminobenzenthiol bound to a gold
    
    surface. Langmuir, 1998,,14(9): 2343-2347.
    [130] Tukka L, Kari K, Jouko K, Electrochemical postself-assembly transformation of 4-aminothiophenol monolayers on gold electrode. Langmuir, 1998,14(7): 1705-1715.
    [131] Reese S and Marye A F, Self-Assembled Monolayers on Gold of Thiols Incorporating Conjugated Terminal Groups. Journal of Physical Chemistry, B, 1998,102(49): 9820-9824.
    [132] Berney H C, Alderman J, Development of a capacitive immunosensor: a comparison f monoclonal and polyclonal capture antibodies as the primary layer. J. Mol. Recognit., 1998,11(1): 175-177.
    [133] Saby C, Jaffrezic-Renault N, Immobilization of Antibodies onto a capacitance Silicon-Based Transducer. Sensors and Actuators B 1993,15/16: 458-462.
    [134] Hu S Q, Wu Z Y, Shen G L, et al. Capacitive Immunosensor for Transferrin Based on o-Amonobenzenthiol Oligomer Layer. Analytical Chimica Acta, 2002,458 (2): 297-304.
    [135] Bharathi S, and Nogami M, A glucose biosensor based on electrodeposited biocomposities of gold nanoparticles and glucoseoxidase enzyme. The Analyst, 2001,126(11): 1919-1922.
    [136] Ellens, L, Ameryckx, G, and Englebienne P, Med. Fac. Land - bouww. Rijksuniv, Gent., 1998,53: 20358.
    [137] Bood A J,Faulkner L R,电化学方法原理及应用。化学化工出版社,1986,11-16。
    [138] Michael M and Jaromir R, Flow Injection Based Renewable Electrochemical Sensor System. Analytical Chemistry, 1996, 68(21): 3808-3814.
    [139] Jaromir R, Louis S, FROM FLOW INJECTIN TO BEAD INJECTION. Analytical Chemistry, 1999, April 1: 257A-263A.
    [140] Decher G, Hong J D, Buildup of ultrathin multiplayer films by a self-assembly process: Ⅱ Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes. Physical Chemistry, 1991,95: 1430-1434.
    [141] Decher G, Hong J D, Schmitt J, Buildup of ultrathin multiplayer films by a self-assembly process: Ⅲ. Consecutively alternating adsorption of
    
    anionic and cationic polyelectrolytes on charged surface. Thin Solid Flims, 1992, 210 / 211: 831-835.
    [142] Lvov Y, Decher G, Mhwald H, et al. Assembly, structural characterization and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinylsulfate) and poly(allylamine). Langmuir, 1993, 9(2): 481-486.
    [143] Lvov Y, Hass H, Decher G, et al. Successive deposition of alternate layers of polyelectrolytes and a charged virus, hangmuir, 1994, 10(11): 4232-4236.
    [144] Decher G, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science 1997, 277: 1232-1237.
    [145] Lvov Y, Ariga K, Ichinose I, Kunitake T, Assembly of Multicomponent Protein Films by means of Electrostatic layer Adsorption. J. Am. Chem. Soc. 1995, 117(22): 6117-6123.
    [146] Caruso F, Niikura K, Furlong D N, et al. Ultrathin multiplayer polyelectrolyte Films on gold: construction and thickness determination. Langmuir, 1997, 13(17): 3422-3436.
    [147] Wu Z Y, Yah Y H, Shen G L, et al. A novel approach of antibody immobilization based on n-butyl amine plasma-polymerized films for immunosensors. Analytica Chimica Acta, 2000, 412(1): 29-35.
    [148] Ladam G, Schaaf P, Guisinier F J G, et al. Protein Adsorption Onto Auto-Assembled Polyelectrolyte Films, hangmuir, 2001, 17(2): 878-882.
    [149] Muller M, Rieser T, Dubin P, et al. Selective Interaction Between Proteins and the outermost Surface of polyelectrolyte Multilayers--Influence of the polyanion Type, DH and Salt. MACROMOL RAPID COMMUN 2001, 22: 390-395.
    [150] Ninus C L, Fredrik H, Lars-Olof Sundel, Adsorption of Charged amphiliphiles to oppositely charged polysaccharides-A study of the influence of polysaccharide structure and hydrophobicity of the amphiphile molecule. Biopolymers, 1997, 41(7): 765-772.
    [151] Wang S P, Zeng X F, Yi X Y, Identification and Characterization of the purified Molecular Antigen Derived from immature Eggs of Schistosoma Japonicum, Chinese J. Zoonoses, 1992,4(1): 14-16.
    [152] Brauer R, "Prep. Inorg. Chem.," 1. Aufl., S. 505. 492.
    
    
    [153] Liu Y H, Liu X X, Song C C, et al. Immunology and Immunodiagnosis Parasitie Diseases, Jiansu Science-Technology Press, 1991.
    [154] Maeda M, Tsuji A, Enzymatic immunoassay of α-Fetoprotein, Insulin and 17-α-hydroxyprogesterone based on chemiluminescence in a flow injection systerm. Analytical Chimica. Acta, 1985,167: 241-248.
    [155] 苏萍,王永成,张新祥等,雌二醇的水凝胶毛细管电泳免疫分析[J],高等学校化学学报,2000,21(6),870-872.
    [156] Wang J, Electroanalysis and Biosensors. Analytical Chemistry, 1999, 71(12): 328R-332R.
    [157] Blonde R, Levi S, Tao G L, et al. Development of imperometric and Microgravimetric immunosensors and Reversible immunosensors using Antigen and photoisomerizable Antigen Monolayer Electrode. J. Am. Chem. Soc., 1997,119(43): 10467-10478.
    [158] Asandandreu M, Céspedes F, Alegret S, et al. Amperometric immunosensors based on rigid conducting immunocomposites. Analytical Chemistry, 1997, 69: 2080.
    [159] Solé S, Alegret S, Céspedes F, et al. Flow injection Immunoanalysis Based on a Magnetoimmunosensor system. Analytical Chemistry, 1998, 70(8): 1462-1467.
    [160] Liu G D, Wu Z Y, Yu R Q, et al. Renewable Amperometric Immunosensor for Schistosoma japonium Antibody Assay. Analytical Chemistry, 2001, 73(14): 3219-3226.
    [161] Sang G K, Lim G T, Lee K H, et al. Separation of MTBE(methylt-butylether) and methanol mixtures through polyion complex composite membranes consisting of sodium alginate/Chitosan. Journal of Membrane Science, 2000,174: 1-8.
    [162] Wu Z Y, Yan Y H, Shen G L, et al. A novel approach of antibody immobilization based on n-butyiamino plasma-potymerized films for sensor. Analytical Chimica Acta, 2000, 412(1): 29-35.
    [163] Volpe G, Compagnone D, Draisci R, et al. 3,3,5,5' -Tetramethylbenzidine as electrochemical substrate for Horseradish peroxidase based enzyme immunoassay: A comparative study. The Analyst, 1998, 123(6): 1303-1307.
    
    
    [164] 张书圣,焦奎,陈洪渊,PAP-H_2O_2-HRP伏安酶联免疫分析新体系测定人血清总甲状腺素。[J],高等学校化学学报,1999,20(6):881-883.
    [165] 张书圣,陈洪渊,焦奎,以邻氨基酚为底物的伏安酶联免疫分析体系酶促反应的研究。Science in China(Series B),1999,27(1):83-90.
    [166] Chemala Y R, Grossman H L, Ultra-sensitive magnetic biosensor for homogeneous immunoassay. PNAS. 2000,97(26): 14268-14272.
    [167] Cohen Y, Modified monolayer electrode for electrochemical and piezoelectric analysis of substrate-receptor interactions: novel immunosensor electrode. J. Electroanalytical chemistry. 1996,417(1-2): 65-75.
    [168] Jennifer M C, Charles A.L, Phospholipid Biolayer Coatings for the separation of Proteins in Capillary Electrophoresis. Analytical Chemistry, 2002,74(4): 776-783.
    [169] Albbrghouthi M, Fara D, Badwan A, Immobilization of antibodies on alginate-chitosan beads. Int. J. Pharm. 2000, 206 (1-2): 23-24.
    [170] Prusak-Sochaczewski E, Luonm J H T, Detection of human transferrin by the piezoelectric crystal. Analytical Letters, 1990, 23 (2): 183-188.
    [171] Liu Y H, Liu X X, Song C C, et al. Immunology and Immunodiagnosis Parasitie Diseases, Jiansu Science-Technology Press, 1991.
    [172] Kreingol' s S U, Serebryakova G V, Identification of products of the oxidation of a aminophenol by hydrogen peroxide in the presence of trances of Chromium(Ⅵ). Zh Vses Khimobshchest, 1974,19(2): 35-39.
    [173] Tiefenaur L X, Kossek S, Toward amperometric immunosensor devices. Biosensors and Bioelectronics, 1997,12 (10): 213-223.
    [174] Limoges B, Degrand C, Homogeneous electrochemical immunoassay using a persulfonated ionomer-modified electrode as a detector for a cationic-labeled hapten. Analytical Chemistry, 1993,65 (6): 1054-1060.
    [175] Ghindilis A L, Krishnan R, Flow-through Amperometric Immunosensor: Fast 'sandwich' Scheme Immunoassay. Biosensors and Bioelectronics, 1997, 12 (5): 415-423.
    [176] Celestino P, Andreas G and Louis T, Amperometric immunosensing using microperoxidase MP-11 antibody conjugates. Analytica Chimica Acta, 1998, 374 (2-3): 167-176.
    
    
    [177] Michal L, Willner I, Photochemical Imprint of Molecular Recognition Site in Monolayers Assembled on Au electrodes. J. Am. Chem. Soc. 1999,121(4): 862-863.
    [178] Yang J M, Michael K, An integrated stacked Microlaboratory for biological and immunoassay. Biosensors and Bioelectronics, 2002,17(6-7: 605-618.
    [179] 王俊,曾百肇,周性尧,自组装技术在电分析化学中的应用。分析科学学报,2000,16(3):253-256。
    [180] 周亚民,新型电化学免疫传感器技术用于日本血吸虫等蛋白质分子检测的研究,湖南大学博士学位论文,2002(7):33-43。
    [181] Volpe G, Compagnone D, 3,3,5,5,-Tetramethylbenzide as electrochemical substrate for horseradish peroxide based on enzyme immunosaay: A comparative study. The Analyst, 1998,123 (6): 1307-1312.
    [182] Mulchandani A, Mulchandani P, Kaneva I, and Chen W, Biosensor for Direct Determination of Orgnaophosphate Nerve Agents Using Recombinant Escherichia Coli with Surface-Expressed Organophorus Hydrolase 1. Potentiometric Microbial Electrode. Analytical Chemistry, 1998,70(19): 4140.
    [183] Munnecke D M, Enzymatic detoxification of waste organophosphorus pesticides. J. Agric. Food. Chem. 1980,28(1): 105-111.
    [184] Mulchandani P, Mulchandani A, Chen W, Biosensor for direct determination of organophosphate never agents. 1. Potentiometric enzyme electrode. Biosensors and Bioelectronics, 1999,14 (1): 77-85.
    [185] Mulchandani A, Pan S, Chen W, Fibre-optic biosensor for direct determination of organophosphate nerve agents. Biotechnoi. Prog. 1999, 15 (1): 130-134.
    [186] Martorell D, Cèspedes F, Amperometric determination of pesticides using a biosensor based on polishable graphite-epoxy biocomposite. Analytical Chimica Acta, 1994,290(2): 273-282.
    [187] Diehl J F, Ghindilis A L, itanasov P et al. Direct electron transfer based tri-enzyme electrode for monitoring of organophosphorus pesticides. Sensors and Actuators B, 1996 (35-36): 448-454.
    
    
    [188] Gberlein S, Knoll M, Spener F D, et al. Disposable potentiometric enzyme sensor for direct determination of organophosphorus insecticides. The Analyst, 2000,125(12): 2274-2279.
    [189] Mulchandani A, Mulchandani P, Chen W, et al. Amperometric Thick-Film Strip electrodes for Monitoring organophosphorate Nerve Agents Based on immobilized organophosphorus Hydrolase. Analytical Chemistry, 1999, 71(17): 2246-2249.
    [190] Sacks V, Eshkenazi I, Neufeld T, et al. Immobilized parathion Hydrolase: An Amperometric sensor For Parathion. Analytical Chemistry, 2000, 72 (9): 2055-2058.
    [191] Sung H C, Mulchandani A, Mulchandani P, Chen W, et al. Organophosphorus Hydrolase - Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity, Electroanalysis, 2002, 14 (4): 273-276.
    [192] Winklmair M, Niessner R, Development of a highly sensitive enzyme-immunoassay for determination of triazine herbicides. Fresenius J. Anal. Chem., 1997,358: 614-622.
    [193] James L Zajicek, Comparison of an enzyme-link immunosorbent assay(ELISA) to gas chromatography (GC)-measurement of polychlorinated biphenyl (PCBs) in selected US fish extracts. Chemsphere, 2000,40: 539-548.
    [194] Halamek, J, Makower A, Skladal P, et al. High sensitive detection of cocaine using a piezoelectric immunosensor. Biosensors and Bioelectronics, 2002,17(11-12): 1045-1050.
    [195] Mulchandani A, Chen W, Wang J, et al. Rogers. Electrical properties of a light-addressable microelectrode chip with high electrode density for extracellular stimulation and recording of excitable cells. Biosensors and Bioelectronics, 2001,16(3): 225-210.
    [196] Hayat M A, Colloidal gold Principle, Methods, and Applications, Academic Press, San Diego; CA, 1991.
    [197] Andrew T T, Chad A M, Robert L L, Scanometric DNA Array Detection with Nanoparticles Probes. Science, 2000,289: 1757-1760.
    
