基于乙酰化稳定同位素标记—液相色谱—傅立叶变换离子回旋共振质谱联用的定量蛋白质组研究策略的建立、评价与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质组学研究已从静态的定性分析逐步过渡到动态变化的定量研究。为了实现蛋白质组学的定量分析,各种定量方法相继被开发,例如基于双向凝胶电泳的定量技术,基于非标记的定量技术,基于质量标签的定量技术,基于液质联用的稳定同位素标记定量技术等多类定量策略。由于基于液质联用的稳定同位素标记技术在定量的准确度,适用范围等方面都超过了前三类定量方法,因而被广泛采用,其商业化的试剂不断被推出。但是由于商业化的标记方法普遍存在试剂昂贵(iTRAQ),标记位点少(ICAT),只能用指定的质谱仪进行数据采集(依赖性强),分析软件只能用于商业公司自身的质谱仪(通用性差)等缺陷,其应用范围受到限制。
     本研究目的是开发一整套具有自主知识产权的基于稳定同位素标记和液质联用的蛋白质组学定量新策略,实现高通量,高准确性,高灵敏度的蛋白质组学定量分析,用来克服商业化试剂存在的不足,摆脱对于商业化标记试剂的依赖性。
     本研究首先建立和优化了一种针对肽段还原性氨基的乙酰化稳定同位素标记方法。该方法经条件优化后具有以下优点:乙酰化稳定同位素试剂用量少,副反应少,能标记样品中全部蛋白质或肽段,标记后的蛋白质或肽段的质量差可以预测,标记方法简单,标记过程反应条件温和,标记基团在多维色谱分离条件中稳定,标记基团在质谱分析中稳定,不会产生额外的碎片离子,标记方法能够应用于包括人体在内的所有生物样本并且试剂廉价易得。但是单纯的乙酰化标记方法标记位点是还原性的氨基端,每个肽段至少标记上一个乙酰基团(即至少掺入3个氘原子),尽管氘原子数量的增加可以避免标记肽段间同位素峰重叠问题,但是随着掺入的氘原子数量的增加而引起的反相色谱中的同位素效应也会增加。为了减少由于同位素效应引起的标记肽段色谱保留时间滞后,从而造成质谱分析的误差,构建了基于纳升级反相色谱分离、在线点靶和MALDI—TOF/TOF—MS质谱仪联用的定量策略。通过标准蛋白质混合物的定量实验验证,表明该策略完全可以实现准确定量分析,具有实际应用价值。
     在规模化蛋白质鉴定分析中,电喷雾离子源(ESI)质谱和基质辅助激光解析电离源(MALDI)质谱相比,前者使用更为广泛。因此,为了能够将乙酰化标记方法与在线色谱分离和纳升级电喷雾离子源的傅立叶变换离子回旋共振质谱仪联用,同时提高乙酰化标记方法的质谱检测灵敏度,本研究又发展了一种胍基化修饰乙酰化稳定同位素标记方法。该方法除了具有上述乙酰化标记方法的优点之外,由于胍基化修饰的乙酰化的标记方法保证了每个肽段只会被一个乙酰基所标记(即只有3个氘原子的掺入),因此很好的控制了氢氘同位素试剂在反相色谱中的同位素效应,同时提高了标记肽段在质谱中的灵敏度。通过标准蛋白质混合物体系的定量分析实验,表明该策略定量分析准确,可重复性强。
     在胍基化修饰的乙酰化标记方法建立的基础上,我们根据标记方法和所使用的傅立叶变换离子回旋共振质谱仪数据采集的特点,自主开发了一套自动化数据定量分析软件MSAQ,用于规模化的定量计算。
     为了进一步评价本研究中建立的基于胍基化修饰的乙酰化稳定同位素标记,液相色谱—傅立叶变换离子回旋共振质谱和自主开发的定量分析软件MSAQ联用的定量蛋白质组策略在生物样本中应用的可行性,我们将该策略在三种不同的复杂生物样本体系中进行了实际应用,获得了满意的结果。
     首先,我们将该策略应用于大肠杆菌N末端肽组学研究中。在整体蛋白质水平胍基化后的氢代氘代乙酰化标记,既提高了肽段在质谱中检测灵敏度,又实现了对蛋白质N末端肽的特异性同位素标记,因而易于从一级质谱图中识别N末端肽同时进行串联质谱测序分析。77种大肠杆菌蛋白质的N—末端序列被确定,其中46种蛋白质N—末端序列信息和Swiss-Prot数据库完全一致,另外31种蛋白质的甲硫氨酸是否去除的信息在数据库中没有详细注释,而通过我们实验对该31种蛋白质甲硫氨酸是否去除进行了精确测定,另外确证了9种蛋白质的N末端是以信号肽去除的方式存在。实验结果表明,本研究建立的定量蛋白质组策略不仅能对蛋白质的N末端进行规模化的特异性识别和测序,还能对N末端的翻译后修饰(如甲酰甲硫氨酸和信号肽去除问题)进行精确测定。该策略与传统的Edman降解具有灵敏度高、特异性强和通量化的优点,因而在蛋白质N末端测序领域有着更加广泛的应用前景。
     其次,我们将该策略应用于代谢蛋白质组学研究中。对由四氯化碳(CCl_4)造成的大鼠肝损伤组织CYP450蛋白质表达量进行了定量研究,17种CYP450蛋白质被定量分析,其中2E1的表达量显著下调,该结果验证了由于2E1介导的CCl_4的代谢产生活泼的自由基,从而导致2E1蛋白比之其他CYP450蛋白质更容易受到CCl_4毒理性的影响的论断。同时除了2E1表达量显著变化外,其他几种CYP450蛋白质表达量同时也发生了显著性的变化,说明本研究中所使用的规模化的定量分析手段,不仅可以对于已有研究结果进行确认,同时还可以揭示其他CYP450蛋白质表达量的变化。
     最后,我们将该策略应用于血浆定量蛋白质组学研究。血浆蛋白质组成与细胞、组织与器官的生理病理状态密切相关。由于血浆蛋白质含量动态范围非常宽(>10~(12)),因而,如果能够对血浆蛋白质进行高通量化、高准确度和高灵敏度的定量分析,是对本研究中所建立的整套定量分析策略最好的评价。
     (1)我们对正常血浆样本进行了1:1标记实验,结果显示理论值和实验值的误差小于5%。(2)对处于肝炎不同阶段的血浆样本进行了定量研究,总共对1025种血浆蛋白质进行了定量分析,其中具有2倍以上显著性差异的蛋白质有185种。包括了在血浆中浓度只有20ng/ml的Heparin cofactor 2 precursor,和浓度小于10pg/ml Angiotensinogen precursor,该结果表明本标记方法实现了动态范围达9个数量级的血浆蛋白质定量分析(albumin,35mg/mL-Angiotensinogen precursor,<10pg/mL)。(3)为了进一步验证定量结果的可靠性,对其中一种差异显著的蛋白质Fibronectin进行了western验证。分析显示western定量结果和质谱定量结果一致。
     综上所述,本研究建立的基于胍基化乙酰化稳定同位素标记,液相色谱—傅立叶变换离子回旋共振质谱和自主开发的定量分析软件MSAQ联用的定量蛋白质组学新策略,既能够对来自于原核生物的样本进行分析,又能够对来自真核生物的样本进行分析,既能够分析组织样本又能够分析体液样本。在对上述三个复杂生物体系蛋白质表达的定量分析中,从多维分离系统角度研究表明,无论对基于一维SDS—PAGE凝胶的蛋白质分离还是对基于液相色谱系统的蛋白质分离,本研究中所使用的定量策略都具有很好的兼容性;从定量结果角度研究表明,本研究中所使用的定量策略满足了高通量化,高准确度,高灵敏度和高自动化的定量蛋白质组学研究需求。证明该定量策略在蛋白质组学研究中将具有广阔的应用前景!
In recent years, the focus of the proteome research moves towards quantitative rather than solely qualitative analysis. In order to realize the proteome quantitative analysis, many methods have been developed, such as the quantitative strategies based on 2-DE, label-free, mass-coded and stable isotopic labeling. Nowadays, taking the quantitative accuracy and feasibility into account, stable isotopic tagging technique coupled with online liquid chromatography (LC) and mass spectrometry (MS) has been adopted widely. While lots of commercial stable isotope reagents have been provided, there are still some limitations in commercial ones, such as expensive reagent (iTRAQ), few labeling sites (ICAT), dependence on the designated mass spectrometer, and limited availability of quantitative analysis software.
     The aim of our research is to develop an integrated analysis platform: stable isotopic labeling, on-line LC with MS and automated software, which achieves the high-throughput, high-accuracy and high-sensitivity quantitative proteome analysis. As a result, the novel strategy successfully avoided the limitations of the commercial reagents and overcomed the dependences on the commercial ones.
     In our research, a d_0/d_3-acetyl stable isotopic labeling quantitative strategy was established and optimized first of all. The tagging sites are the reductive amino of the peptides. There are several major advantages in d_0/d_3-acetyl labeling method, such as tagging all the proteins or peptides, the predicable mass difference between the labeled peptides, simple labeling procedure, mild reactive conditions, good stability of the labeling group in LC, no extra ions in MS, wide compatibility including human sample and cheap reagent. After labeling, each peptide will be incorporated into one acetyl group at least (no less than 3 deuterium atoms). Although the incorporation of higher number of deuterium atoms will decrease the overlap between the labeled peptides, the isotopic effect caused by deuterium atom in reverse phase liquid chromatography (RPLC) will be severe. So, a compatible quantitative strategy is provided: d_0/d_3-acetyl stable isotopic labeling, nano-RPLC, online spotting and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS). The quantitative result of the protein mixture demonstrated the feasibility and accuracy of the above strategy in comparative proteome research.
     In the large-scale proteome research, compared with MALDI MS, electrospray ionization mass spectrometry (ESI-MS) is more comprehensively applied. To make d_0/d_3-acetyl stable isotopic labeling fit for LC-ESI-MS, we exploited another novel quantitative method: guanidination and acetylation stable isotopic labeling (GA labeling). Besides keeping the merits of acetylation labeling, GA labeling excellently controlled the deuterium atoms isotopic effect. Guanidination blockedε-amino and then makes sure each peptide was incorporated with only one acetyl group (3 deuterium atoms), which ensured the same retention times of the labeled peptides. The quantitative analysis of protein mixture indicated that the above strategy has good accuracy, good sensitivity and good reproducibility.
