心钠素在原代培养大鼠耳蜗螺旋神经元细胞中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察心钠素(atrial natriuretic peptide,ANP)在原代培养大鼠耳蜗螺旋神经元细胞(spiral ganglion neurons,SGN)中是否表达,并探讨其意义。
     方法:1.对3~5日的新生SD大鼠耳蜗SGN进行原代培养以及纯化,倒置显微镜下进行细胞形态学观察;应用免疫细胞化学方法(免疫酶标以及免疫荧光法)检测原代培养SGN中神经元特异性核蛋白(neuron-specific nuclear protein,NeuN)表达情况,进行培养细胞的神经源性鉴定。
     2.应用免疫细胞化学方法检测原代培养的SGN中ANP的表达情况,运用逆转录-聚合酶链式反应(reverse-transcription polymerase chain reaction,RT-PCR)方法检测原代培养的SGN中是否存在编码ANP的mRNA。
     结果:1.SGN的原代培养:细胞贴壁并生长24 h后,多数SGN呈双极神经元特征形态,胞体两极伸出突起,可达胞体的2~5倍,并附着在成纤维细胞形成的单层细胞层表面生长;有的呈三极神经元形态,神经突向三个方向伸展。48~72 h后,可见细胞突起交织成网状的细胞群,个别细胞突起可达胞体的7~8倍。还可见扁平多角形大胞体的成纤维细胞,以及长梭形双极的雪旺细胞(schwann cells)等非神经细胞。
     2. SGN的免疫细胞化学:可见NeuN在SGN胞体和突起中具有阳性表达,而扁平多角形的成纤维细胞与长梭状雪旺细胞NeuN染色阴性;SGN的胞质中含有大量棕黄色ANP免疫反应阳性物质,为分散或成团的颗粒。免疫荧光染色显示原代培养SGN中NeuN、ANP、Hoechst荧光信号的共表达:红色荧光显示NeuN在椭圆形胞体和神经突起着色;绿色荧光显示ANP主要在细胞胞体和突起中着色,在近胞核周围的胞质中分布尤为密集;蓝色荧光为Hoechst衬染胞核。
     3.ANP-mRNA在原代培养SGN细胞中的表达:培养5日SGN提取的RNA用RT-PCR方法扩增出编码ANP的单一条带,用凝胶成像及定量扫描仪测得片段大小为269 bp,为目的基因片段。
     结论:原代培养的SGN NeuN阳性表达,为神经组织来源,而且具有表达与合成ANP的能力,提示ANP可作为一种内源性激素,局部调节并维持内耳微环境稳态平衡;并且可能作为内耳SGN神经调节的一种递质或调质,参与其生理活动和突触传递功能的调节。本实验为进一步研究ANP对SGN神经调节作用的机制奠定了形态学基础。
AIM
     The purpose of this study to observe whether there was a expression of atrial natriuretic peptides(ANP)in primary cultured spiral ganglion neurons(SGN)from cochlea of rat, and to explain the significance of that.
     Methods
     Cultured and purified SGN were establish from postnatal day 3~5 Sprague-Dawley rats in vitro. The process of cellular growth and differentiation of SGN were observed by fluorescent inverted/phase contrast microscope. To identify the cultured SGN derived from neurons, the expression of neuron-specific nuclear protein(NeuN)in cultured cells was examined by immunocytochemistry. The expression of ANP in cultured SGN was also examined by immunocytochemistry and reverse-transcription polymerase chain reaction(RT-PCR).
     Results
     The trypsin dissociated and cultured SGN of SD rats could survive well and had a normal phenotypic differentiation in vitro. The stable neuronal plasticity of SGN existed in the postnatal SD rats under the present experimental conditions. The neuron-specific nuclear protein(NeuN)was positive in cultured SGN, and ANP immunoreactive granules localized around the perinuclear cytoplasm of neurons. Co-expression of ANP and NeuN in SGN was confirmed by immunofluorescence staining, and the expression of ANP-mRNA was aslo detected by RT-PCR.
     Conclusion
     The results suggested that primary cultured SGN which were derived from neurons could express and synthesize ANP, indicating that the ANP might play a role as a neurotransmitter or neuromodulator in neuromodulation of physiological activity and neurotransmission in SGN of the inner ear.
引文
1.孔维佳.耳鼻咽喉头颈外科学.北京,人民卫生出版社,2005,361-391.
    2. Lyon MJ,Payman RN.Comparison of the vascular innervation of the rat cochlea and vestibular system.Hear Res 2000;141(1-2):189-198.
    3. Comis SD,Whitfield IC.Influence of centrifugal pathways on unit activity in the cochlear nucleus.J Neurophysiol 1968;31:62–68.
    4. Ohlsen KA,Baldwin DL,Nuttall AL,Miller JM.Influence of topically applied adrenergic agents on cochlear blood flow.Circ Res.1991;69: 509–518.
    5. Laurikainen EA,Costa O,Miller JM,Nuttall AL,Ren TY,Masta R, Quirk WS,Robinson PJ.Neuronal regulation of cochlear blood flow in the guinea-pig.J Physiol 1994;480: 563–573.
    6. Gruber DD,Dang H,Shimozono M,Scofield MA,Wangemann P. Alpha1A-adrenergic receptors mediate vasoconstriction of the isolated spiral modiolar artery in vitro.Hear Res 1998;119:113–124.
