纳米氧化物颗粒的表面改性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统材料中添加纳米粉体可极大改善其相关性能,但纳米氧化物粉体因表面能大极易团聚,表面具有较强的亲水性而难与聚合物基体粘结相容等问题限制其在诸多工业领域的广泛应用。对纳米氧化物进行表面改性是解决这类问题的有效手段,通常有两种思路:一是在制备纳米粒子的过程中对工艺进行调整和控制,二是在获得纳米粒子后对其进行表面改性处理;前者能够降低纳米粒子的硬团聚趋势,但涉及工艺复杂、影响因素多,且在纳米粒子应用之前还存在继发团聚;而后者是在纳米粒子的应用阶段进行改性处理,主要解决纳米粒子的软团聚,更利于发挥纳米粒子的优异性能。本文通过对纳米氧化物的颗粒表面进行湿法改性,研究了不同类型改性剂在纳米氧化物表面的吸附行为,揭示了其在水性介质中的分散稳定机理,并将有机化改性的纳米颗粒添加到聚丙烯树脂中,制备了纳米复合材料,分析了改性纳米粒子填料对复合材料力学等性能的影响。
     具体的研究内容和结果包括以下几个部分:
     (1)研究了不同类型表面活性剂(TPB、CTAB、SDS和PEO)单独或共同在纳米氧化物表面的吸附行为。FTIR结果表明离子型表面活性剂TPB、CTAB与SDS在纳米氧化物表面的吸附机理主要为静电力作用;非离子型聚合物PEO在纳米氧化物表面的吸附机理主要为氢键作用;离子型表面活性剂/非离子型聚合的二元混合体系(CTAB/PEO及SDS/PEO)在纳米氧化物表面产生共同吸附,同时存在一定的竞争关系。吸附实验表明离子型表面活性剂的吸附量与本身浓度、pH值、电解质离子强度和类型等因素有关,非离子型聚合物在纳米氧化物表面的吸附量与自身分子量大小与吸附构象有关。
     (2)纳米氧化物吸附表面活性剂后,颗粒表面的电荷密度、ζ电位和双电层结构将发生变化。吸附阴离子型或阳离子型表面活性剂后,纳米氧化物颗粒等电点分别向低或高pH值方向移动,位移量与表面活性剂浓度或聚合物的平均相对相对分子量相关。而吸附非离子型聚合物后,纳米氧化物ζ电位的绝对值虽然会减小,但等电点位置几乎不变。
     在水性介质中离子型表面活性剂主要通过静电斥力作用分散纳米氧化物,而非离子型聚合物主要通过空间位阻作用分散纳米氧化物,在离子型表面活性剂/非离子型聚合的二元混合体系中,二者协同配合通过静电位阻作用分散纳米氧化物。
     (3)用硅烷偶联剂A151在醇水介质中对纳米ZrO_2进行了表面改性,并以其作填料制备了PP/ZrO_2纳米复合材料。FTIR结果表明A151与ZrO_2发生了化学接枝反应;接触角测量结果表明,A151有效改善了纳米ZrO_2粒子表面的润湿性能,由亲水性表面变成疏水性表面,增强了其与聚合物基体的界面相容性和结合强度。添加改性纳米ZrO_2提高了复合材料的拉伸强度和断裂伸长率,并增大了复合材料的冲击强度和模量;提高了复合材料的结晶温度,在PP基体中分散均匀的纳米ZrO_2既可充当刚性支撑点,又可以阻止硬质粒子的嵌入和磨削,提高复合材料的耐磨性能性能。
     (4)研究了有机季铵盐OTAC在水性介质中对纳米蒙脱土的插层改性,并以制得的OMMT为填料制备了PP/OMMT纳米复合材料。XRD和FTIR结果表明OTAC分子链进入到了蒙脱土片层结构的层间,插层改性后蒙脱土片层间距由1.51nm最大增大至3.80nm;SEM观察结果显示蒙脱土由改性前的紧密堆积结构变成改性后的鱼鳞态片状结构;接触角测量和沉降实验结果表明,有机化改性改善了蒙脱土颗粒的亲油性,在制备聚合物基复合材料时提高了其与聚合物分子之间的相容性;当OMMT添加量为3~4wt%时,可有效提高复合材料的拉伸强度和冲击强度;DSC测量结果表明添加OMMT的复合材料的热降解温度滞后约有25oC,提高了材料的热稳定性。
The performance of conventional composites have been proved to be improved greatlyafter addition of nano-materials into their formulations, while the tendency of aggregation ofoxide nanoparticles due to large surface energy and poor interface compatibility between thehydrophilic filler surface and hydrophobic polymer matrix confine the industrial applicationof oxide nanoparticles. The effective solution is deployment of surface modification on oxidenanoparticles. This approach normally involves two aspects. One is procedure regulation ofnanoparticles during their synthesis process; the other is conduction of surface modificationon the existing oxide naoparticles. For the former approach, there are many technical processconcerns and complex factors, and it is difficult to prevent the re-aggregation. For the later,the modification is carried out in case oxide particles are applied, which favors highlighting ofthe advantages of nanoparticles. In this work, wet modification is adopted for altering surfacefeature of oxide nanoparticles. Adsorption behaviors of various surfactants on oxide surfacewere investigated in details, and the mechanism on stabilization of aqueous dispersions wasalso discussed. Moreover, PP matrix composites were prepared by addition of modified oxidenanoparticles. Systematic experimental study was carried out to reveal the influences ofmodified nanoparticles on the mechanical performance of the composites.