     Base on GA labeling characteristics and high resolution data of the hybrid linear ion trap fourier-transform ion cyclotron resonance (LTQ-FTICR) MS, a quantitative software 'MSAQ' was developed for automated mass data processing.
     To evaluate the feasibility of the above integrated analysis platform - GA labeling, FT-MS for data acquisition and a graphic user interface program called 'MSAQ' for automatic data processing, we applied it on three complex biological samples for proteome analysis.
     Firstly, the whole strategy was applied on the research of proteins N-terminal peptides. Afterε-amino group of lysine residues of the proteins was blocked by guanidination reaction, the resultant proteins were equally divided into two parts and labeled by d_0-acetic anhydride and d_6-acetic anhydride respectively. At last, the labeled proteins were mixed at 1:1, digested by trypsin and analyzed by MS. Only N-terminal peptide of the protein showed a pair of characteristic isotopic peaks with a mass shift of 3.0188 Da, and other peptides were still singlet isotopic peaks. After N-termini of four model proteins were recognized and sequenced, 77 N-terminal peptides from Escherichia coli proteins were also successfully identified. Among them, 46 N-terminal sequences are consistent with database, 31 N-terminal sequences renewed the database annotation, and 9 N-termini whose signal peptides removed were also identified and sequenced. Compared with Edman degradation, our strategy has three advantages: high sensitivity, high specificity and high throughput. Such a result adequately shows the feasibility of the whole strategy in N-termini special recognition and sequencing.
     Secondly, the whole strategy was applied on the quantitative analysis of CYP450 proteins during the injury of rat hepatic induced by carbon tetrachloride (CCl_4). 17 CYP450 proteins were quantified accurately. Among them, 2E1 was down-regulated dramatically, which was coincident with the previous results. Besides, other CYP450 proteins were also changed significantly. The results indicated that GA labeling not only validates the previous results but also disclosed the alterations of other CYP450 proteins, which would explain the response of these metabolic proteins during the liver injury in a full-scale and systematical angle.
     Thirdly, the whole strategy was applied on the quantitative analysis of human plasma proteins. Human plasma contains thousands of distinct proteins and its concentration dynamic range is over 12 magnitude orders. For example, 22 most abundant human plasma proteins, such as HSA, IgG, transferring,α2-macroglobulin, andα1-antitrypsin, account for 99% of the protein amount, and then less than 1% protein amount covers more than million proteins.
     Whether or not the whole strategy can realize the high-throughput, high-sensitivity, high accuracy quantitative analysis of human plasma proteins is a key point of its feasibility in proteomics.
     At first, 1:1 labeled human plasma proteins was analyzed. The error between the expected value and the experiment value was less than 5%, which illuminated the quantitative accuracy. Afterwards, samples from 5 different phases of human hepatitis plasma were compared and quantified. The 1025 plasma proteins were identified and quantified. Among them, 185 plasma proteins varied evidently, including 20ng/ml heparin cofactor 2 precursor (concentration < 20ng/ml) and angiotensinogen precursor (concentration < 10pg/ml), which proved our method achieves quantitative analysis of 9 magnitude orders. To test the quantitative accuracy, one dramatically different protein, fibronectin, was validated by western-blot. The immunology quantitative result coincided well with the GA labeling result.
     In summary, we developed the integrated quantitative strategy, which could be used in samples not only from prokaryote and eukaryote, but also from tissue and body fluid. At the same time, our method holds good compatibility either with LC or PAGE separation system. Through the above 3 proteome applications, the feasibility of our technique in high-throughput, high-sensitivity and high-accuracy proteome quantitative research was further verified. So we believe our whole quantitative strategy will own its splendid perspective!
引文
1. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 2001, 409: 860-921.
    2. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al. The sequence of the human genome. Science, 2001, 291: 1304-1351.
    3. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature, 2004, 431(7011): 931-945.
    4. Abbott A. And now for the proteome.... Nature, 2001,409 (6822): 747.
    5. Fields S. Proteomics. Proteomics in genomeland. Science, 2001, 291(5507): 1221-1224.
    6. Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol., 2001,19 (3): 242-247.
    7. de Godoy LM, Olsen JV, de Souza GA, Li G, Mortensen P, Mann M. Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol., 2006, 7(6): R50.
    8.钱小红,贺福初.蛋白质组学:理论与方法.北京:科学出版社,2003,第一版,1-18.
    9. Wodicka L, Dong H, Mittmann M, et al. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol., 1997, 15(13): 1359-1367.
    10. Schena M, Shalon D, Heller R, et al. Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A, 1996, 93(20): 10614-10619.
    11. Gygi SP, Rochon Y, Franza BR, et al. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol, 1999,19(3): 1720-1730.
    12. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 1975, 250(10): 4007-4021.
    13. Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem, 1996, 68(5): 850-858.
    
    14. Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis, 1997, 18(11): 2071-2077.
    
    15. Zhu H, Snyder M. Protein arrays and microarrays. Curr Opin Chem Biol, 2001, 5(1): 40-45.
    
    16. Merchant M, Weinberger SR. Recent advancements in surface enhanced laser desorption/ionization time of flight mass spectrometry. Electrophoresis, 2000, 21: 1164-1177.
    
    17. Fung ET, et al. Gene expression for endothelin and their receptors in glomeruli of diabetic rats. Curr Opin Biotechnol, 2001,12: 65-69.
    
    18. Florens L, Washburn MP, Raine JD, et al. A proteomic view of the Plasmodium falciparum life cycle. Nature, 2002,419(6906): 520-526.
    
    19. Pang JX, Ginanni N, Dongre AR, Hefta SA, Opitek GJ. Biomarker discovery in urine by proteomics. J Proteome Res, 2002,1: 161-169.
    
    20. Gao J, Opiteck GJ, Friedrichs MS, Dongre AR, Hefta SA. Changes in the protein expression of yeast as a function of carbon source. J Proteome Res, 2003, 2: 643-649.
    
    21. Liu H, Sadygov RG, Yates JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem, 2004, 76: 4193-4201.
    
    22. Allet N, Barrillat N, Baussant T, et al. In vitro and in silico processes to identify differentially expressed proteins. Proteomics, 2004,4(8): 2333-2351.
    
    23. Colinge J, Chiappe D, Lagache S, Moniatte M, Bougueleret L. Differential proteomics via probabilistic peptide identification scores. Anal Chem, 2005, 77: 596-606.
    
    24. Rappsilber J, Ryder U, Lamond AI, Mann M. Large-scale proteome analysis of the human spliceosome. Genome Res, 2002, 8:1231-1245.
    
    25. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomies by the number of sequenced peptides per protein. Mol Cell Proteomics, 2005,4: 1265-1272.
    
    26. Chelius D, Bondarenko PV. Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res, 2002,1(4): 317-323.
    
    27. Bondarenko PV, Chelius D, Shaler TA. Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem, 2002, 74: 4741.4749.
    
    28. Wang W, Zhou H, Liu H, Roy S, Shaler TA, et al. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem, 2003, 75: 4818-4826.
    
    29. Chelius D, Zhang T, Wang G, Shen RF. Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry. Anal Chem, 2003, 75: 6658-6665.
    
    30. Neuhoff N, Kaiser T, Wittke S, Krebs R, Pitt A, et al. Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom, 2004,18: 149-156.
    
    31. Wiener MC, Sachs JR, Deyanova EG, Yates NA. Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem, 2004, 76: 6085-6096.
    
    32. Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem, 2005, 77: 187-200.
    
    33. Old WM, Meyer AK, Aveline WL, Pierce KG, Mendoza A, et al. Comparison of label free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomies, 2005,4: 1487-1502.
    
    34. Andreev VP, Li L, Cao L, Gu Y, Rejtar T, Wu SL, Karger BL. A New Algorithm Using Cross-Assignment for Label-Free Quantitation with LC-LTQ-FT MS. J Proteome Res, 2007 Apr 19 [Epub ahead of print].
    
    35. Oda Y, Huang K, Cross FR, et al. Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A, 1999, 96(12): 6591-6596.
    
    36. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A, 2003, 100(12): 6940-6945.
    
    37. Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol, 2005,1:252-262.
    
    38. Washburn MP, Ulaszek R, Deciu C, et al. Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal Chem, 2002, 74(7): 1650-1657.
    
    39. Smith RD, Anderson GA, Lipton MS, et al. An accurate mass tag strategy for quantitative and high-throughput proteme measurements. Proteomics, 2002, 2(5): 513-523.
    
    40. Conrads TP, Alving K, Veenstra TD, et al. Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and ~(15)N-metabolic labeling. Anal Chem, 2001, 73(9): 2132-2139.
    
    41. Beynon RJ, Pratt JM. Metabolic labelling of proteins for proteomics. Mol Cell Proteomics, 2005, 4(7): 857-872.
    
    42. Ong SE, Kratchmarova I, Mann M. Properties of ~(13)C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res, 2003,2(2): 173-181.
    
    43. Zhang G, Spellman DS, Skolnik EY, Neubert TA. Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC). J Proteome Res, 2006, 5: 581-588.
    
    44. Bose R, Molina H, Patterson AS, Bitok JK, Periaswamy B, Bader JS, Pandey A, Cole PA. Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc Natl Acad Sci U S A, 2006,103: 9773-9778.
    
    45. Hwang SI, Lundgren DH, Mayya V, Rezaul K, Cowan AE, Eng JK, Han DK. Systematic charactrization of nuclear proteome during apoptosis: a quantitative proteomic study by differential extraction and stable isotope labeling. Mol Cell Proteomics, 2006, 5: 1131-1145.
    
    46. Zhang G, Neubert TA. Automated Comparative Proteomics Based on Multiplex Tandem Mass Spectrometry and Stable Isotope Labeling. Mol Cell Proteomics, 2006, 5(2): 401-411.
    
    47. Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, Jensen ON. Quantitative Phosphoproteomics Applied to the Yeast Pheromone Signaling Pathway. Mol Cell Proteomics, 2005,4(3): 310-327.
    
    48. Berger SJ, Lee SW, Anderson GA, et al. High throughput global peptide proteomic analysis by combining stable isotope amino acid labeling and data-dependent. multiplexed-MS/MS. Anal Chem, 2002, 74: 4994-5000.
    
    49. Wu CC, MacCoss MJ, Howell KE, Matthews DE, Yates JR. Metabolic labeling of mammalian organisms for quantitative proteomics analysis. Anal Chem, 2004, 76:4951-4959.
    
    50. Zhang R, Sioma CS, Thompson RA, et al. Controlling deuterium isotope effects in comparative proteomics. Anal Chem, 2002, 74(15): 3662-3669.
    
    51. Julka S, Regnier FE. Benzoyl derivatization as a method to improve retention of. hydrophilic peptides in tryptic peptide mapping. Anal Chem, 2004, 76: 5799-5806.
    
    52. Noga MJ, Asperger A, Silberring J. N-Terminal H(3)/D(3) -Acetylation for Improved High-Throughput Peptide Sequencing by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with a Time-of-Flight/Time-of-Flight Analyzer. Rapid Commun Mass Spectrom, 2006, 20(12): 1823-1827.
    
    53. Noga MJ, Lewandowski JJ, Suder P, Silberring J. An enhanced method for peptides sequencing by N-terminal derivatization and MS. Proteomics, 2005, 5(17): 4367-4375.
    
    54. Zappacosta F, Collingwood TS, Huddleston MJ, Annan RS. Facts and the Consequences for Qualitative and Quantitative Measurements. Mol Cell Proteomics, 2006, 5(1): 172-181.
    55. Staes A, Demol H, Van DJ, Martens L, Vandekerckhove J, Gevaert K. Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. J Proteome Res, 2004, 3: 786-791.
    
    56. Bantscheff M, Dumpelfeld B, Kuster B. Femtomol sensitivity post-digest 18O labeling for relative quantification of differential protein complex composition. Rapid Commun Mass Spectrom, 2004,18: 869-876.
    
    57. Yao X, Afonso C, Fenselau C. Dissection of proteolytic 180 labeling: Endoprotease-catalyzed. ~(16)O to ~(18)O exchange of truncated peptide, substrates. J Proteome Res, 2003,2: 147-152.
    
    58. Sun G, Anderson VE. A strategy for distinguishing modified peptides based on post-digestion ~(18)O labeling and mass spectrometry. Rapid Commun Mass Spectrom, 2005,19: 2849-2856.
    
    59. Yao X, Freas A, Ramirez J, et al. Proteolytic ~(18)O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem, 2001, 73(13): 2836-2842.
    
    60. Mirgorodskaya OA, Kozmin YP, Titov MI, et al. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using ~(18)O-labeled internal standards. Rapid Commun Mass Spectrom, 2000, 14(14): 1226-1232.
    
    61. Reynolds KJ, Yao X, Fenselau C. Proteolytic ~(18)O labeling for comparative proteomics: evaluation of endoprotease Glu-C as the catalytic agent. J Proteome Res, 2002, 1(1): 27-33.
    
    62. Qian WJ, Monroe ME, Liu T, et al. Quantitative proteome analysis of human plasma following in vivo lipopolysaccharide administration using ~(16)O/~(18)O labeling and the accurate mass and time tag approach. Mol Cell Proteomics, 2005,4(5): 700-709.
    
    63. Liu T, Qian WJ, Gritsenko MA, Camp DG 2nd, Monroe ME, Moore RJ, Smith RD. Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry and mass spectrometry. J Proteome Res, 2005, 4(6): 2070-2080.
    64. Korbel S, Schumann M, Bittorf T, Krause E. Relative quantification of erythropoietin receptor-dependent phosphoproteins using in-gel ~(18)O-labeling and tandem mass spectrometry. Rapid Commun Mass Spectrom, 2005, 19(16): 2259-2271.
    
    65. Ji C, Li L. Quantitative proteome analysis using differential stable isotopic labeling and microbore LC-MALDI MS and MS/MS. J Proteome Res, 2005, 4: 734-742.
    
    66. Goodlett DR, Keller A, Watts JD, et al. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun Mass Spectrom, 2001,15(14): 1214-1221.
    
    67. Ji CJ, Guo N, Li L. Differential Dimethyl Labeling of N-Termini of Peptides after Guanidination for Proteome Analysis. J Proteome Res, 2005,4: 2099-2108.
    
    68. Ji CJ, Li L. Quantitative Proteome Analysis Using Differential Stable Isotopic Labeling and Microbore LC-MALDI MS and MS/MS. J Proteome Res, 2005, 4: 734-742.
    
    69. Ji CJ, Li LJ, Gebre M, Pasdar M, Li L. Identification and Quantification of Differentially Expressed Proteins in E-Cadherin Deficient SCC9 Cells and SCC9 Transfectants Expressing E-Cadherin by Dimethyl Isotope Labeling, LC-MALDI MS and MS/MS. J Proteome Res, 2005,4: 1419-1426.
    
    70. Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope coded affinity tags. Nat Biotechnol, 1999, 17: 994-999.
    
    71. Jenkins RE, Kitteringham NR, Hunter CL, et al. Relative and absolute quantitative expression profiling of cytochrome P450 using isotope-coded affinity tags. Proteomics, 2006, 6(6): 1934-1947.
    
    72. Ramus C, Gonzalez de Peredo A, Dahout C, Gallagher M, Garin J. An optimized strategy for ICAT. quantification of membrane proteins. Mol Cell Proteomics, 2005, 5: 68-78.
    
    73. Li J, Steen H, Gygi SP. Protein profiling with cleavable IsotopeCoded Affinity Tag (cICAT) reagents:the yeast salinity stress response. Mol Cell Proteomics, 2003,2(11): 1198-1204.
    74. Zhou H, Ranish JA, Watts JD, et al. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat Biotechnol, 2002, 20(5): 512-515.
    75. Lu Y, Bottari P, Turecek F, et al. Absolute quantification of specific proteins in complex mixtures using visible isotope-coded affinity tags. Anal Chem, 2004, 76(14): 4104-4111.
    76. Cagney G, Emili A. De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat Biotechnol, 2002,20: 163-170.
    77. Li XJ, Zhang H, Ranish JA, Aebersold R. Automated Statistical Analysis of Protein Abundance Ratios from Data Generated by Stable-Isotope Dilution and Tandem Mass Spectrometry. Anal Chem, 2003, 75: 6648-6657.
    78. Andreev VP, Li LY, Rejtar T, Li QB, Ferry JG, Karger BL. New Algorithm for ~(15)N/~(14)N Quantitation with LC-ESI-MS Using an LTQ-FT Mass Spectrometer. J Proteome Res, 2006, 5: 2039-2045.
    1. Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol, 2005,1(5): 252-262.
    2. Julka S, Regnier FE. Quantitation in Proteomics through stable isotope coding: a review. J Proteome Res, 2004, 3: 350-363.
    3. Unlu M, Morgan ME, Minden JS. A single gel method for detecting changes in protein extracts. Electrophoresis, 1997,18: 2071-2077.
    4. Sechi S, Oda Y. Quantitative proteomics using mass spectrometry. Curr Opin ChemBiol, 2003,7: 70-77.
    5. Patton WF, Beechem JM. Rainbow's end: the quest for multiplexed fluorescence quantitative analysis in proteomics. Curr Opin Chem Biol, 2002, 6: 63-69.
    6. Mann M. Quantitative proteomics? Nat biotechnol, 1999,17: 954-955.
    7. Tao WA, Aebersold R. Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr Opin Biotechnol, 2003,14: 110-118.
    8. Beynon RJ, Pratt JM. Metabolic labeling of proteins for proteomics. Mol Cell Proteomics, 2005,4: 857-872.
    9. Oda Y, Huang K, Cross FR, Cowburn D, Chait BT. Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA, 1999,96:6591-6596.
    10. Benjamin JC, Jonathan LB, Amy MG, James LS. Synthesis/Degradation Ratio Mass Spectrometry for Measuring Relative Dynamic Protein Turnover. Anal Chem, 2004, 76 (1): 86-97.
    11. Chen X, Smith LM, Bradbury EM. Site-Specific Mass Tagging with Stable Isotopes in Proteins for Accurate and Efficient Protein Identification. Anal Chem, 2000,72(6): 1134-1143.
    12. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Mol Cell Proteomics, 2002, 1: 376-386.
    13. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol, 1999, 17: 994-999.
    14. Holt LA, Leach SJ, Milligan B. The acylation of wool with active esters. Australian Journal of Chemistry, 1968, 21(8): 2115-2125.
    15. Chakraborty A, Regnier FE. Global internal standard technology for comparative proteomics. J Chromatogr A, 2002, 949(1-2): 173-84.
    16. Riggs L, Seeley EH, Regnier FE. Quantification of phosphoproteins with global internal standard technology. J Chromatogr B Analyt Technol Biomed Life Sci, 2005, 817(1): 89-96.
    17. Chakraborty A, Regnier FE. Global internal standard technology for comparative proteomics. J Chromatogr A, 2002, 949: 173-184.
    18. Che FY, Flicker LD. Quantitation of neuropeptides in Cp~(fat)/Cp~(fat) mice using different isotopic tags and mass spectrometry. Anal Chem, 2002, 74: 3190-3198.
    19. Wang S, Regnier FE. Proteomics based on selecting and quantifying cysteine containing peptides by covalent chromatography. J Chromatogr A, 2001, 924: 345-357.
    20. Zappacosta F, Annan RS. N-terminal isotope tagging strategy for quantitative proteomics: results-driven analysis of protein abundance changes. Anal Chem, 2004,76:6618-662.
    1. Julka S, Regnier FE. Recent advancements in differential proteomics based on stable isotope coding. Brief Funct Genomic Proteomic, 2005, 4(2): 158-77.
    2. Julka S, Regnier F. Quantification in proteomics through stable isotope coding: a review. J Proteome Res, 2004, 3(3): 350-63.
    3. Zhang R, Sioma CS, Thompson RA, Xiong L, Regnier FE. Controlling deuterium isotope effects in comparative proteomics. Anal Chem, 2002, 74(15): 3662-9.
    4. Beardsley RL, Reilly JP. Optimization of guanidination procedures for MALDI mass mapping. Anal Chem, 2002, 74(8): 1884-90.
    5. Brancia FL, Oliver SG, Gaskell SJ. Improved matrix-assisted laser desorption/ionization mass spectrometric analysis of tryptic hydrolysates of proteins following guanidination of lysine-containing peptides. Rapid Commun Mass Spectrom, 2000,14(21): 2070-3.
    6. Zhou C, Zhang Y, Qin P, Liu X, Zhao L, Yang S, Cai Y, Qian X. A method for rapidly confirming protein N-terminal sequences by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom, 2006, 20(19): 2878-84.
    7. Cagney G, Emili A. De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat Biotechnol, 2002,20(2): 163-70.
    1. Wilkins MR, Gasteiger E, Tonella L, Ou K. Protein identification with N and C-terminal sequence tags in proteome projects. J Mol Biol, 1998,278(3): 599-608.
    2. Ahangari G, Ostadali MR, Rabani A, Rashidian J, Sanati MH, Zarindast MR. Growth hormone antibodies formation in patients treated with recombinant human growth hormone. Int J Immunopathol Pharmacol, 2004, 17(1): 33-38.
    3. Massa G, Vanderschueren LM, Buillon R. Five-year follow-up of growth hormone antibodies in growth hormone deficient children treated with recombinant human growth hormone. Clin Endocrinol (Oxf), 1993, 38(2): 137-142.
    4. Cutfield WS, Jackson WE, Jefferies C, Robinson EM, Breier BH, Richards GE, Hofman PL. Reduced insulin sensitivity during growth hormone therapy for short children born small for gestational age. J Pediatr, 2003, 142(2): 113-116.
    5. Sugimoto S, Hanaki K, Kawashima Y, Kinoshita T, Nagaishi J, Hayashi A, Kanzaki S. Aplastic anemia during growth hormone (GH) treatment in a girl with idiopathic GH-deficiency. Endocr J, 2003, 50(4): 469-471.
    6. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature, 2003, 422(13): 198-207.
    7. Gevaert K, Goethals M, Martens L, Van DJ, Staes A, Thomas GR, Vandekerckhove J. Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol, 2003,21:566-569.
    8. Yamaguchi M, Nakazawa T, Kuyama H, Obama T. High-Throughput Method for N-Terminal Sequencing of Proteins by MALDI Mass Spectrometry. Anal Chem, 2005, 77(2): 645-651.
    9. McDonald L, Robertson DHL, Hurst JL, Beynon RJ. Positional proteomics: selective recovery and analysis of N-terminal proteolytic peptides. Nat Methods, 2005,2(12): 955-957.
    10. Liu PR, Regnier FE. An Isotope Coding Strategy for Proteomics Involving Both Amine and Carboxyl Group Labeling. J Proteome Res, 2002,1(5): 443-450.
    11. Zhou C, Zhang Y, Qin P, Liu X, Zhao L, Yang S, Cai Y, Qian X. A method for rapidly confirming protein N-terminal sequences by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom, 2006, 20(19): 2878-84.
    12. Krause E, Wenschuh H, Jungblut PR, et al. The dominance of argininecontaining peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal Chem, 1999,71(19): 4160-4165.
    13. Kimmel JR. Guanidinationof. proteins. Methods Enzymol, 1967,11: 584-589.
    14. Brancia FL, Oliver SG, Gaskell SJ. Improved matrix-assisted laser desorption/ionization mass spectrometric analysis of tryptic hydrolysates of proteins following guanidination of lysine-containing peptides. Rapid Commun Mass Spectrom, 2000,14: 2070-2073.
    15. Beardsley RL, Karty JA, Reilly JP. Enhancing the intensities of lysineterminated tryptic peptide ions in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom, 2000, 14: 2147-2153.
    16. Hale JE, Butler JP, Knierman MD, Becker GW. Increased sensitivity of tryptic peptide detection by MALDI-TOF mass spectrometry is achieved by conversion of lysine to homoarginine. Anal Biochem, 2000, 287(1): 110-117.
    18. Frottin F, Martinez A, Peynot P, Mitra S, Holz RC, Giglione C, Meinnel T. The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics, 2006, Sep 8 [Epub ahead of print].
    1. Junnila M, Rahko T, Sukura A, Lindberg LA. Reduction of carbon tetrachloride-induced hepatotoxic effects by oral administration of betaine in male Han-Wistar rats: a morphometric histological study. Vet Pathol, 2000, 37: 231-238.
    
    2. Stoyanovsky D, Cederbaum AI. Metabolism of carbon tetrachloride to trichloromethyl radical: An ESR and HPLC-EC study. Chemical Research in Toxicology, 1999,12: 730-736.
    
    3. Kanaeva IP, Petushkova NA, Lisitsa AV, Lokhov PG, Zgoda VG, Karuzina II, Archakov AI. Proteomic and biochemical analysis of the mouse liver microsomes. Toxicol In Vitro, 2005,19(6): 805-812.
    
     4. Casabar RC, Wallace AD, Hodgson E, Rose RL. Metabolism of Endosulfan- {alpha} by Human Liver Microsomes and Its Utility as a Simultaneous in Vitro Probe for CYP2B6 and CYP3A4. Drug Metab Dispos, 2006, 34(10): 1779-1785.
    
    5. Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharmacol Exp Ther, 2006, 318(3): 1220-1229.
    
    6. Gupta RP, He YA, Patrick KS, Halpert JR, Bell NH. CYP3A4 is a vitamin D-24-and 25-hydroxylase: analysis of structure function by site-directed mutagenesis. J Clin Endocrinol Metab, 2005, 90(2): 1210-1219.
    
    7. Zhu LR, Thomas PE, Lu G, Reuhl KR, Yang GY, Wang LD, Wang SL, Yang CS, He XY, Hong JY. CYP2A13 in Human Respiratory Tissues and Lung Cancers: An Immunohistochemical Study with A New Peptide-Specific Antibody. Drug Metab Dispos, 2006, 34(10): 1672-1676.
    
    8. Turini A, Amato G, Longo V, Gervasi PG Oxidation of methyl- and ethyl- tertiary-butyl ethers in rat liver microsomes: role of the cytochrome P450 isoforms. Arch Toxicol, 1998, 72(4): 207-214.
    
    9. Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, Beer DG Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics, 2002, 1(4): 304-313.
    
    10. Lane CS, Nisar S, Griffiths WJ, Fuller BJ, Davidson BR, Hewes J, Welham KJ, Patterson LH. Identification of cytochrome P450 enzymes in human colorectal metastases and the surrounding liver: a proteomic approach. Eur J Cancer, 2004, 40(14): 2127-2134.
    
    11. Jenkins RE, Kitteringham NR, Hunter CL, Webb S, Hunt TJ, Elsby R, Watson RB, Williams D, Pennington SR, Park BK. Relative and absolute quantitative expression profiling of cytochromes P450 using isotope-coded affinity tags. Proteomics, 2006, 6(6): 1934-1947.
    
    12. Ronis MJ, Lindros KO, Ingelman SM. The CYP2E subfamily, in Cytochromes P450: Metabolic and Toxicological Aspects. CRC Press, Boca Raton, 1996, 211-239.
    
    13. Ingelman SJ. Mechanisms of hydroxylradi -cal formation and ethanol oxidation by ethanolinducible and other forms of rabbit liver microsomal cytochromes P-450. J Biol Chem, 1984, 259: 6447-6458.
    
    14. Wong WY, Chan WY, Lee ST. Resistance to Carbon Tetrachloride-Induced Hepatotoxicity in Mice Which Lack CYP2E1 Expression. Toxicol Appl Pharmacol, 1998,153: 109-118.
    
    15. Yokogawa K, Watanabe M, Takeshita H, Nomura M, Mano Y, Miyamoto K. Serum aminotransferase activity as a predictor of clearance of drugs metabolized by CYP isoforms in rats with acute hepatic failure induced by carbon tetrachloride. Int J Pharm, 2004, 269: 479- 489.
    
    16. Jeon HG, You HJ, Park SJ, Moon AR, Chung YC, Kang SK, Chun HK. Hepatoprotective effects of 18beta-glycyrrhetinic acid on carbon tetrachloride-induced liver injury: inhibition of cytochrome P450 2E1 expression. Pharmacol Res, 2002, 46: 221-227.
    
    17. Jeon TI, Hwang SG, Park NG, Jung, YR, Shin SI, Choi SD, Park DK Antioxidative effect of chitosan on chronic carbon tetrachloride induced hepatic injury in rats. Toxicology, 2003,187: 67-73.
    18. Agrawal AK, Shapiro BH. Differential expression of gender-dependent hepatic isoforms of cytochrome P-450 by pulse signals in the circulating masculine episodic growth hormone profile of the rat. J Pharmacol Exp Ther, 2000, 292(1): 228-237.
    
    19. Timsit YE, Riddick DS. Interference with growth hormone stimulation of hepatic cytochrome P4502C11 expression in hypophysectomized male rats by 3-methylcholanthrene. Toxicol Appl Pharmacol, 2000, 163(2): 105-114.
    
    20. Chen GF, Ronis MJ, Thomas PE, Flint DJ, Badger TM. Hormonal regulation of microsomal cytochrome P450 2C11 in rat liver and kidney. J Pharmacol Exp Ther, 1997, 283(3): 1486-1494.
    
    21. Shimizu H, Uetsuka K, Nakayama H, Doi K. Carbon tetrachloride-induced acute liver injury in Mini and Wistar rats. Exp. Toxic. Pathol., 2001, 53: 11-17.
    
    22. Gonzalez F. The molecular biology of cytochrome P450s. Pharmacol Rev, 1989, 40: 243-288.
    1. Craig WY, Ledue TB, Ritchie RF. Plasma proteins-Clinical Utility and interpretation. Book of Foundation for Blood Research (Supported by an education grant from Dade Behring Inc.), 2000,1-90.
    2. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagonostic prospects. Mol Cell Proteomics, 2002,1(11): 845-867.
    3. King CC, David AL, Denise H, Carl F, et al. Analysis of the Human Serum Proteome. Clinical Proteomics, 2004,1(2): 101-226.
    4. Yergey JA. A general approach to calculating isotopic distributions for mass spectrometry Int J Mass Spectrom Ion Phys, 1983, 52: 337-349.
    5. Resing KA, Meyer-Arendt K, Mendoza AM, Aveline-Wolf LD, Jonscher KR, Pierce KG, Old WM, Cheung HT, Russell S, Wattawa JL, Goehle GR, Knight RD, Ahn NG Improving Reproducibility and Sensitivity in Identifying Human Proteins by Shotgun Proteomics. Anal Chem, 2004, 76: 3556-3568.
    6. Haas W, Faherty BK, Gerber SA, Elias JE, Beausoleil SA, Bakalarski CE, Li X, Villen J, Gygi SP. Optimization and Use of Peptide Mass Measurement Accuracy in Shotgun Proteomics. Mol Cel Proteomics, 2006, 5: 1326-1337.
    7. De Godoy LM, Olsen JV, De Souza GA, Li GQ, Mortensen P, Mann M. Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol, 2006, 7: R50.
    8. De Hoog CL, Zhang Y, Zhang Y, Xie X, Mootha VK, Mann M. A mammalian organelle map by protein correlation profiling. Cell, 2006, 125(1):187-99.
    9. Zhang R, Sioma CS, Thompson RA, Xiong L, Regnier FE. Controlling deuterium isotope effects in comparative proteomics. Anal Chem, 2002, 74(15): 3662-9.
    10. Zappacosta F, Annan RS. N-Terminal Isotope Tagging Strategy for Quantitative Proteomics: Results-Driven Analysis of Protein Abundance Changes. Anal Chem, 2004,76(22): 6618-27.
    11. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG. Comparison of Label-free Methods for Quantifying Human Proteins by Shotgun Proteomics. Mol Cell Proteomics, 2005, 4(10): 1487-502.
    12. Ono M, Shitashige M, Honda K, Isobe T, Kuwabara H, Matsuzuki H, Hirohashi S, Yamada T. Label-free quantitative proteomics using large peptide data sets generated by nano-flow liquid chromatography and mass spectrometry. Mol Cell Proteomics, 2006, 5(7):1338-47.
    13. Wang G, Wu WW, Zeng W, Chou CL, Shen RF. Label-Free Protein Quantification Using LC-Coupled Ion Trap or FT Mass Spectrometry: Reproducibility, Linearity, and Application with Complex Proteomes. J Proteome Res, 2006, 5(5): 1214-23.
    
    14. Faca V, Coram M, Phanstiel D, Glukhova V, Zhang Q, Fitzgibbon M, McIntosh M, Hanash S. Quantitative analysis of acrylamide labeled serum proteins by LC-MS/MS. J Proteome Res, 2006, 5(8): 2009-18.
    
    15. Pan C, Kora G, Tabb DL, Pelletier DA, McDonald WH, Hurst GB, Hettich RL, Samatova NF. Robust Estimation of Peptide Abundance Ratios and Rigorous Scoring of Their Variability and Bias in Quantitative Shotgun Proteomics. Anal Chem, 2006, 78: 7110-7120.
    
    16. Von SD. CRC. Standard Curves and Surfaces. Boca Raton, FL: CRC Press, 1993, p. 250.
    
    17. Qian WJ, Jacobs JM, Camp DG 2nd, Monroe ME, Moore RJ, Gritsenko MA, Calvano SE, Lowry SF, Xiao W, Moldawer LL, Davis RW, Tompkins RG, Smith RD. Comparative proteome analyses of human plasma following in vivo lipopolysaccharide administration using multidimensional separations coupled with tandem mass spectrometry. Proteomics, 2005, 5(2): 572-584.
    
    18. Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC. A metastasis suppressor gene for prostate cancer on human chromosome 11.2. Science, 1995,268(5212): 884-886.
    
    29. Guechot J, Laudat A, Loria A, Serfaty L, Poupon R, Giboudeau J. Diagnostic accuracy of hyaluronan and type III procollagen amino-terminal peptide serum assays as markers of liver fibrosis in chronic viral hepatitis C evaluated by ROC curve analysis. Clin Chem, 1996,42: 558-563.
    
    20. Walsh KM, Fletcher A, MacSween RN, Morris AJ. Basement membrane peptides as markers of liver disease in chronic hepatitis C. J Hepatol, 2000, 32: 325-330.
    [1] International Human Genome Sequencing Consortium. Nature, 2004, 431(7011): 931~945.
    [2] 钱小红,贺福初.蛋白质组学——理论与方法.北京:科学出版社,2003.
    [3] L Wodicka, H Dong, M Mittmann et al. N(?). Biotechnol., 1997, 15(13): 1359~1367.
    [4] M Schena,D Shalon, R Holler et al. Pr(?). Natl, Acad. Sci. USA, 1996, 93(20): 10614~10619.
    [5] S P Gygi, Y Rochon, B R Franza et al. Mol. Cell Biol., 1999, 19(3): 1720~1730.
    [6] J Peng, S P Gygi. J. Miss Spectrom, 2001, 36(10): 1083~1091.
    [7] Y Oda, K Huang, F R Cross et al. Proc. Natl. Acad. Sci. USA, 1999, 96(12): 6591~6596.
    [8] M P Washburn, R Ulaszek, C Deciu et al. Anal. Chem., 2002, 74(7): 1650~1657.
    [9] R D Smith, G A Anderson, M S Lipton et al. Proteomics, 2002, 2(5): 513~523.
    [10] T P Conrads, K Alving, TD Veenstra et al. Anal. Chem., 2001, 73(9): 2132~2139.
    [11] RJ Beynon, J M Pratt. Mol. Cell Proteomics, 2005, 4(7): 857~872.
    [12] S E Ong, I Kratchmarova.M Mann. J. Proteome Res., 2003, 2(2): 173~181.
    [13] G Zhang, D S Spellman, E Y Skolnik et al. J. Proteome Res., 2006, 5(3): 581~588.
    [14] R Bose, H Molina, A S Patterson et al. Proc. Natl. Acad. Sci. USA, 2006, 103(26): 9773~9778.
    [15] S I Hwang, D H Lundgren, V Mayya et al. Mol. Cell Proteomics, 2006, 5(6): 1131~1145.
    [16] G Zhang, T A Neubert. Mol. Cell Proteomics, 2006, 5(2): 401~411.
    [17] A Cuhler, J V Olsen, S Mohammed et al. Mol. Cell Proteomics, 2005, 4(3): 310~327.
    [18] S J Berger, S W Lee, G A Anderson et al. Anal. Chem., 2002, 74(19): 4994~5000.
    [19] C C Wu, MJ MacCoss, K E Howell et al. Anal. Chem., 2004, 76(17): 4951~4959.
    [20] R Zhang, C S Sioma, R A Thompson et al. Anal. Chem., 2002, 74(15): 3662~3669.
    [21] S Julka, F E Regnier. Anal. Chem., 2004, 76(19): 5799~5806.
    [22] M J Noga, A Asperger, J Silberring. Rapid Commun. Mass Spectrom, 2006, 20(12): 1823~1827.
    [23] M J Noga, J J Lewandowski, P Suder et al. Proteomics, 2005, 5(17): 4367~4375.
    [24] F Zappacosta, T S Collingwood, M J Huddleston et al. Mol. Cell Proteomics, 2006, [Epub ahead of print].
    [25] A Staes, H Demol, J Van Damme et al. J. Proteome Res., 2004, 3(4): 786~791.
    [26] M Bantscheff, B Dumpelfeld, B Kuster. Rapid Commun. Mass Spectrom, 2004, 18(8): 869~876.
    [27] X Yao, C Afonso, C Fenselau. J. Proteoms Res., 2003, 2(2): 147~152.
    [28] G Sun, V E Anderson. Rapid Commun. Mass Spectrom, 2005, 19(19): 2849~2856.
    [29] X Yao, A Freas, J Ramirez et al. Anal. Chem., 2001, 73 (13): 2836~2842.
    [30] O A Mirgorodskaya, Y P Kozmin, M I Titov et al. Rapid Commun. Mass Spectrom, 2000, 14(14): 1226~1232.
    [31] K J Reynolds, X Yao, C Fenselau. J. Proteome Res., 2002, 1 (1): 27~33.
    [32] W J Qian, M E Monroe, T Liu et al. Mol. Cell Proteomics, 2005, 4(5): 700~709.
    [33] C Ji, L Li. J. Proteoms Res., 2005, 4(3): 734~742.
    [34] D R Goodlett, A Keller, J D Wattsetal. Rapid Commun. Mass Spectrom, 2001, 15(14): 1214~1221.
    [35] S P Gygi, B Rist, S A Gsrber et al. Nat. Biotechnol., 1999, 17(10): 994~999.
    [36] R E Jenkins, N R KitteringhamR, C L Hunter et al. Proteomics, 2006, 6(6): 1934~1947.
    [37] C Ramus, A Conzalez de Peredo, C Dabout et al. Mol. Cell Proteomics, 2006, 5(1): 68~78.
    [38] J Li.H Steen. S P Gygi. Mol. Cell Proteomics, 2003, 2(11): 1198~1204.
    [39] H Zhou, J A Ranish, J D Watts et al. Nat. Biotechnol., 2002, 20(5): 512~515.
    [40] Y Lu,P Bottari, F Turecek et al. Anal. Chem., 2004, 76(14): 4104~4111.
    [1] Langen H, Roder D, Juranvlle J F, et al. Electrophoresis. 1997,18:2 085-2090.
    [2] Bouley J, Chambon C, Picard B. Proteomics. 2004,4:1811-1824.
    [3] Yates J R. 3rd. Mass spectrometry and the age of the proteome[J], J. Mass Spectrum, 1998, 33:1-19.
    [4] 吕磊,刘志强,李丽,等.高等学校化学学报[J].2006,4:635-637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700