    
    [198] Bharathi S, and Nogami M, A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme. The Analyst, 2001, 126(11): 1919-1922.
    [199] Masatake H, Masakazu D, Applied Catalysis A: General. Advances in the catalysis of Au nano-particles. 2001, 222 (1-2): 427-437.
    [200] Begoa M, Garcia G and Agustin C G, Silver electrodeposition catalyzed by colloidal gold on carbon paste electrode: application to biotin - streptavidin interaction monitoring. Biosensors and Bioelectronics, 2000, 15 (11-12): 663-670.
    [201] Chen S W and Huang K, Electrochemical Studies of Nitrophenyl Moieties Immobilized on Gold Nanoclusters. Langmuir, 2000, 16(4): 2014-2018.
    [202] David J. A, Coordinator, Clinical Chemistry. Analytical Chemistry, 1999, 71(12): 293(R)-372 (R).
    [203] Santandreu M, Alegret S, and Fàbregas E, Determination of β-HCG using amperometric immunosensors based on a conducting immunocomposite. Analytical Chimica Acta, 1999, 396(2-3): 181-188.
    [204] Sosnitza P, Farooqu M, Saleemuddin M, et al. Application of reversible immobilization techniques for biosensors. Analytical Chimica Acta, 1998, 368(3): 197-203.
    [205] Lee K S, Kim T H, Shim M C, et al. disposable liposome immunosensor for theophylline combining an immunochromatographic membrane and a thick-film electrode. Analytical Chimica Acta, 1999, 380(1): 17-26.
    [206] Gonzalez-Martinez M A, Barcelo D, Reversible immunosensor for the automatic determination of atrazine. Selection and performance of three polyclonal antisera. Analytical Chimica Acta, 1999,386(3): 201-210.
    [207] Santandreu M, Cespedes F, Alegret S, et al. Amperometric Immunosensors Based on Rigid Conducting Immunocomposites. Analytical Chemistry, 1997, 69(11): 2080-2086.
    [208] Santandreu M, Sílvia Solé, Esteve Fàbregas et al. Development of electrochemical immunosensing systems with renewable surfaces. Biosensors and Bioelectronics, 1998,13(1): 7-17.
    
    
    [209] Li Z Z, Gong F C, Yu R Q, et al. Bacteria-modified Amperometric Immunosensor for a Brucella melitonsis Antibody Assay. ANALYTICAL SCEIENCES. 2002,18: 625-630.
    [210] Etter P P, Michael G W, Niessner R, Detection of bound nitroaromatic residues in soil by immunoassay. Fresenius J Anal. Chem., 1998,360(7/8): 781-783.
    [211] Bagel O, limoges B, Schllhom B, et al. Subfemtomolar Determination of Alkaline Phosphatase at a Disposable Screen-Printed Electrode Modified with a Perfluorosulfonated Ionomer film. Analytical Chemistry, 1997,69(22): 4688-4694.
    [212] Seddon B J, Osborne M D, Lagger G, et al. Micro-glassy carbon inks for thick-film electrodes. Electrochimica Acta., 1997, 42 (12): 1883-1894.
    [213] Liu G D, Shen G L, Yu R Q, et al. Renewable amperometric immunosensor based on paraffin-grapgite-transferrin antiserum biocomposite for transferrin assay. The Analyst, 2000,125(10): 1595-1599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700