     Belows are the main work scopes and the relevant results in the dissertation.
     (1) Individual and simultaneous adsorption behaviors of various surfactants (TPB, CTAB,SDS and PEO) on surface of oxide nanoparticles were studied. FTIR results indicated that theadsorption of ionic surfactants CTAB, TPB and SDS on oxide surface originated from theelectrostatic interaction, while adsorption of non-ionic polymer PEO depends on hydrogeninteraction. Simultaneous adsorption occurred on the oxide surface in the binary mixturessystem (CTAB/PEO and SDS/PEO), and the competitive behavior was also observed.Experimental study on adsorption isotherm demonstrated that the absorbed amount of ionicsurfactants greatly depends on the concentration, pH value, electrolyte ionic concentration andit’s type. While the absorption amount of non-ionic polymer is closely related to the molecularweight and their configuration on oxide surface.
     (2) Charge density, zeta potential and double layer structure of oxide particles showeddifferent properties after surface modification. The pHiepof oxide particles moved towards tolower or higher pH value after adsorption of ionic or cationic surfactants, respectively. The shift extent depends on the surfactant concentration and the polymer molecular weight. Theabsolute value of the zeta potential of oxide particles would reduce after the adsorption ofnon-ionic polymer, while, the pHiepremains constant.
     The repulsion interaction of oxide particles modified by ionic surfactant comes from theimprovement of static interaction in aqueous solution. Non-ionic polymer offers stericrepulsion for dispersion of oxide nanoparticels. The electrostatic repulsion can be realized inbinary mixtures solution of ionic surfactant and non-ionic polymer to provide improvement ofdispersion of oxide nanoparticles.
     (3) Surface of ZrO_2particles was modified by silane coupling agent (A151) inalcohol-water solvent and used as filler in PP/ZrO_2nanocomposites. Chemical reaction wasfound between A151and ZrO_2from the FTIR analysis results. The wettability of ZrO_2nanoparticles has been promoted effectively upon the modification of A151. Surface of theoxide was changed to hydrophobic from hydrophilic, which enhances the interfacecompatibility with polymer matrix. Experimental results on mechanical performanceindicated that the addition of the modified nano-ZrO_2particles improves the tensile strengthand the elongation performance, as well as the impact strength and module of the composites.It should be noted that the improvement of mechanical performance was confined by thedispersion of nano-ZrO_2.
     (4) Intercalation modification of montmorillonite by OTAC was studied to improvePP/OMMT composites performance. XRD and FTIR results presented that the lamellarstructure of the layered OMMT was intercalated by OTAC. The layer spacing was extendedfrom1.51nm in Na-MMT to3.80nm by intercalation with alkyl chains. The SEM analysisrevealed that the morphologies change from sopherical-like particles to high-aspect ratioflakes after modification. The hydrophilic surface of Na-MMT was tranfered to hydrophobicafter modification, which greatly benefits the interface compatibility between the filler and PP.In case of addition of OMMT with3~4wt%, the tensile and impact performance wereimproved obviously. Besides, the thermal degradation temperature of the nanocompositeslowers25oC in the DSC curve, revealing the improvement of the thermal stability of thePP/OMMT composites.
引文
[1]孙丹峰.纳米陶瓷粉体的制备、分散及其在氧化锌压敏电阻中的应用:[博士学位论文].安徽:中国科学院等离子体物理研究所,2001
    [2]许长庆,宋长柏,张宏波等,化学气相沉积技术对碳化硼硬质颗粒表面改性及电沉积技术中的应用.《河北工业大学学报》2001(3):11-14
    [3]中华人民共和国专利200810202248, CN101417789
    [4] Roy B, Loganathan K, Pham H N, et al., Surface modification of solutioncombustion synthesized Ni/Al2O3catalyst for aqueous-phase reforming ofethanol, International journal of hydrogen energy,35(2010):11700-11708
    [5]李小兵,刘竞超,纳米粒子及其在复合材料改性中的应用,上海化工,1999(8):4-6
    [6]刘宇,乳液聚合方法研究进展,化学工程师,2010(8):38-41
    [7]李莉,高建平,向安,原位乳液聚合法制备二氧化钛、聚苯乙烯复合微球,化学工业与工程,2004(21):340-343
    [8]赵彦保,周静芳,吕莹,等.PS/TiO2复合纳米微球的制备和结构表征[J].物理化学学报,2000(16):10-25
    [9]吕晓丽,常海波,聚苯乙烯/银核壳结构纳米粒子的制备与表征,吉林师范大学学报,2006(4):17-19
    [10] Yun Shan, Song QianQian, Zhao DongMei, et al., Study on the inorganic-organicsurface modification of potassium titanate whisker, Applied Surface Science,258(2012):4444-4448
    [11] Mu Shuai, Long Yingzhao, Kang Shi-Zhao, et al., Surface modification of TiO2nanoparticles with a C60derivative and enhanced photocatalytic activity for thereduction of aqueous Cr(VI) ions, Catalysis Communications,11(2010):741-744
    [12] Jung Tae Park, Jin Ah Seo, Sung Hoon Ahn, et al., Surface modification of silicananoparticles with hydrophilic polymers, Journal of Industrial and EngineeringChemistry,16(2010)517-522
    [13] Patel D, Moon J, Chang Y, et al., Poly(d,l-lactide-co-glycolide) coatedsuperparamagnetic iron oxide nanoparticles: Synthesis, characterization and invivo study as MRI contrast agent,Colloids and Surfaces A: Physicochem. Eng.Aspects,313-314(2008):91-94
    [14]胡伟达,万隆,刘小磐,等.溶胶-凝胶法在金刚石表面涂覆纳米TiO2薄膜.湖南大学学报,2008(35):55-58
    [15] Chen Q, Fumiaki M, Kokubo T, et al., Apatite formation on PDMS modifiedCaO-SiO2-TiO2hybrids prepared by sol-gel process [J]. Biomaterials,1999(20):1127-1132
    [16] Hanprasopwattana A, Srinivasan S, Sault A G, et al., Titania coatings onmonodisperse silica spheres (characterization using2-propanol dehydration andTEM), Langmuir,1996(12):3173-3179
    [17]杜新胜,王善伟,徐惠俭等,偶联剂的合成研究进展,杭州化工,2009,39(3):11-14
    [18]王传虎,葛金龙,曾小剑,超细硅微粉表面改性的研究[J],非金属矿,2009,3(004):14-16
    [19]刘琪,崔海信,顾微,等,硅烷偶联剂KH570对纳米二氧化硅的表面改性研究[J],纳米科技,2009,6(003):15-18
    [20]李滨,李友明,杨文亮,铝锆偶联剂的合成及对纳米TiO2的表面改性[J],华南理工大学学报:自然科学版,2009,37(006):7-12
    [21] Guo X, Zhao L, Zhang L, et al., Surface modification of magnesium aluminumhydroxide nanoparticles with poly(methyl methacrylate) via one-pot in situpolymerization, Applied Surface Science258(2012):2404-2409
    [22] Zhao J, Milanova M, Marijn M, et al., Surface modification of TiO2nanoparticles with silane coupling agents, Colloids Surf. A: Physicochem. Eng.Aspects (2011), doi:10.1016/j.colsurfa.2011.11.033
    [23] Zhang Z, Yu L, Liu W, et al., Surface modification of ceria nanoparticles andtheir chemical mechanical polishing behavior on glass substrate, AppliedSurface Science,256(2010):3856-3861
    [24]柴月娥,龚福忠,张国利,超分散剂及其应用前景,化工技术与开发,2006,35(12):5-9
    [25] Hong R, Li J, Chen L, et al., Synthesis, surface modification and photocatalyticproperty of ZnO nanoparticles, Powder Technology,189(2009):426–432
    [26]张巨先,高陇桥.包覆型纳米SiC-Al2O3水悬浮液流变特性研究.材料科学与工程.2001,19(1):46-49
    [27] Zhao W, Yang H, Huo C, Surface nanocrystallization modification of anhydrite,Colloids and Surfaces A: Physicochem. Eng. Aspects393(2012):128-132
    [28]邱松山,姜翠翠,海金萍,纳米二氧化钛表面改性及其抑菌性能研究,食品与发酵科技,2010,46(6):5-7
    [29] Santanu Paria, Kartic C. Khilar, A review on experimental studies of surfactantadsorption at the hydrophilic solid-water interface. Advances in Colloid andInterface Science110(2004):75–95
    [30]刘付胜聪.纳米氧化物表面高分子修饰及其对聚丙烯酸酯复合涂层性能的影响.[湖南大学博士学位论文].湖南:湖南大学,2005.p39
    [31]陈艺章,张锦琳,贾明印等,聚甲基丙烯酸甲酯在纳米氧化铝表面的吸附和氢键作用,高等学校化学学报,2010(31):2093-2097
    [32] Liufu S C, Xiao H N, Li Y P. Adsorption of poly(acrylic acid) onto the surface oftitanium dioxide and the colloidal stability of aqueous suspension, Journal ofColloid and Interface Science,2005,281(1):155-163
    [33] Biswas S C and Chattoraj D K, Kinetics of adsorption of cationic surfactants atsilica-water interface. Journal of Colloid and Interface Science,205(1998):12-20
    [34] Ma X, Lee N, Oh H, Surface modification and characterization of highlydispersed silica nanoparticles by a cationic surfactant, Colloids and Surfaces A:Physicochem. Eng. Aspects358(2010):172-176
    [35] Parfitt D, Rochester H. In: Parfitt G D, Rochester C H, editors. Adsorption fromsolution at the solid/liquid Interface. New York: Academic Press;1983, p3
    [36]李群,姜万超,陈水林.低聚丙烯酸钠用于纳米氧化锌表面改性的研究.青岛大学学报.16(2003):12-15
    [37]刘茜,高濂,无团聚SiC粒子复合Sialon陶瓷,无机材料学报,1992,11(2):281-285
    [38]郭薇,贾丽萍,超细粉的分散及粒度分布测量研究,材料科学进展,1992,6(4):320-325
    [39]刘波,岳林海,李国华等,纳米二氧化钛粉体表面的吸附特征及其对粉体分散性的影响,浙江大学学报,2004,3(1):79-83
    [40]王浩,林红,黄晨等,纳米ZnO分散液的制备及其在棉织物上的应用,纺织学报,9(2006):40-42
    [41]王国宏,李定或,纳米ZnO的表面改性研究.湖北师范学院学报.24(2004):10-14
    [42] Astrid Dietrich and Achim Neubrand. Effects of particle size and molecularweight of polyethylenimine on properties of nanoparticulate silicon dispersions,J. Am. Ceram. Soc.,(2001)84[4]806-812
    [43] Kazakova O A, Gunko V M, Lipkovskaya N A, et al., Interaction of quercetinwith highly dispersed silica in aqueous suspensions, Colloid Journal, Vol.64, No.4,2002:412-418
    [44] Esumi K, Goino M, Koide Y. Adsorption and adsolubilization by monomeric,dimeric, or trimeric quaternary ammonium surfactant at silica/water interface.Journal of Colloid and Interface Science,183(1996):539-545
    [45] Victor Shubin. Adsorption of cationic polyacrylamide onto monodispersecolloidal silica from aqueous electrolyte solutions. Journal of Colloid andInterface Science191(1997):372-377
    [46] Nypel T, sterberg M, Zu X, et al, Preparation of ultrathin coating layers usingsurface modified silica nanoparticles, Colloids and Surfaces A: Physicochem.Eng. Aspects392(2011):313-321
    [47] Sui Y, Cui Y, Nie Y, et al., Surface modification of magnetite nanoparticles usinggluconic acid and their application in immobilized lipase, Colloids and SurfacesB: Biointerfaces93(2012):24-28
    [48] Ramos-González R, García-Cerda L A, Quevedo-López M A. Study of thesurface modification with oleic acid of nanosized HfO2synthesized by thepolymerized complex derived sol-gel method, Applied Surface Science,258(2012):6034-6039
    [49] Li W, Zheng S, Chen Q, et al., A new method for surface modification ofTiO2/Al2O3nanocomposites with enhanced anti-friction properties, MaterialsChemistry and Physics,134(2012):38-42
    [50] Lin J, Chen H, Yao L, Surface tailoring of SiO2nanoparticles bymechanochemical method based on simple milling, Applied Surface Science,256(2010):5978-5984
    [51] Sun L, Huang C, Gong T, et al., A biocompatible approach to surfacemodification: Biodegradable polymer functionalized super-paramagnetic ironoxide nanoparticles, Materials Science and Engineering C,30(2010):583-589
    [52] Li F, Li Q, Chen Y, Observations of energy transfer and anisotropic behavior inZnO nanoparticles surface-modified by liquid-crystalline ligands, Journal ofLuminescence,132(2012):2114-2121
    [53]高延敏,汪萍,王绍明等,聚合物基纳米复合材料的研究进展,材料科学与工艺,2008(16):551-554
    [54] Chinellato A C, Vidotti S E, Hu G H. Compatibilizing effect of acrylic acidmodified polypropylene on the morphology and permeability properties ofpolypropylene/organoclay nanocomposites, Composites Science and Technology,70(2010):458–465
    [55] Prashantha K, Schmitt H, Lacrampe M F, et al., Mechanical behaviour andessential work of fracture of halloysite nanotubes filled polyamide6nanocomposites, Composites Science and Technology,71(2011):1859-1866
    [56]王旭,黄锐,聚合物基纳米复合材料的研究进展,塑料,2000,29(4):25-27
    [57]陈艳,王新宇.聚酰亚胺/二氧化硅纳米尺度复合材料的研究,[J].高分子学报,1997(1):70-73
    [58] Bahloul W, Mélis F, Bounor-Legaré V, et al., Structural characterisation andantibacterial activity of PP/TiO2nanocomposites prepared by an in situ sol-gelmethod, Materials Chemistry and Physics,134(2012):399-406
    [59]章永化,龚克成, Sol-Gel法制备有机/无机纳米复合材料的进展,高分子材料科学与工程,1997(7):12-14
    [60]王锐,武荣瑞,漆宗能等, PET/纳米SiO2复合材料的制备Ⅰ.纳米SiO2在PET单体EG中的分散性研究,高分子材料科学与工程,2002,18(4):182
    [61]吕建坤,柯毓才,插层聚合制备黏土/环氧树脂纳米复合材料过程中黏土剥离行为的研究,高分子学报,2000(1):85-89
    [62] He A, Wang L, Yao W, et al., Structural design of imidazolium and itsapplication in PP/montmorillonite nanocomposites, Polymer Degradation andStability,95(2010):651-655
    [63]张晓君,丁智平,王进,等,乳液共混法制备水性阻尼涂料,化工时刊,2007,21(5):59-60
    [64]王全杰,朱飞,孙根行,等,纳米二氧化钛共混法改性丙烯酸树脂涂饰剂的研究,中国皮革,2007,36(9):9-12
    [65]马晓燕,鹿海军,朱光明等,熔融共混法制备粘土/聚氨酯弹性体纳米复合材料的研究,西北工业大学学报,2003,21(1):118-121
    [66] Dominkovics Z, Hári J, Kovács J, et al., Estimation of interphase thickness andproperties in PP/layered silicate nanocomposites, European Polymer Journal,47(2011):1765-1774
    [67] Hedayati M, Salehi M, Bagheri R, et al., Ball milling preparation andcharacterization of poly(ether ether ketone)/surface modified silicananocomposite, Powder Technology,207(2011):296-303
    [68]曾晓飞,陈建峰,纳米级CaCO3粒子与弹性体CPE微粒同时增韧PVC的研究,高分子学报,2002,6:739-742
    [69]黄志明,黄颖,张立锋,等.氯乙烯-无机纳米材料的原位聚合[J].聚氯乙烯,2000(6):21-24
    [70] Dimitri D.J. Rousseaux, Na ma Sallem-Idrissi, Anne-Christine Baudouin, et al.,Water-assisted extrusion of polypropylene/clay nanocomposites: Acomprehensive study, Polymer,52(2011):443-451
    [71] Lecouvet B, Sclavons M, Bourbigot S, et al., Water-assisted extrusion as a novelprocessing route to prepare polypropylene/halloysite nanotube nanocomposites:Structure and properties, Polymer,52(2011):4284-4295
    [72]焦宁宁,王建明,聚合物纳米复合材料研究进展I,石化技术与应用,2001,19(2):57-61
    [73]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002, p43-57
    [74]任杰,郑震,王英蔚,无机刚性粒子对PVC/CPE合金体系的增韧作用.[J].化学建材,1998,14(1):13-14
    [75]任杰,郑震,张启风,无机刚性粒子增韧PVC/CPE合金体系的加工流变性[J].化学建材,1998,14(2):13-14
    [76]惠雪梅,张炜,王晓洁.环氧树脂/SiO2纳米复合材料性能的研究.工程塑料应用,2004,32(2):18-20
    [77]陈艳,王新宇,漆宗能等,聚酰亚胺/二氧化硅纳米尺度复合材料的研究[J].高分子学报,1997,41(1):73-78
    [78]熊传溪,闻获江,皮正杰.超微细Al2O3增韧增强聚苯乙烯的研究[J].高分子材料科学与工程,1994,10(4):69-73
    [79]胡圣飞,严海标,王燕舞等.纳米级CaCO3填充PVC/CPE复合材料研究.塑料工业,2000,28(1):14-15
    [80] Kojima Y, Usuki A, Kawasumi M, et al., Sorption of water in nylon6-clayhybrid, J. Appl Polym Sci.,1993,49(7):1259-l264
    [81] Wen J, Yin P, Zhen M. Friction and wear properties of UHMWPE/nano-MMTcomposites under oil field sewage condition, Materials Letters,62(2008):4161-4163
    [82] Nam P, Maiti P, Okamaoto M, et al., Foam processing and cellular structure ofpolypropylene/clay nanocomposites. Proceeding Nanocomposites, June25-27,2001, Chicago, Illinois, USA: ECM Publication;2001
    [83]王韶晖,张萍,王声乐等.纳米氧化锌改性胶粉/天然橡胶复合材料的制备及性能.高分子材料科学工程.19(2003):119-122
    [84]漆宗能,戴长华.纳米复合材料的制备方法和进展[J],精细石油化工进展,2001(1):38.
    [85]欧玉春,扬群,漆宗能等.在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究[J].高分子学报,1997(2):199
    [86] Kiliaris P, Papaspyrides C D, Polymer/layered silicate (clay) nanocomposites:An overview of flame retardancy, Progress in Polymer Science,35(2010):902-958
    [87] Gilman J W, Kashiwagi T, Lichtenhan J D. Nanocomposites: a revolutionary newflame retardant approach [C].42ndInternational SAMPE Symposium,1997,33:40-46
    [88] Kashiwagi T, Jr R H H, Zhang X, et al., Flame retardant mechanism of polymide6-clay nanocomposites [J]. Polymer,2004,5:881-891.
    [89] Gilman J W, Jackson C L, Morgan A B, et al., Flammability properties ofpolymer-layed-silicate nanocomposites. Chemistry of Materials,2000,12:1866-1873
    [90] Zanetti M, Kashiwagi T, Falqui L, et al., Cone calorimeter combustion andgasification studies of polymer layered silicate nanocomposites[J]. Chemistry ofMaterials,2002(14):881-887
    [91] Dominkovics Z, Hári J, Fekete E, et al., Thermo-oxidative stability ofpolypropylene/layered silicate nanocomposites, Polymer Degradation andStability,96(2011):581-587
    [92] Qin H, Zhang S, Zhao C, et al., Flame retardant mechanism of polymer/claynanocomposites based on polypropylene, Polymer,2005,46:8386-8395
    [93]欧育湘.实用阻燃技术[M].北京:化学工业出版社,2003, p440-445
    [94] Szustakiewicz K, Kiersnowski A, Gazińska M, et al., Flammability, structure andmechanical properties of PP/OMMT nanocomposites, Polymer Degradation andStability,96(2011):291-294
    [95]李侃社,王琪,导热高分子材料研究进展,功能材料,2002,33(2):136-141
    [96] Chen X, Kenneth E G, Chow G M, et al., Homogeneous dispersion ofnanostructured aluminum nitride in a polyimide matrix. Advanced Materials,1994,6(6):481-484
    [97] Wang J and Yi X. Effects of interfacial thermal barrier resistance and particleshape and size on the thermal conductivity of AlN/PI composites. CompositesScience and Technology,2004,64(10-11):1623-1628
    [98] Farid E T, Abdel-Kader K M, Kaneko F, et al. Physical properties ofCdS-poly(vinyl alcohol) nanoconducting composite synthesized by organosoltechniques and novel application potential. European Polymer Journal,2004,40(2):415-430
    [99]王旭,黄锐,濮阳南.聚合物基纳米复合材料的研究进展,塑料,2000,29(4):25
    [100]朱笑初,景肃,孟娟等. PBT/粘土纳米复合材料的制备和性能表征.塑料工业[J].2000,28(2):45-47
    [101]古凤才,王莉,赵竹暄等.聚乙烯醇缩丁醛/SiO2纳米复合材料的研究.复合材料学报,2003,20(5):77-81
    [102]Strawhecker K E and Manias E. Structure and properties of poly(vinyl alcohol)/Na+-montmorillonite nanocomposites, Chem Mater,2000(12):2943-2949
    [103]刘建林,肖久梅,马文江等.环氧树脂/CaCO3纳米复合材料的力学及光学性能研究.化学工业与工程技术,2003,24(3):18-19
    [104]周岐发,邹秦,张良莹,等.PbTiO3微粉与环氧树脂精细复合材料的制备与特性.材料科学进展,1992,6(2):169-174
    [105]刘平桂,龚克成.聚苯胺嵌入氧化石墨复合物的合成及表征[J].高分子学报,2000(4):492-495
    [106]Chang T C, He S Y, Chao K Y. Intercalation of polyaniline in MMT and zeolite[J] Chen Chem Soc,1992,39(2):209-212
    [107]Groce F, Appetecchi G B, Persi L, et al., Nanocomposite polymer electrolytesfor lithium batteries. Nature,1998,394(6692):456-458
    [108]Kim Y, Park S Y, Kwon S Y, et al., Enhanced thermal resistance ofnanocomposite enameled wire prepared from surface modified silicananoparticle, Thermochim. Acta (2011), doi:10.1016/j.tca.2011.12.005
    [109]Tang B Z, Geng Y H, Lam J W Y, et al., Processible nanostructured materialswith electrical conductivity and magnetic susceptibility: Preparation andproperties of maghemite po lyaniline nanocomposite films [J]. Chem Mater,1999,11:1581-1589
    [110]Tang B Z, Geng Y H, Sun Q H, et al., Processible nanomaterials with highconductivity and magnetizability: Preparation and properties of maghemite/polyaniline nanocomposite films [J]. Pure Appl Chem,2000,72:157-162
    [111]Butterworth M D, Arme S, Simpson A W. Synthesis of poly(pyrrole) silicamagnetite nanocomposite particles, Chemical Communications,1994,18(18):2129-2131
    [112]吴峰,蔡继业.壳聚糖/纳米TiO2杂化材料的制备及抗菌性能表征.高分子材料科学与工程,2008,24(3):148-151
    [113]Lin H, Wang X, Long J, et al., Photocatalytic and antibacterial properties ofmedical-grade PVC material coated With TiO2film [J]. Journal of BiomedicalMaterial Research part B: Applied Biomaterials,2008,11,87B:425-431
    [114]张志琨,彭红瑞,杜芳林,等.纳米二氧化钛光抗菌解毒塑料性能研究[C].全国第三届纳米材料和技术应用会议论文集(下卷)纳米材料和技术应用进展,2003
    [115]Meissner D, Memming R, Kastening B. Light-induced generation of hydrogen atCdS-monograin membranes. Chemical Physics Letter,1983,96(1):34-37
    [116]王国成,王珊珊,张盈盈等.偶联剂对纳米氧化锌/PE复合抗菌材料抗菌性能及其冲击性能的影响,中国塑料.20(2006):73-75
    [117]Lin Y, Chen H, Chan C, et al., Effects of coating amount and particleconcentration on the impact toughness of polypropylene/CaCO3nanocomposites,European Polymer Journal,47(2011):294-304
    [118]Sung K P, Ki D K, Hee T K. Preparation of silica nanoparticles: determination ofthe optimal synthesis conditions for small and uniform particles. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2002,197(1-3):7-17;
    [119]Tsvigunov A V. A new modification of zinc oxide synthesized by thehydrothermal method. Glass Ceramic,2001,58(2):280-282
    [120]Eremenko B V, Bezuglaya T N, Savitskaya A N, et al., Stability of aqueousdispersions of the hydrated titanium dioxide prepared by titanium tetrachloridehydrolysis. Colloid Journal,2001,63(2):173-178
    [121]Lakhwani S and Rahaman M N. Adsorption of polyvinylpyrrolidone (PVP) andits effect on the consolidation of suspensions of nanocrystalline CeO2particles.Journal of Materials Science,1999,34(16):3909-3912
    [122]Butterworth M D, Illum L, Davis S S. Preparation of ultrafine silica andPEG-coated magnetite particles. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2001,179(1):93-102
    [123]Zhang Y W, Tang M, Xing J, et al., Polymeric adsorption behavior ofnanoparticulate yttria stabilized zirconia and the deposition of as-formedsuspensions on dense α-Al2O3substrates. Solid State Sciences,2003,5(3):435-440
    [124]Ishiduki K and Esumi K. The effect of pH on adsorption of poly(acrylicacid) andpoly(vinyl pyrrolidone) on alumina from their binary mixtures.Langmuir,1997,13(6):1587-1591
    [125]Bremmell K E, Jameson G J, Biggs S. Polyelectrolyte adsorption at thesolid/liquid interface interaction forces and stability. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,139(2):199-211
    [126]Esumi K, Toyoda A, Goino M, et al., Adsorption characteristic of cationicsurfactants on titanium dioxide with quaternary ammonium groups and theiradsolubilization. Journal of Colloid and Interface Science,1998,202(2):377-384
    [127]Diaz E, Ordonez S, Vega A,et al., Adsorption properties of a Pd/γ-Al2O3catalystusing inverse gas chromatography, Microporous and Mesoporous Materials,70(2004):109-118
    [128]Fowkes F M, Butler B L, Schisselet P, et al., Basic research needs andopportunities at the solid-solid interface: adhesion, abrasion and polymercoatings, Materials Science and Engineering,(1982)53(1):125-136
    [129]Gilles M Dorris and Derek G Gray, Adsorption of n-alkanes at zero surfacecoverage on cellulose paper and wood fibers, Journal of Colloid and InterfaceScience,(1980)77,(2):353-362
    [130]Gilles M Dorris and Derek G Gray, Adsorption, spreading pressure, and londonforce interactions of hydrocarbons on cellulose and wood fiber surfaces, Journalof Colloid and Interface Science,(1979)71,(1):93-106
    [131]Kneuer C, Sameti M, Haltner E G, et al., Silica nanoparticles modified withaminosilanesas carriers for plasmid DNA, Int. J. Pharm,2000,(196):257-261
    [132]Kneuer C, Sameti M, Bakowsky U, et al., A nonviral DNA delivery system basedon surface modified silica-nanoparticles can efficiently transfect cells in vitro,Bioconjug. Chem,2000(11):926-932
    [133]Kazakova O A, Gun’ko V M, Lipkovskaya N A, et al., Interaction of Quercetinwith Highly Dispersed Silica in Aqueous Suspensions. Colloid Journal,2002,64(4):412-418
    [134]黄传军,张以河,付绍云,等. SiO2/环氧树脂基纳米复合材料的室温和低温力学性能.复合材料学报,2004,21,(4):77-81
    [135]Gun'ko V M, Mikhailova I V, Zarko V I, et al., Study of interaction of proteinswith fumed silica in aqueous suspensions by adsorption and photon correlationspectroscopy methods. Journal of Colloid and Interface Science,2003(260):56-69
    [136]咸才军,孟惠民,孙冬柏,等.纳米材料在水性超薄膨胀型钢结构防火涂料中的应用.材料工程,2006(8):40-44
    [137]Zhu K, Zavaro V, Cherno B. The effect of composition of water-ethanolsolutions on coagulation kinetics of amorphous monodisperse silica suspensions,Colloid Journal,2005,67(4):427-430. Translated from Kolloidnyi Zhurnal,2005,67(4):475-478
    [138]张克杰,孙道兴,王凤英.纳米二氧化硅水胜塑料涂料的研制.中国涂料,2006(5):18-20
    [139]冼远芳,李东风,敖玉辉.影响PEO-SiO2体系复合材料溶胶-凝胶时间的因素分析.胶体与聚合物,2004,22(1):8-10
    [140]Liu Y, Lee J Y, Hong L. Functionalized SiO2in poly(ethylene oxide) basedpolymer electrolytes. Journal of Power Sources.2002(109):507-514
    [141]刘付胜聪,肖汉宁,李玉平.纳米SiO2对聚丙烯酸酯复合涂层在水润滑下摩擦学性能的影响.复合材料学报,2004,21(5):42-47
    [142]An F, Gao B, Feng X. Adsorption mechanism and property of novel compositematerial PMAA/SiO2towards phenol. Chemical Engineering Journal,2009(153):108-113
    [143]刘颖.纳米SiO2的修饰及其纳米复合材料的制备,[天津大学硕士学位论文]天津:天津大学,2006年1月
    [144]Atkin R, Craig V S J, Wanless E J, et al., Mechanism of cationic surfactantadsorption at the solid-aqueous interface. Advances in Colloid and InterfaceScience,2003(103):219-304
    [145]周祖康,俞志健.溴代十四烷基吡啶胶团长大的光子相关谱研究.物理化学学报,1985,1(2):141-153
    [146]Atkin R, Craig V S J, Wanless E J, et al., Mechanism of cationic surfactantadsorption at the solid-aqueous interface. Advances in Colloid and InterfaceScience,2003(103):219-304
    [147]刑颖.纳米二氧化硅水悬浮液的稳定性研究.涂料工业,2006,36(8):58-60
    [148]Liu H B and Xiao H N. Adsorption of poly(ethylene oxide) with differentmolecular weights on the surface of silica nanoparticles and the suspensionstability, Materials Letters,2008,62(6-7):870-873
    [149]Pandou A M and Siffert B. Polyethyleneglycol adsorption at the TiO2H2Ointerface: Distortion of ionic structure and shear plane position, Colloids Surf.,1987(24):159-172
    [150]Siffert B, Jada A, Lestango J E. Location of the shear plane in the electric doublelayer in an organic medium. Journal of Colloid and Interface Science,1994163(2):327-333
    [151]Chibowski S and Paszkiewicz M. Influence of the molecular weight ofpolyethylene glycol and polyethylene oxide on the adsorption andelectrochemical properties of the titania/electrolyte solution interface.Adsorption Science and Technology,1999,17(10):845-855
    [152]Esumi K, Iitaka M, Koide Y. Simultaneous adsorption of poly(ethylene oxide)and cationic surfactant at the silica/water interface, Journal of Colloid andInterface Science,1998(208):178-182
    [153]任俊,沈健,卢寿慈.颗粒分散科学与技术.北京:化学工业出版社,2005年6月, p148
    [154]Senoussaoui N, Krause M, Muller J, et al., Thin-film solar cells with periodicgrating coupler. Thin Solid Films,451-452(2004):397-401
    [155]Mark A, Mitchnick, Fairhurst D, et al., Microfine zinc oxide (Z-Cote) as aphotostable UVA/UVB sunblock agent. Journal of the American Academy ofDermatology, Vol.40, No.1.85-90
    [156]Haskouri J E I, Dallali L, Fernandez L, et al., ZnO nanoparticles embedded inUVM-7-like mesoporous silica materials: Synthesis and characterization,Physica E: Low-dimensional Systems and Nanostructures,42(2009):25-31
    [157]张留成,蔡克峰.纳米氧化锌材料的最新研究和应用进展.材料导报.2006,20(4):13-15
    [158]周丽玲,陈桂兰,傅政,等.纳米氧化锌的结构形态及其在BR中的应用.橡胶工业.2003,50(1):15-18
    [159]Xu T and Xie C S. Tetrapod-like nano-particle ZnO/acrylic resin composite andits multi-function property, Progress in Organic Coatings2003,46(4):297-301
    [160]王韶晖,张萍,王声乐等.纳米氧化锌改性胶粉天然橡胶复合材料的制备及性能.高分子材料科学与工程.2003,19(6):119-122
    [161]张雪茜,刘敏江,李国立.纳米氧化锌改性聚乙烯的研究.塑料.2004,33(1):9-11
    [162]Gppert M, Gehbauer F, Hetterich M, et al., Infrared-optical properties ofundoped and gallium doped ZnO. Journal of Luminescence.1997(24):72-74
    [163]刘福春,韩恩厚,柯伟.纳米复合涂料的研究进展.材料保护,2001,34(2):1-5
    [164]Li Y, Yang M J, She Y. Humidity sensors using in situ synthesized sodiumpolystyrenesulfonate/ZnO nanocomposites.Talanta.2004(62):707-712
    [165]Yu D Z, Cai R X, Liu Z H. Studies on the photodegradation of Rhodamine dyeson nanometer-sized zinc oxide. Spectrochimica Acta Part A.2004(60):1617-1624
    [166]Shim J W, Kim J W, Han S H, et al., Zinc oxide/polymethylmethacrylatecomposite microspheres by in situ suspension polymerization and theirmorphological study. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2002,207(1-3):105-111
    [167]Tsvigunov A V. A new modification of zinc oxide synthesized by thehydrothermal method. Glass Ceramic,2001,58(2):280-282
    [168]Mondelaers D, Vanhoyland G, Vanden R H, et al., Synthesis of ZnO nanopowdervia an aqueous acetate-citrate gelation method. Materials Research Bulletin.2002,37:901-914
    [169]叶志镇,吕建国,张银珠,等.氧化锌半导体材料掺杂技术与应用.杭州:浙江大学出版社,2009年1月
    [170]Liufu S C, Xiao H N, Li Y P. Investigation of PEG adsorption on the surface ofzinc oxide nanoparticles. Powder Technology,2004,145(1):20-24
    [171]刘莲生,张正斌,刘国盛.水溶液吸附化学-无机物在固液界面上的吸附作用.北京:科学出版社,1989. p12-15
    [172]Barreiro-Iglesias R, Alvarez-Lorenzo C and Concheiro A. Thermal and FTIRcharacterization of films obtained from carbopol/surfactantaqueous solutions, J.Therm. Anal. Cal.,68,2002
    [173]Gao X and Chorover J. Adsorption of sodium dodecyl sulfate (SDS) at ZnSe anda-Fe2O3surfaces: Combining infrared spectroscopy and batch uptake studies.Journal of Colloid and Interface Science348(2010):167-176
    [174] zdemir O, nar M, Sabah E, et al., Adsorption of anionic surfactants ontosepiolite. Journal of Hazardous Materials147(2007):625-632
    [175]Gun'ko V M,.Zarko V I, Turov V V, et al., Aqueous Suspensions of HighlyDisperse Silica and Germania/Silica.Journal of Colloid and Interface Science,1998,205:106-120
    [176]Esumi K, Iitaka M, and Koide Y. Simultaneous Adsorption of Poly(ethyleneOxide) and Cationic Surfactant at the Silica/Water Interface. Journal of Colloidand Interface Science,1998,208:178-182
    [177]Kipling J J. Adsorption from solutions of non-electrolytes, New York,ACADEMIC PRESS INC.,1965, p146
    [178]Reihs T, Muller M, Lunkwitz K. Deposition of polylelectrolyte complexnano-particles at silica surfaces characterized by ATR-FTIR and SEM. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,2003,212(1):79-95
    [179]Kawaguchi M, Kawaguchi H, Takahashi A. Competitive and displacementadsorption of polyelectrolyte and water-soluble nonionic polymer at the silicasurface. Journal of Colloid and Interface Science,1988,124(1):57-62
    [180]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.北京:化学工业出版社2003, p169
    [181]Siffert B, