α-硫辛酸对D-半乳糖过氧化损伤小鼠的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究摄入不同剂量α-硫辛酸对D-半乳糖过氧化损伤小鼠的影响效应,侧重其对小鼠海马功能的作用并初探其机制,为其在慢性疾病和其它医学领域的推广应用提供科学参考。
     方法
     清洁级雌性昆明种小鼠按体重随机分为五组:空白对照组(? )、模型组(П)、α-硫辛酸干预组(Ш、?V、V),除空白对照组外,其余四组均用D-半乳糖(100mg/kgBW)(1ml/100gBW)颈背部皮下注射,空白对照组给予同体积的生理盐水注射(1ml/100gBW),每日一次,连续6周,第7周开始,三个α-硫辛酸干预组小鼠经口给予不同浓度α-硫辛酸(50mg/kgBW、100mg/kgBW、200mg/kgBW)(0.5ml/100gBW),对照组、模型组给予同体积溶剂(0.5ml/100gBW)灌胃,同时,模型组和α-硫辛酸干预组继续给予D-半乳糖颈背部皮下注射,连续8周。干预结束后收集相关标本进行抗氧化相关指标、海马神经细胞DNA损伤、海马CA1区神经型一氧化氮合酶表达的测定。
     结果
     1、α-硫辛酸对小鼠抗氧化能力的影响
     1.1提高红细胞SOD活力:D-半乳糖可使小鼠红细胞SOD活力下降,模型组和对照组比较有统计学意义(P<0.05),不同剂量的α-硫辛酸均可提高SOD活性,并呈剂量-反应关系(P<0.05),和模型组比较有统计学意义(P<0.05)。
     1.2降低血清LPO含量:D-半乳糖可使小鼠血清LPO水平升高,模型组和对照组比较有统计学意义(P<0.05),不同剂量的α-硫辛酸均可降低小鼠血清LPO含量,和模型组比较有统计学意义(P<0.05),低剂量组和对照组比较有统计学意义(P<0.05)。
     1.3降低肝组织LPO含量:D-半乳糖可使小鼠肝组织LPO水平升高,模型组和对照组比较有统计学意义(P<0.05),不同剂量的α-硫辛酸均可降低小鼠肝组织LPO含量,仅高剂量组和模型组比较有统计学意义(P<0.05),干预组和对照组比较有统计学意义(P<0.05)。
     1.4降低脾脏LPO含量:D-半乳糖可使小鼠脾组织LPO水平升高,模型组和对照组比较有统计学意义(P<0.05),不同剂量的α-硫辛酸均可降低小鼠脾脏LPO含量,但和模型组比较,仅高剂量组有统计学意义(P<0.05),干预组和对照组比较有统计学意义(P<0.05)。
     1.5降低脑组织脂褐质水平:D-半乳糖可使小鼠脑组织脂褐质水平升高,模型组和对照组比较有统计学意义(P<0.05),不同剂量的α-硫辛酸均可降低小鼠脑组织脂褐质水平,和模型组比较有统计学意义(P<0.05),高剂量组和低剂量组有显著性差别(P<0.05)。
     2、α-硫辛酸对海马神经细胞DNA损伤的修复效应:模型组小鼠海马彗星细胞尾长、尾矩、Olive尾矩值均最大,对照组的均最小,对照组和模型组比较有统计学意义(P<0.05),三个α-硫辛酸干预组的各指标均小于模型组,有统计学意义(P<0.05)。
     3、海马CA1区神经型一氧化氮合酶表达的影响:模型组小鼠海马CA1区神经型一氧化氮合酶水平最低,空白对照组最高,和模型组比较,不同剂量α-硫辛酸干预组小鼠海马CA1区神经型一氧化氮合酶表达显著增高(P<0.05),对照组高于各干预组,差别无统计学意义。
     结论:
     1、α-硫辛酸具有清除自由基,增强体内抗氧化系统功能的作用,且存在剂量-反应关系。
     2、α-硫辛酸可以有效地减少D-半乳糖引起的海马神经细胞DNA的断裂损伤。
     3、α-硫辛酸能够逆转D-半乳糖所致的海马CA1区神经型一氧化氮合酶表达下调。
Objective
     α-lipoic acid has been a focus of medical research for years,especially its potent antioxidative power. In this months-long study, we observed its restoration of the endogenous antioxidative system, effects on DNA oxidative damage of hippocampus neurons and upgradation of nNOS expression of mice hippocampus CAI subregion, supplying scientific evidence for its application on medicine.
     Method
     50 pure Kuming female mice were weighed and assigned randomly into blank control group (?), model group (П) and threeα-lipoic acid groups (Ш,IV, V).Model group and threeα-lipoic acid groups took D-galactose by subcutaneous injection once per day for 14 weeks (100mg/kgBW) (0.1ml/10gBW),meanwhile mice of blank control group were given isotonic Na chloride(0.1ml/10gBW) .In the last 6 weeks, while the subcutaneous injection was undergoing as previous, threeα-lipoic acid groups were given different doses ofα-lipoic acid mixed in colleseed oil (pretreated by alcohol and high temperature) (0.05ml/10gBW) via intragastric administration (Ш,IV, V)( 50mg/kgBW、100mg/kgBW、200mg/kgBW),meanwhile blank control group and model group were given colleseed oil(0.05ml/10gBW)too.
     Results:
     1、Effects on the endogenous antioxidative ability
     1.1 Reversed D-galactose-caused decline of erythrocyte superoxide dismutase (SOD) activity: Model group was satistically significantly lower than other groups (P<0.05). Compared to model group, SOD activity of the three groups of mice administered withα-lipoic acid was higher (P<0.05).The higher the dose ofα-lipoic acid, the higher SOD activity (P<0.05).
     1.2 Reduced blood serum LPO levels: LPO levels of model group were statistically significantly higher than those of blank control group (P<0.05), Feeding rats theα-lipoic acid diet reduced LPO levels markedly (P<0.05). The higher the dose ofα-lipoic acid, the lower LPO levels (P>0.05).
     1.3 Reduced LPO levels in livers: LPO levels of liver in model group were higher than those in blank control group (P<0.05). Between the threeα-lipoic acid group, the higher the dose ofα-lipoic acid, the lower LPO levels (P>0.05), Only high dose ofα-lipoic acid could completely reversed increase of LPO levels in liver caused by D-galactose (P<0.05).
     1.4 Reduced LPO levels in spleen: LPO levels of spleen in model group were markedly higher than those in blank control group (P<0.05), Only high dose ofα-lipoic c acid could completely reversed increase of LPO levels in spleen caused by D-galactose (P<0.05).
     1.5 Reduced brain lipofuscin levels: The LF in brain of model group was markedly higher than that of blank control group (P<0.05), which could be reversed by different doses ofα-lipoic acid (P<0.05).
     2、Protective effects on DNA oxidative damage of miec hippocampus. TailLength,TailMoment and OliveTailMoment of comet-like cells in hippocampus of model group were satistically significantly different from other groups( P<0.05).The D-galactose induced DNA oxidative damage was nearly restored to norm byα-lipoic acid (P<0.05).
     3、Improvement of nNOS expression in hippocampus CA1 subregion. Compared to model group mice, nNOS expression levels in hippocampus CA1 subregion ofα-lipoic acid groups were upgraded highly (P<0.05), Among the five groups, the contents of nNOS in model group were lowest (P<0.05).
     Conclusion
     1、α-lipoic acid could eliminate free radicals and strengthen the endogenous antioxidative system, thus relieved oxidative stress.Dose-effect association existed.
     2、α-lipoic acid was capable of repairing DNA oxidative damage which was induced by D-galactose.
     3、D-galactose lowered expression of nNOS in mice hippocampus CA1 subregion, which was reversed byα-lipoic acid.
引文
[1] WULF DRO , Free Radicals in the Physiological control of Cell Function[M],Division of Immunochemistry, Germany Heidelberg,2002:69-75
    [2] 陈瑗、周玫,《自由基与衰老》,北京,人民卫生出版社,2004:25-71
    [3] H Nohl, Involvement of free radicals in ageing: a consequence or cause of senescence, British Medical Bulletin,1993,49:653-667
    [4] 赵保路,氧自由基和天然抗氧化剂[M],北京,科学出版社,1997:133-148
    [5] J. Biol, A Trail of Research from Lipoic Acid to -Keto Acid Dehydrogenase Complexes, Chem, 2001,276(42):38329-38336,
    [6] Tory M. Hagen,alpha-lipoic acid[R], Linus Pauling Institute: Dept.of Biochemistry and Biophysics Oregon State university, 2003:1-3
    [7] 曹莉,刘新萍,硫辛酸对老龄大鼠抗衰老作用的研究,中国老年学杂志,2006,26:356-358
    [8] Suh J. H, Shigeno E. T, et al, Oxidative stress in the aging rat heart is reversed by dietary supplementation with (R)-a-lipoic acid, [J]. FASEB J, 2001,15: 700–706 (2001)
    [9] Lykkesfeldt J, Hagen T. M, et al, Age-associated decline in ascorbic acid concentration, recycling, and biosynthesis in rat hepatocytes—reversal with (R)- lipoic acid supplementation [J],FASEB J,1998,12: 1183-1189
    [10]刘瑞,海春旭等,硫辛酸对大鼠肝微粒体脂质过氧化模型的影响[J],毒理学杂志2005,19(3):262
    [11] TORY M. HAGEN1, RUSSELL T, et al, R)--Lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate, The FASEB Journal,1999,13:411-418
    [12] Stephanie D. Wollin, Peter J. H. Jones, -Lipoic Acid and Cardiovascular DiseaseJ. Nutr, 2003,133:3327–3330
    [13]SIMON MELOV, Mitochondrial Oxidative Stress: Physiologic Consequences and Potential for a Role in Aging, Annals of the New York Academy of Sciences, 2000, 908:219-225
    [14] S Umeki, M Sumi, et al, Concentrations of superoxide dismutase and superoxide anion in blood of patients with respiratory infections and compromised immune systems, Clinical Chemistry, 1987,33: 2230-2233,
    [15]Hallwell. B , Protection against oxygen radical in biological systems.Free Radical in Biology and Medicine[M].Oxford:Clarendon Press,1985:128
    [16] 王少康,孙桂菊等,亚急性衰老动物模型的建立及评价[J]东南大学学报,2002,213:217-219
    [17] 刘学忠,崔旭等, 硫辛酸在大鼠全脑缺血再灌注损伤中的神经保护作用,中国兽医学报,2004,24(4):388-390
    [18] Andreas Daiber, Matthias Oelze, et al, Heterozygous Deficiency of Manganese Superoxide Dismutase in Mice (Mn-SOD): A Novel Approach to Assess the Role of Oxidative Stress for the Development of Nitrate Tolerance, Mol Pharmacol, 2005,68:579-588
    [19] Xia Shen1, Shirong Zheng. et al, Protection of Cardiac Mitochondria by Overexpression of MnSOD Reduces Diabetic Cardio-myopathy, Cardiomyopathy, Diabetes 2006,55:798-805
    [20] 刘晓秋,李卫东,唐惠琼等,D-半乳糖衰老模型大鼠的羰基毒化机理初步探讨[J],中国实验动物学杂志, 2002,12(3) :141-143
    [21] Fran?ois C.Delori1, Age-Related Accumulation and Spatial Distribution of Lipofuscin in RPE of Normal Subjects, Investigative Ophthalmology and Visual Science. 2001,42:1855-1866.
    [22] Douglas A. Gray,John Woulfe , Lipofuscin and Aging: A Matter of Toxic Waste ,Sci. Aging Knowl. Environ, 2005,5: 2
    [23] Catherine Desrumaux, Pierre-Yves Risold,et al Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice ,FASEB.J,2004,2
    [24] P.ARIVAZHAGAN, PANNEERSELVAMa. Alpha-Lipoic Acid Increases Na+K+ATPase Activity and Reduces Lipofuscin Accumulation in Discrete Brain Regions of Aged Rats, Ann. N.Y. Acad. Sci, 2004, 1019: 350–354
    [25] Meehan WJ, Spencer JP, et al. Hydrogen peroxide induces oxidative DNA damage in rat type2 pulmonary epithelial cells (J). En-viron Mol Mutagen, 1999,33:273-278.
    [26] Yang JL, Wang LC, Chang CY, et al. Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxy- deoxyguanosine adduct by lead acetate (J). Environ Mol Mutagen, 1999
    [27] Robert F. Anderson, Louisa J. Fisher, Green tea catechins partially protect DNA from ·OH radical-induced strand breaks and base damage through fast chemical repair of DNA radicals, Carcinogenesis, 2001,22(8): 1189-1193
    [28] Daya Upadhyay, Vijayalakshmi Panduri,Particulate Matter Induces Alveolar Epithelial Cell DNA Damage and Apoptosis: Role of Free Radicals and the Mitochondria, American Journal of Respiratory Cell and Molecular Biology,2003,29: 180-187,
    [29] Meng Z Q,Zhang L Z. Cytogenetie lIn8ge induced in human lymophec ytes by sodium bisultlte,M urat Res,1992,296:63
    [30] Tice RR, Agurell E, Anderson D, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing (J).EnvironMol Mutagen, 2000, 35:206-221
    [31] Paul R. Heaton, Raymond Ransley, et al, Application of Single-Cell Gel Electrophoresis (Comet) Assay for Assessing Levels of DNA Damage in Canine and Feline Leukocytes, The American Society for Nutritional Sciences J. Nutr, 2002,132:1598S-1603S
    [32] Jiankang Liu, David W, et al, Age-associated mitochondrial oxidative decay: Improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-Lcarnitine and /or R-α-lipoic acid, PNAS 2002, 99(4): 1876–1881
    [33] Jiankang Liu, Elizabeth Head,etal, Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: Partial reversal by feeding acetyl-L-carnitine And/or R-α-lipoic acid, PNAS,2002, 99(4): 2356–2361
    [34] Inna I. Kruman, T. S. Kumaravel, Folic Acid Deficiency and Homocysteine Impair DNA Repair in Hippocampal Neurons and Sensitize Them to Amyloid Toxicity in Experimental Models of Alzheimer's Disease, The Journal of Neuroscience, 2002, 22(5):1752-1762
    [35] 冷曙光,牛勇等,彗星试验琼脂糖凝胶片保存方法研究[J],卫生研究,2003,32(1):60-61
    [36] 孟紫强,白巨利,中国生物化学与分子生物学报,二氧化硫体内衍生物对小鼠海马神经元 DNA 的损伤作用,2003,19(6):791—794
    [37] 陈宏莉,海春旭,单细胞凝胶电泳技术分析硫辛酸对细胞 DNA 损伤的作用,毒理学杂志,2005,9(3):262-263
    [38] Fuminori Saitoh, Qing Bao Tian,NIDD, a Novel DHHC-containing Protein, Targets Neuronal Nitric-oxide Synthase (nNOS) to the Synaptic Membrane through a PDZ-dependent Interaction and Regulates nNOS Activity, J. Biol. Chem.,2004,279(28):29461-29468
    [39] Silvana Chiavegatto, Brain serotonin dysfunction accounts foraggression in male mice lacking neuronal nitric oxide synthase, PNAS, 2001,98(3): 1277-1281
    [40] BochmeGA, BonC, et al,Possibal involvment of nitric oxide in long term potenton,Eur J,Pharmcology,1991,199:379
    [41] Gary P. Dohanich, Acetylcholine Mediates the Estrogen-Induced Increase in NMDA Receptor Binding in CA1 of the Hippocampus and the Associated Improvement in Working Memory, The Journal of Neuroscience, 2001, 21(17): 6949-6956
    [42] Bruce T,hope GJ,Michael KM,et al.Neuronal NADPH diaphorase is a nitric oxide synathese[J].Proc Natl Acad Sci USA ,1991,88:2811-2814
    [43] Sekhon L H, Morgan M K, Spence I, et al. Chronic cerebral hypoperfusion: pathological and behavioral consequences. Neurosurgery, 1997, 40: 548-556
    [1] WULF DRO,Free Radicals in the Physiological control of Cell Function[M],Division of Immunochemistry, Germany :Heidelberg,2002,69-75
    [2]赵保路,氧自由基和天然抗氧化剂[M],北京,科学出版社,1997,133-148
    [3]Tory M. Hagen Ph.D,alpha-lipoic acid[R], Linus Pauling Institute: Dept.of Biochemistry and Biophysics Oregon State university, 2003,1-3
    [4] Betty A. Maddux, Wendy See,et al. Protection Against Oxidative Stress– Induced Insulin Resistance in Rat L6 Muscle Cells by Micromolar Concentrations of α-Lipoic Acid, Diabetes , 2001 ,404–410
    [5] Saengsirisuwan, Vitoon, Tyson R, et al. Interactions of exercise training and lipoic acid on skeletal muscle glucose transport inobese Zucker rats. J Appl Physiol,2001 91: 145–153
    [6] ALEXANDER S. AMETOV, ALEXEI BARINOV, et al. The Sensory Symptoms of Diabetic Polyneuropathy Are Improved With α-Lipoic Acid , DIABETES CARE, 2003,26(3):770-776
    [7] Martin J. Stevens, Irina Obrosova, et al.Effects of DL-a-Lipoic Acid on Peripheral Nerve Conduction, Blood Flow, Energy Metabolism, and Oxidative Stress in Experimental Diabetic Neuropathy, Diabetes,2000,49:1006–1015
    [8] Yutaka Kishi, James D, a-Lipoic Acid: Effect on Glucose Uptake, Sorbitol pathway, and Energy Metabolism in Experimental Diabetic Neuropathy, Dibetes, 1999,48:2045–2051
    [9] THOMAS KONRAD, PAOLO VICINI, α-Lipoic Acid Treatment Decreases Serum Lactate and Pyruvate Concentrations and Improves Glucose Effectiveness in Lean and Obese Patients With Type 2 Diabetes, Diabetes Care,1999,22:280–287
    [10] SAVITA KHANNA, SASHWATI ROY, Cytokine-induced glucose uptake in skeletal muscle: redox regulation and the role of a-lipoic acid, Regulatory Integrative Comp. Physiol, 1999,45:R1327–R1333
    [11] MONA F. MELHEM, PATRICIA A,et al, Effects of Dietary Supplementation of a-Lipoic Acid on Early Glomerular Injury in Diabetes Mellitus, J Am Soc Nephrol ,2001,12: 124–133
    [12] Renu A, Kowluru, et al, Effect of Long-Term Administration of -Lipoic Acid on Retinal Capillary Cell Death and the Development of Retinopathy in Diabetic Rats, Diabetes,2004,53:3233–3238
    [13] 孙荔,张劲松,消旋α-硫辛酸对大鼠糖尿病性白内障抑制作用的研究,中华眼科杂志,2004,3(30):193-196
    [14] 钱巧慧,冯波等,α-硫辛酸对2型糖尿病氧化应激状态和内皮功能的影响,临床内科杂志,2006,9,(23):600-601
    [15] 李慧,邹大进等,α-硫辛酸抑制高糖诱导的系膜细胞增殖及细胞间黏附分子1的表达,第二军医大学学报,2006,27(3):276-278
    [16] 沙大年,范小兵等,生物抗氧化剂a-硫辛酸, 中成药,1999,21(12):655-657
    [17] Jiankang Liu, David W, et al, Age-associated mitochondrial oxidative decay:Improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-Lcarnitine and /or R-α-lipoic acid, PNAS 2002,2,99(4): 1876–1881
    [18] Jiankang Liu, Elizabeth Head, et al,Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: Partial reversal by feeding acetyl-L-carnitine And/or R-α-lipoic acid, PNAS ,2002,2,99(4): 2356–2361
    [19] ARIVAZHAGAN, C PANNEERSELVAMa, Alpha-Lipoic Acid Increases Na+K+ATPase Activity and Reduces Lipofuscin Accumulation in Discrete Brain Regions of Aged Rats, P Ann. N.Y. Acad. Sci, 2004, 1019: 350–354
    [20] 刘学忠,崔旭等,硫辛酸在大鼠全脑缺血再灌注损伤中的神经保护作用,中国兽医学报,2004,24(4):388-390
    [21] 刘学忠,崔旭等, 硫辛酸对海马CA1区锥体细胞凋亡的抑制作用,动物医学进展,2004,25(1):85-87
    [22] Q. W. Shen, C. S. Jones, et al, Effect of dietary α -lipoic acid on growth, body composition, muscle pH, and AMP-activated protein kinase phosphorylation in mice1, J. Anim. Sci. 2005,83:2611-2617
    [23] Xianwen Yi, Nobuyo Maeda, Endogenous Production of Lipoic Acid Is Essential for Mouse Development, MOLECULAR AND CELLULAR BIOLOGY, 2005: 8387–8392
    [24] 郑风劲,尹志奎等,α-硫辛酸对果蝇生化指标的影响,新乡医学院学报,2004,21(2):100-101
    [25] 尹志奎,崔泰震等,α-硫辛酸对果蝇寿命的影响, 齐齐哈尔医学院学报,2004,25(6):606-607
    [26] Richard M,Ogborne, Arterioscler Thromb Vasc Biol,α-Lipoic Acid–Induced Heme Oxygenase-1 Expression Is Mediated by Nuclear Factor Erythroid 2-Related Factor2 and p38 Mitogen-Activated Protein Kinase in Human Monocytic Cells, 2005,25:2100-2105
    [27] WEI-JIAN ZHANG, BALZ FREI1, a-Lipoic acid inhibits TNF-a-induced NF-kB activation and adhesion molecule expression in human aortic endothelial cells, FASEB J,2001,15: 2423–2432
    [28] JUNG H.SUH,ERIC T,et al, Oxidative stress in the aging rat heart is reversed by dietary supplementation with (R)-a-lipoic acid, FASEB J,2001, 15:700–706
    [29] 席恺,董明敏,α-硫辛酸对豚鼠缺血 再灌注耳蜗损伤的防治作用,郑州大学学报(医学版),2005,40(2):268-270
    [30] 李安林,施用晖等,硫辛酸对高脂日粮大鼠脂类代谢和抗氧化能力的影响,食品科学,2006,27(5):242-245
    [31] 高天礼,黄玉芝,硫辛酸抗再灌期心律失常与外源性自由基所致动作电位异常的作用,生理学报,1991,43(2):149-155
    [32] TORY M. HAGEN,1 RUSSELL T,et al. (R)-a-Lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage,and increased metabolic rate, FASEB J,1999, 13: 411–418
    [33] Jung H. Suh, Swapna V. Shenv,et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid, PNAS,2004, 101(10): 3381–3386
    [34] Christian Mu ller, Friedrich Du nschede, α-Lipoic acid preconditioning reduces ischemia-reperfusioninjury of the rat liver via the PI3-kinase/Akt pathway, Am J Physiol Gastrointest Liver Physiol, 2003,285: G769–G778
    [35] 杨国宇,王艳玲等,α-硫辛酸对CCL4致小鼠急性肝损伤的保护作用,兽药与饲料添加剂,2002,6:7-8
    [36] 刘瑞,海春旭等,硫辛酸对大鼠肝微粒体脂质过氧化模型的影响,毒理学杂志,2005,19(3):262
    [37] 喻道军,徐兆发等,α-硫辛酸和牛磺酸对急性镉氧化损伤影响的实验研究,中国工业医学杂志 2005,18(4):199-201
    [38] 贺安宁,徐兆发等,乙酰半胱氨酸和α-硫辛酸对汞急性毒性的影响,毒理学杂志2005,19(3):256-257
    [39] 刘莉,徐兆发等,谷胱甘肽与α-硫辛酸对锰致大鼠神经元凋亡影响,中国公共卫生2006,22(10):1239-1240
    [40] 张晓迪,海春旭等,硫辛酸的急性毒性及抗辐射作用初步研究,卫生毒理学杂志2002,16(4):232-233
    [41] 刁明芳,刘海瑛等,噪声刺激后豚鼠耳涡抗氧化能力的变化和α-硫辛酸对声损伤的保护作用,生理学报,2003,55(6):272-276
    [42] Leonard P?Rybak,Kazim Husain,et al. Dose Dependent Protection by Lipoic Acid Against Cisplatin-inducde Ototoxicity in Rats :Antioxidant Defense System, TOXICOLOGICAL SCIENCE,1999,47:195-202
    [43] 刁明芳,韩红等,α-硫辛酸对硝普钠耳毒性的保护作用,中国神经科学杂志,2004,20(3):242-247
    [44] 杨壮群,王正辉等,α-硫辛酸对体外培养的黑素细胞影响的实验研究,中国皮肤性病学杂志,2004,18(2):71-73
    [45] MARINA E. EREMEEVA , DAVID J. SILVERMANE, effects of the Antioxidant a-Lipoic Acid on Human Umbilical Vein Endothelial Cells Infected with Rickettsia rickettsii, INFECTION AND IMMUNITY,1998:2290–2299
    [46] 顾红军,孙沁莹等,抗氧化剂硫辛酸对实验性ALI/ARDS大鼠的保护作用研究,中国药房,2006,17(22):1702-1704

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700