    7. Anden NE,Fuxe K,Larsson K.Effect of large mesencephalic–diencephalic lesions on the noradrenalin,dopamine and 5-hydroxytryptamine neurons of the central nervous system.Experientia 1966;22:842–843.
    8. Woods CI,Azeredo WJ.Noradrenergic and serotonergic projections to the superior olive,potential for modulation of olivocochlear neurons.Brain Res 1999;836:9–18.
    9. Wynne B, Robertson D.Localization of dopamine-beta-hydroxylase-like immunoreactivity in the superior olivary complex of the rat.Audiol Neurootol 1996;1: 54–64.
    10. Mulders WH,Robertson D.Origin of the noradrenergic innervation of the superior olivary complex in the rat.J Chem Neuroanat 2001;21:313–322.
    11. Klepper A,Herbert H.Distribution and origin of noradrenergic and serotonergic fibers in the cochlear nucleus and inferior colliculus of the rat.Brain Res 1991;557:190–201.
    12. N.P. Issa, A.J. Hudspeth, Clustering of Ca2+ channels and Ca(2+)-activated K+ channels at fluorescently labeled presynaptic active zones of hair cells, Proc. Natl. Acad. Sci. U.S.A. 91 (1994) 7578–7582.
    13. W.M. Roberts, R.A. Jacobs, A.J. Hudspeth, Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells, J. Neurosci. 10 (1990) 3664–3684.
    14. S.Y. Zhang, D. Robertson, G. Yates, A. Everett, Role of L-type Ca(2+) channels in transmitter release from mammalian inner hair cells I. Gross sound-evoked potentials, J. Neurophysiol. 82 (1999) 3307–3315.
    15. Raphael Y,Altschuler RA. Structure and innervation of the cochlea. Brain Res Bull,2003,60(5-6):397-422.
    16. Rusznák Z,Szucs G. Spiral ganglion neurons:an overview of morphology,firing behaviour,ionic channels and function. Pflugers Arch,2009,457(6):1303-1325.
    17. Spoendlin H (1981) Differentiation of cochlear afferent neurons. Acta Otolaryngol 91:451–456
    18. Morrison D, Schindler RA, Wers?ll J (1975) Quantitative analysis of the afferent innervation of the organ of Corti in guinea pig. Acta Otolaryngol 79:11–23
    19. Ota CY, Kimura RS (1980) Ultrastructural study of the human spiral ganglion. Acta Otolaryngol 89:53–62.
    20. Spoendlin H (1985) Anatomy of cochlear innervation. Am J Otolaryngol 6:453–467
    21. Perkins RE, Morest DK (1975) A study of cochlear innervations patterns in cats and rats with the Golgi method and Nomarski optics. J Comp Neurol 163:129–158
    22. Liberman MC (1982) The cochlear frequency map for the cat: labelling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449
    23. Lin X (1997) Action potentials and underlying voltage-dependent currents studied in cultured spiral ganglion neurons of the postnatal gerbil. Hear Res 108:157–179
    24. Berglund AM, Ryugo DK (1987) Hair cell innervation by spiral ganglion neurons in the mouse. J Comp Neurol 255:560–570
    25. Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460
    26. M.C. Liberman, Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections, Hear. Res. 3 (1980) 45–63.
    27. Echteler SM (1992) Developmental segregation in the afferent projections tomammalian auditory hair cells. Proc Natl Acad Sci USA 89:6324–6327
    28. R.A. Altschuler, C.E. Sheridan, J.W. Horn, R.J. Wenthold, Immunocytochemical localization of glutamate immunoreactivity in the guinea pig cochlea, Hear. Res. 42 (1989) 167–173.
    29. S. Usami, K.K. Osen, N. Zhang, O.P. Ottersen, Distribution of glutamate-like and glutamine-like immunoreactivities in the rat organ of Corti: a light microscopic and semiquantitative electron microscopic analysis with a note on the localization of aspartate, Exp. Brain Res. 91 (1992) 1–11.
    30. H. Kuriyama, O. Jenkins, R.A. Altschuler, Immunocytochemical localization of AMPA selective glutamate receptor subunits in the rat cochlea, Hear. Res. 80 (1994) 233–240.
    31. A. Matsubara, J.H. Laake, S. Davanger, S. Usami, O.P. Ottersen, Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti, J. Neurosci. 16 (1996) 4457–4467
    32. A.S. Niedzielski, S. Safieddine, R.J. Wenthold, Molecular analysis of excitatory amino acid receptor expression in the cochlea, Audiol. Neurootol. 2 (1997) 79–91.
    33. S. Safieddine, M. Eybalin, Co-expression of NMDA and AMPA/kainate receptor mRNAs in cochlear neurones, Neuroreport 3 (1992) 1145–1148.
    34. S. Safieddine, M. Eybalin, Expression of mGluR1 alpha mRNA receptor in rat and guinea pig cochlear neurons, Neuroreport 7 (1995) 193–196
    35. J. Ruel, C. Chen, R. Pujol, R.P. Bobbin, J.L. Puel, AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig, J. Physiol. 518 (1999) 667–680
    36. O.P. Ottersen, Y. Takumi, A. Matsubara, A.S. Landsend, J.H. Laake, S. Usami, Molecular organization of a type of peripheral glutamate synapse: the afferent synapses of hair cells in the inner ear, Prog. Neurobiol. 54 (1998) 127–148
    37. C. Hunter, R.S. Petralia, T. Vu, R.J. Wenthold, Expression of AMPA-selective glutamate receptor subunits in morphologically defined neurons of the mammalian cochlear nucleus, J. Neurosci. 13 (1993) 1932–1946
    38. R.S. Petralia, M.E. Rubio, Y.X. Wang, R.J. Wenthold, Differential distribution of glutamate receptors in the cochlear nuclei, Hear. Res. 147 (2000) 59–69
    39. I.M. Raman, S. Zhang, L.O. Trussell, Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling, J. Neurosci. 14 (1994) 4998–5010.
    40. L.O. Trussell, Cellular mechanisms for preservation of timing in central auditory pathways, Curr. Opin. Neurobiol. 7 (1997) 487–492.
    41. S. Kleinlogel, E. Oestreicher, T. Arnold, K. Ehrenberger, D. Felix, Metabotropic glutamate receptors group I are involved in cochlear neurotransmission, Neuroreport 10 (1999) 1879–1882.
    42. Jagger DJ, Housley GD (2003) Membrane properties of type II spiral ganglion neurones identified in a neonatal rat cochlear slice. J Physiol 552:525–533
    43. Lin X, Chen S (2000) Endogenously generated spontaneous spiking activities recorded from postnatal spiral ganglion neurons in vitro. Dev Brain Res 119:297–305
    44. Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nature Neurosci 5:147–154
    45. Puel JL, Bobbin RP, Fallon M (1989) Suppression of auditory nerve activity in the guinea pig cochlea by 1-(ρ-bromobenzoyl)- piperazine-2,3-dicarboxylic acid. Brain Res 487:9–15.
    46. J.M. Juiz, J. Rueda, J.A. Merchan, M.L. Sala, The effects of kainic acid on the cochlear ganglion of the rat, Hear. Res. 40 (1989) 65–74.
    47. D. Robertson, Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea, Hear. Res. 9 (1983) 263–278.
    48. R. Pujol, Lateral and medial efferents: a double neurochemical mechanism to protect and regulate inner and outer hair cell function in the cochlea, Br. J. Audiol. 28 (1994) 185–191.
    49. J.L. Puel, R. Pujol, F. Tribillac, S. Ladrech, M. Eybalin, Excitatory amino acid antagonists protect cochlear auditory neurons from excitotoxicity, J. Comp. Neurol. 341 (1994) 241–256.
    50. C. d’Aldin, J.L. Puel, R. Leducq, O. Crambes, M. Eybalin, R. Pujol, Effects of a dopaminergic agonist in the guinea pig cochlea, Hear. Res. 90 (1995) 202–211.
    51. Salih SG,Housley GD,Raybould NP,et al.ATP-gated ion channel expression in primary auditory neurons.Neuroreport.1999;10:2579-2586.
    52. Housley GD,Kanjhan R,Raybould NP,et al.Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea;implications for sound transduction and auditory neumtransmission.J Neurosci;1999:19:8377-8388.
    53. C. Chen, R.P. Bobbin, P2X receptors in cochlear Deiters’cells, Br. J. Pharmacol. 124 (1998) 337–344.
    54. G.D. Housley, R. Kanjhan, N.P. Raybould, D. Greenwood, S.G. Salih, L. Jarlebark, L.D. Burton, V.C. Setz, M.B. Cannell, C. Soeller, D.L. Christie, S. Usami, A. Matsubara, H. Yoshie, A.F. Ryan, P.R. Thorne, Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission, J. Neurosci. 19 (1999) 8377–8388.
    55. J.J. Guinan Jr., W.B. Warr, B.E. Norris, Topographic organization of the olivocochlear projections from the lateral and medial zones of the superior olivary complex, J. Comp. Neurol. 226 (1984) 21–27.
    56. J.S. White, W.B. Warr, The dual origins of the olivocochlear bundle in the albino rat, J. Comp. Neurol. 219 (1983) 203–214.
    57. W.B. Warr, Efferent components of the auditory system, Ann. Otol. Rhinol. Laryngol. Suppl. 89 (1980) 114–120.
    58. W.B. Warr, J.B. Boche, S.T. Neely, Efferent innervation of the inner hair cell region: origins and terminations of two lateral olivocochlear systems, Hear. Res. 108 (1997) 89–111.
    59. M.C. Liberman, Effects of chronic cochlear de-efferentation on auditory-nerve response, Hear. Res. 49 (1990) 209–223.
    60. C.G. LePrell, S.C. Bledsoe Jr., R.P. Bobbin, J.L. Puel, Neurotransmission in the inner ear: functional and molecular analyses, in: A.F. Jahn, J. Santos-Sacchi (Eds.), Physiology of the Ear, Singular Publishing, New York, 2001, pp. 575–611.
    61. R.A. Altschuler, B. Kachar, J.A. Rubio, M.H. Parakkal, J. Fex, Immunocytochemical localization of choline acetyltransferase-like immunoreactivity in the guinea pig cochlea, Brain Res. 338 (1985) 1–11.
    62. M. Eybalin, R. Pujol, Choline acetyltransferase (ChAT) immunoelectron microscopy distinguishes at least three types of efferent synapses in the organ of Corti, Exp. Brain Res. 65 (1987) 261–270.
    63. D.G. Drescher, K.M. Khan, G.E. Green, B.J. Morley, K.W. Beisel, H. Kaul, D. Gordon, A.K. Gupta, M.J. Drescher, R.L. Barretto, Analysis of nicotinic acetylcholine receptor subunits in the cochlea of the mouse, Comp. Biochem. Physiol. C: Pharmacol. Toxicol.Endocrinol. 112 (1995) 267–273.
    64. B.J. Morley, H.S. Li, H. Hiel, D.G. Drescher, A.B. Elgoyhen, Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization, Brain Res. Mol. Brain Res. 53 (1998) 78–87.
    65. T. Arnold, E. Oestreicher, K. Ehrenberger, D. Felix, GABA(A) receptor modulates the activity of inner hair cell afferents in guinea pig cochlea, Hear. Res. 125 (1998) 147–153.
    66. C. Burki, D. Felix, K. Ehrenberger, Enkephalin suppresses afferent cochlear neurotransmission, ORL 55 (1993) 3–6.
    67. D. Felix, K. Ehrenberger, The efferent modulation of mammalian inner hair cell afferents, Hear. Res. 64 (1992) 1–5.
    68. E. Oestreicher, W. Arnold, K. Ehrenberger, D. Felix, Dopamine regulates the glutamatergic inner hair cell activity in guinea pigs, Hear. Res. 107 (1997) 46–52.
    69. J. Ruel, R. Nouvian, C. Gervais d’Aldin, R. Pujol, M. Eybalin, J.L. Puel, Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea, Eur. J. Neurosci. 14 (2001) 977–986.
    70. A.M. Berglund, T.E. Benson, M.C. Brown, Synapses from labeled type II axons in the mouse cochlear nucleus, Hear. Res. 94 (1996)31–46.
    71. M.C. Brown, J.V. Ledwith III, Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse, Hear. Res. 49 (1990) 105–118.
    72. Fechner FP, Burgess BJ, Adams JC, Liberman MC, Nadol JB Jr (1998) Dense innervation of Deiters’and Hensen’s cells persists after chronic deefferentation of guinea pig cochleas. J Comp Neurol 400:299–309.
    73. J.J. Guinan Jr., W.B. Warr, B.E. Norris, Topographic organizationof the olivocochlear projections from the lateral and medial zones of the superior olivary complex, J. Comp. Neurol. 226 (1984) 21–27.
    74. D.E. Vetter, J.C. Adams, E. Mugnaini, Chemically distinct rat olivocochlear neurons, Synapse 7 (1991) 21–43.
    75. W.B. Warr, Efferent components of the auditory system, Ann. Otol. Rhinol. Laryngol. Suppl. 89 (1980) 114–120.
    76. R.P. Bobbin, T. Konishi, Action of cholinergic and anticholinergic drugs at the crossed olivocochlear bundle-hair cell junction, Acta Otolaryngol. 77 (1974) 56–65.
    77. A.B. Elgoyhen, D.E. Vetter, E. Katz, C.V. Rothlin, S.F. Heinemann, J. Boulter, Alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 3501–3506.
    78. L. Luo, T. Bennett, H.H. Jung, A.F. Ryan, Developmental expression of alpha 9 acetylcholine receptor mRNA in the rat cochlea and vestibular inner ear, J. Comp. Neurol. 393 (1998) 320–331.
    79. P. Dallos, D.Z. He, X. Lin, I. Sziklai, S. Mehta, B.N. Evans, Acetylcholine, outer hair cell electromotility, and the cochlear amplifier, J. Neurosci. 17 (1997) 2212–2226.
    80. M.G. Evans, L. Lagostena, P. Darbon, F. Mammano, Cholinergic control of membrane conductance and intracellular free Ca2+ in outer hair cells of the guinea pig cochlea, Cell Calcium 28 (2000) 195–203.
    81. I. Sziklai, M. Szonyi, P. Dallos, Phosphorylation mediates the influence of acetylcholine upon outer hair cell electromotility, Acta Otolaryngol. 121 (2001) 153–156.
    82. J. Fex, R.A. Altschuler, B. Kachar, R.J. Wenthold, J.M. Zempel, GABA visualized by immunocytochemistry in the guinea pig cochlea in axons and endings of efferent neurons, Brain Res. 366 (1986) 106–117.
    83. A. Luebke, I.M. Dickerson, Role of CGRP receptor component protein (RCP) in CGRP mediated signal transduction, in: A.f.R.i. (Ed.), Otolaryngol, vol. 25, 2002, p. 309.
    84. I. Sziklai, D.Z. He, P. Dallos, Effect of acetylcholine and GABA on the transfer function of electromotility in isolated outer hair cells, Hear. Res. 95 (1996) 87–99.
    85. Mo ZL, Davis RL (1997) Endogenous firing patterns of murine spiral ganglion neurons. J Neurphysiol 77:1294–1305.
    86. Mo ZL,Davis RL.Heterogeneous voltage dependence of inward rectifier currents in spiral ganglion neurons.J Neurophysiol. 1997;78:3019-3027.
    87.朱妙章,袁文俊,吴博威等.心血管生理学与临床.北京:高等教育出版社,2004:452-453.
    88. Kim, J.H., Yang, S.H., Yu, M.Y., Lee, H.K., Kim, S.Y., Kim, S.H., 2004. Dendroaspisnatriuretic peptide system and its paracrine function in rat colon. Regul. Pept. 120, 93–98.
    89. 89 .Schulz-Knappe, P., Forssmann, K., Herbst, F., Hock, D., Pipkorn, R., Forssmann, W.G., 1988. Isolation and structural analysis of‘‘urodilatin’’, a new peptide of the cardiodilatin-(ANP)-family, extracted from human urine. Klin. Wochenschr. 66, 752–759.
    90. de Bold, A.J., Borenstein, H.B.,Veress, A.T., Sonnenberg, H., 1981. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 28, 89–94.
    91. Sudoh, T., Kangawa, K., Minamino, N., Matsuo, H., 1988. A new natriuretic peptide in porcine brain. Nature 332, 78–81.
    92. Sudoh, T., Minamino, N., Kangawa, K., Matsuo, H., 1990. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem. Biophys. Res. Commun. 168, 863–870.
    93. Guedon, J., 1986. Control of the excretion of sodium and natriuretic hormones.Rev. Prat. 36, 2088–2095.
    94. Richards, A.M., 1990. Is atrial natriuretic factor a physiological regulator of sodium excretion? A review of the evidence. J. Cardiovasc. Pharmacol. 16 (Suppl. 7), S39–S42.
    95. Abdelalim, E.M., Osman, A.H., Takada, T., Torii, R., Tooyama, I., 2007. Immunohistochemical mapping of natriuretic peptide receptor-A in the brainstem of Macaca fascicularis. Neuroscience 145, 1087–1096.
    96. Imura, H., Nakao, K., Itoh, H., 1992. The natriuretic peptide system in the brain: implications in the central control of cardiovascular and neuroendocrine functions. Front. Neuroendocrinol. 13, 217–249.
    97. McKenzie,J.C.,Berman,N.E.,Thomas,C.R.,Young,J.K.,Compton,L.Y.,Cothran,L.N.,Liu,W.L.,Klein,R.M.,1994.Atrial natriuretic peptide- like (ANP-LIR) and ANP prohormone immunoreactive astrocytes and neurons of human cerebral cortex.Glia12, 228–243.
    98. Takahashi,K.,Totsune,K.,Sone,M.,Ohneda,M.,Murakami,O.,Itoi,K.,Mouri,T.,1992.Human brain natriuretic peptide-like immunoreactivity in human brain. Peptides13, 121–123.
    99. Zorad, S. Tsutsumi, K., Bhatia, A.J., Saavedra, J. M., 1993. Localization and characteristics of atrial natriuretic peptide receptor sinprenatal and postnatal rat brain. Eur.J.Pharmacol.241,195–200.
    100. Herman, J.P., Langub Jr., M.C., Watson Jr., R.E., 1993. Localization of C-type natriuretic peptide mRNA in rat hypothalamus. Endocrinology 133, 1903–1906.
    101. Kaneko, T., Shirakami, G., Nakao, K., Nakagawa, O., Hama, N., Suga, S., Miyamoto, S., Kubo, H., Imura, H., 1993. C-type natriuretic peptide (CNP) is the major natriuretic peptide in human cerebrospinal fluid. Brain Res. 612, 104–109.
    102. Yamamoto, S., Morimoto, I., Yanagihara, N., Kangawa, K., Inenaga, K., Eto, S., Yamashita, H., 1997. C-type natriuretic peptide suppresses arginine-vasopressin secretion from dissociated magnocellular neurons in newborn rat supraoptic nucleus. Neurosci. Lett. 229, 97–100.
    103. Chinkers, M., Garbers, D.L., 1989. The protein kinase domain of the ANP receptor is required for signaling. Science 245, 1392–1394.
    104. Chinkers, M., Garbers, D.L., Chang, M.S., Lowe, D.G., Chin, H.M., Goeddel, D.V., Schulz, S., 1989. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338, 78–83.
    105. Garbers, D.L., 1991. Guanylyl cyclase-linked receptors. Pharmacol. Ther. 50, 337–345.
    106. Koh, G.Y., Nussenzveig, D.R., Okolicany, J., Price, D.A., Maack, T., 1992. Dynamics of atrial natriuretic factor-guanylate cyclase receptors and receptor-ligand complexes in cultured glomerular mesangial and renomedullaryinterstitial cells. J. Biol. Chem. 267, 11987–11994.
    107. Koller, K.J., Lowe, D.G., Bennett, G.L., Minamino, N., Kangawa, K., Matsuo, H., Goeddel, D.V., 1991. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252, 120–123.
    108. Suga, S., Nakao, K., Hosoda, K., Mukoyama, M., Ogawa, Y., Shirakami, G., Arai, H., Saito, Y., Kambayashi, Y., Inouye, K., et al., 1992. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology 130, 229–239.
    109. Rosenzweig, A., Seidman, C.E., 1991. Atrial natriuretic factor and related peptide hormones. Annu. Rev. Biochem. 60, 229–255.
    110. Vesely, D.L., 2002. Atrial natriuretic peptide prohormone gene expression: hormones and diseases that upregulate its expression. IUBMB Life 53, 153–159.
    111. Porter, J.G., Arfsten, A., Palisi, T., Scarborough, R.M., Lewicki, J.A., Seilhamer, J.J., 1989. Cloning of a cDNA encoding porcine brain natriuretic peptide. J. Biol. Chem. 264, 6689–6692.
    112. Seilhamer, J.J., Arfsten, A., Miller, J.A., Lundquist, P., Scarborough, R.M., Lewicki, J.A., Porter, J.G., 1989. Human and canine gene homologs of porcine brain natriuretic peptide. Biochem. Biophys. Res. Commun. 165, 650–658.
    113. Sudoh, T., Minamino, N., Kangawa, K., Matsuo, H., 1988. Brain natriuretic peptide-32: N-terminal six amino acid extended form of brain natriuretic peptide identified in porcine brain. Biochem. Biophys. Res. Commun. 155, 726–732.
    114. Cea, L.B., 2005. Natriuretic peptide family: new aspects. Curr. Med. Chem. Cardiovasc. Hematol. Agents 3, 87–98.
    115. Currie, M.G., Geller, D.M., Cole, B.R., Siegel, N.R., Fok, K.F., Adams, S.P., Eubanks, S.R., Galluppi, G.R., Needleman, P., 1984. Purification and sequence analysis of bioactive atrial peptides (atriopeptins). Science 223, 67–69.
    116. Kangawa, K., Matsuo, H., 1984. Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem. Biophys. Res. Commun. 118, 131–139.
    117. Schulz, S., Singh, S., Bellet, R.A., Singh, G., Tubb, D.J., Chin, H., Garbers, D.L., 1989. The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58, 1155–1162.
    118. Pandey, K.N., 2005. Biology of natriuretic peptides and their receptors. Peptides 26, 901–932.
    119. Misono, K.S., Sivasubramanian, N., Berkner, K., Zhang, X., 1999. Expression and purification of the extracellular ligand-binding domain of the atrial natriuretic peptide (ANP) receptor: monovalent binding with ANP induces 2:2 complexes. Biochemistry 38, 516–523.
    120. Koller, K.J., de Sauvage, F.J., Lowe, D.G., Goeddel, D.V., 1992. Conservation of the kinaselike regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclases. Mol. Cell. Biol. 12, 2581–2590.
    121. Levin, E.R., Gardner, D.G., Samson,W.K., 1998. Natriuretic peptides. N. Engl. J. Med. 339, 321–328.
    122. Stults, J.T., O’Connell, K.L., Garcia, C.,Wong, S., Engel, A.M., Garbers, D.L., Lowe, D.G., 1994. The disulfide linkages and glycosylation sites of the human natriuretic peptide receptor-C homodimer. Biochemistry 33, 11372–11381.
    123. Anand-Srivastava, M.B., Trachte, G.J., 1993. Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol. Rev. 45, 455–497.
    124. Palaparti, A., Li, Y., Anand-Srivastava, M.B., 2000. Inhibition of atrial natriuretic peptide (ANP) C receptor expression by antisense oligodeoxynucleotides in A10 vascular smooth-muscle cells is associated with attenuation of ANP-C-receptor- mediated inhibition of adenylyl cyclase. Biochem. J. 346, 313–320.
    125. Zhou, H., Murthy, K.S., 2003. Identification of the G protein-activating sequence of the single-transmembrane natriuretic peptide receptor C (NPR-C). Am. J. Physiol. Cell Physiol. 284, C1255–C1261.
    126. Lucas, K.A., Pitari, G.M., Kazerounian, S., Ruiz-Stewart, I., Park, J., Schulz, S., Chepenik, K.P., Waldman, S.A., 2000. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev. 52, 375–414.
    127. Ullrich, A., Schlessinger, J., 1990. Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212.
    128. Labrecque, J., McNicoll, N., Marquis, M., De Lean, A., 1999. A disulfidebridged mutant of natriuretic peptide receptor-A displays constitutive activity. Role of receptor dimerization in signal transduction. J. Biol. Chem. 274, 9752–9759.
    129. Goncalves, J., Grove, K.L., Deschepper, C.F., 1995. Generation of cyclic guanosine monophosphate in brain slices incubated with atrial or C-type natriuretic peptides: comparison of the amplitudes and cellular distribution of the responses. Regul. Pept. 57, 55–63.
    130. Duda, T., Sharma, R.K., 1995. ATP bimodal switch that regulates the ligand binding and signal transduction activities of the atrial natriuretic factor receptor guanylate cyclase. Biochem. Biophys. Res. Commun. 209, 286–292.
    131. Duda, T., Venkataraman, V., Ravichandran, S., Sharma, R.K., 2005. ATPregulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Peptides 26,969–984.
    132. Chinkers, M., Singh, S., Garbers, D.L., 1991. Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J. Biol. Chem. 266, 4088–4093.
    133. Foster, D.C., Garbers, D.L., 1998. Dual role for adenine nucleotides in the regulation of the atrial natriuretic peptide receptor, guanylyl cyclase-A. J. Biol. Chem. 273, 16311–16318.
    134. Joubert, S., Jossart, C., McNicoll, N., De Lean, A., 2005. Atrial natriuretic peptide-dependent photolabeling of a regulatory ATP-binding site on the natriuretic peptide receptor-A. Febs J. 272, 5572–5583.
    135. Delay, R.J., Dubin, A.E., Dionne, V.E., 1997. A cyclic nucleotide-dependent chloride conductance in olfactory receptor neurons. J. Membr. Biol. 159, 53–60.
    136. Francis, S.H., Corbin, J.D., 1994. Progress in understanding the mechanism and function of cyclic GMP-dependent protein kinase. Adv. Pharmacol. 26, 115–170.
    137. Kumar, R., Cartledge, W.A., Lincoln, T.M., Pandey, K.N., 1997. Expression of guanylyl cyclase-A/atrial natriuretic peptide receptor blocks the activation of protein kinase C in vascular smooth muscle cells. Role of cGMP and cGMP-dependent protein kinase. Hypertension 29, 414–421.
    138. Mery, P.F., Lohmann, S.M., Walter, U., Fischmeister, R., 1991. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc. Natl. Acad. Sci. U.S.A. 88, 1197–1201.
    139. Eigenthaler, M., Lohmann, S.M., Walter, U., Pilz, R.B., 1999. Signal transduction by cGMP-dependent protein kinases and their emerging roles in the regulation of cell adhesion and gene expression. Rev. Physiol. Biochem. Pharmacol. 135, 173–209.
    140. Jaubert, J., Jaubert, F., Martin, N., Washburn, L.L., Lee, B.K., Eicher, E.M., Guenet, J.L., 1999. Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (Npr3). Proc. Natl. Acad. Sci. U.S.A. 96, 10278–10283.
    141. Matsukawa, N., Grzesik, W.J., Takahashi, N., Pandey, K.N., Pang, S., Yamauchi,M., Smithies, O., 1999. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc. Natl. Acad. Sci. U.S.A. 96,7403–7408.
    142. Pandey, K.N., 1992. Kinetic analysis of internalization, recycling and redistribution of atrial natriuretic factor-receptor complex in cultured vascular smooth-muscle cells. Ligand-dependent receptor down-regulation. Biochem. J. 288 (Pt 1), 55–61.
    143. Pandey, K.N., 1993. Stoichiometric analysis of internalization, recycling, and redistribution of photoaffinity-labeled guanylate cyclase/atrial natriuretic factor receptors in cultured murine Leydig tumor cells. J. Biol. Chem. 268, 4382–4390.
    144. Pandey, K.N., Inagami, T., Misono, K.S., 1986. Atrial natriuretic factor receptor on cultured Leydig tumor cells: ligand binding and photoaffinity labeling. Biochemistry 25, 8467–8472.
    145. Anand-Srivastava, M.B., 2005. Natriuretic peptide receptor-C signaling and regulation. Peptides 26, 1044–1059.
    146. Fuller, F., Porter, J.G., Arfsten, A.E., Miller, J., Schilling, J.W., Scarborough, R.M., Lewicki, J.A., Schenk, D.B., 1988. Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J. Biol. Chem. 263, 9395–9401.
    147. Maack, T., Suzuki, M., Almeida, F.A., Nussenzveig, D., Scarborough, R.M., McEnroe, G.A., Lewicki, J.A., 1987. Physiological role of silent receptors of atrial natriuretic factor. Science 238, 675–678.
    148. Anand-Srivastava, M.B., Sairam, M.R., Cantin, M., 1990. Ring-deleted analogs of atrial natriuretic factor inhibit adenylate cyclase/cAMP system. Possible coupling of clearance atrial natriuretic factor receptors to adenylate cyclase/cAMP signal transduction system. J. Biol. Chem. 265, 8566–8572.
    149. Rose, R.A., Anand-Srivastava, M.B., Giles, W.R., Bains, J.S., 2005. C-type natriuretic peptide inhibits L-type Ca2+ current in rat magnocellular neurosecretory cells by activating the NPR-C receptor. J. Neurophysiol. 94, 612–621.
    150. Anand-Srivastava, M.B., Sehl, P.D., Lowe, D.G., 1996. Cytoplasmic domain of natriuretic peptide receptor-C inhibits adenylyl cyclase. Involvement of a pertussis toxin-sensitive G protein. J. Biol. Chem. 271, 19324–19329.
    151. Pagano, M., Anand-Srivastava, M.B., 2001. Cytoplasmic domain of natriuretic peptide receptor C constitutes Gi activator sequences that inhibit adenylyl cyclase activity. J.Biol. Chem. 276, 22064–22070.
    152. de Bold AJ,de Bold ML,Sarda IR.Functional-morphological studies on in vitro cardionatrin release.J Hypertens Suppl 1986(4):S3–S7.
    153. Edwards BS,Zimmerman RS,Schwab TR,Heublein DM,Burnett Jr JC.Atrial stretch,not pressure,is the principal determinant controlling the acute release of atrial natriuretic factor.Circ Res1988(62):191–195.
    154. Stasch JP,Hirth-Dietrich C,Kazda S,Neuser D.Endothelin stimulates release of atrial natriuretic peptides in vitro and in vivo.Life Sci.1989(45):869–875.
    155. Soualmia H,Barthelemy C,Masson F,Maistre G,Eurin J,Carayon A.Angiotensin II-induced phosphoinositide production and atrial natriuretic peptide release in rat atrial tissue.J Cardiovasc Pharmacol 1997(29):605–611.
    156. Lachance D,Garcia R,Gutkowska J,Cantin M,Thibault G.Mechanisms of release of atrial natriuretic factor.I.Effect of several agonists and steroids on its release by atrial minces.Biochem Biophys Res Commun 1986(135):1090–1098.
    157. Potter LR,Abbey-Hosch S,Dickey DM. Natriuretic peptides,their receptors,and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev,2006,27(1):47-72.
    158. Cao LH,Yang XL. Natriuretic peptides and their receptors in the central nervous system. Prog Neurobiol,2008,84(3):234-248.
    159. Wilcox JN,Augustine A,Goeddel DV,Lowe DG.Differential regional expression of three natriuretic peptide receptor genes within primate tissues. Mol Cell Biol.1991(11): 3454–3462.
    160. Goy MF,Oliver PM,Purdy KE,Knowles JW,Fox JE,Mohler PJ,Qian X,Smithies O,Maeda N.Evidence for a novel natriuretic peptide receptor that prefers brain natriuretic peptide over atrial natriuretic peptide.Biochem J 2001(358):379–387.
    161. Muller D,Mukhopadhyay AK,Speth RC,Guidone G,Potthast R,Potter LR, Middendorff R.Spatiotemporal regulation of the two atrial natriuretic peptide receptors in testis.Endocrinology 2004(145):1392–1401.
    162. Herman JP,Dolgas CM,Rucker D,Langub Jr MC.Localization of natriuretic peptide- activated guanylate cyclase mRNAs in the rat brain.J Comp Neurol.1996 (369): 165–187.
    163. Nagase M,Katafuchi T,Hirose S,Fujita T.Tissue distribution and localization of natriuretic peptide receptor subtypes in stroke-prone spontaneously hypertensive rats.J Hypertens 1997(15):1235–1243.
    164. Porter JG,Arfsten A,Fuller F,Miller JA,Gregory LC,Lewicki JA.Isolation and functional expression of the human atrial natriuretic peptide clearance receptor cDNA.Biochem Biophys Res Commun 1990(171):796–803.
    165. Fuller F,Porter JG,Arfsten AE,Miller J,Schilling JW,Scarborough RM, Lewicki JA,Schenk DB.Atrial natriuretic peptide clearance receptor.Complete sequence and functional expression of cDNA clones.J Biol Chem 1988(263):9395–9401.
    166. Yamaguchi M,Rutledge LJ,Garbers DL The primary structure of the rat guanylyl cyclase A/atrial natriuretic peptide receptor gene.J Biol Chem1990(265):20414–20420.
    167. Lamprecht J,Meyer zum Gottesberge AM. The presence and localization of receptors for atrial natriuretic peptide in the inner ear of the guinea pig. Arch Otorhinolaryngol,1988,245:300-301.
    168. Meyer zum Gottesberge AM,Gagelmann M,Forssmann WG. Atrial natriuretic peptide-like immunoreactive cells in the guinea pig inner ear. Hear Res,1991,56:86-92.
    169. Meyer zum Gottesberge AM,Schleicher A, Drummer C,et al. The volume protective natriuretic peptide system in the inner ear. Comparison between vestibular and cochlear compartments. Acta Otolaryngol Suppl,1995,520:170-173.
    170. Koch T,Gloddek B,Gutzke S. Binding sites of atrial natriuretic peptide(ANP)in the mammalian cochlea and stimulation of cyclic GMP synthesis. Hear Res,1992,63:197-202.
    171. Yoon YJ,Hellstrom S. Immunohistochemical localization of alpha-atrial natriuretic polypeptide in the rat cochlea. Acta Otolaryngol,1992,112:604-610.
    172. Yoon YJ,Anniko M. Distribution of alpha-ANP in the cochlea and the vestibular organs. J Otorhinolaryngol,1994,56:73–77.
    173. Furuta H,Mori N,Luo L,et al. Detection of mRNA encoding guanylate cyclase A/atrial natriuretic peptide receptor in the rat cochlea by competitive polymerase chain reaction and in situ hybridization. Hear Res,1995,92:78–84.
    174.陈合新,邱建华,乔莉,等.豚鼠血管纹心钠素(ANP)免疫组化分布及超微定位,中华耳鼻咽喉科杂志,1993,6:339-341.
    175.陈合新,王锦玲,邱建华.心钠素在豚鼠耳蜗螺旋神经节的分布及定位.中华医学杂志. 1996,76:147-148.
    176.陈合新,邱建华,王锦玲.心钠素免疫反应物质在豚鼠耳蜗Corti器中的分布.听力学及言语疾病杂志,2000,8:213-214.
    177.陈合新,史剑波,邱建华,等.心钠素免疫反应在豚鼠耳蜗中的整体分布.中国临床解剖学杂志,2002,20:290-291.
    178.林颖,邱建华.利钠尿肽在鼠内耳的表达及其意义.听力学及言语疾病杂志,2005,13(4):291-293.
    179. HOSSA IN W A, ZHOU X, MOREST D K, et al. Basic fibroblast growth factor affects neuronal migration and differentiation on normotyp ic cell cultures from the cochleovestibular ganglion of the chick embryo[ J ]. Exp Neurol, 1996, 138: 121 -135.
    180. LEFEBVRE P P,WEBER T, RIGO J M, et al. Peripheral and central target derived trophic factors effect on auditory neurons[ J ]. Hear Res, 1992, 58: 185 -192.
    181.刘涛,唐玥玓,窦艳玲体外耳蜗螺旋神经元原代培养的影响因素,西南国防医药,2009,19:1052-1054.
    182.查定军,邓志宏,乔莉,等.新生大鼠螺旋神经元的培养及免疫细胞化学鉴定.中华神经外科疾病研究杂志,2007,6(3):226-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700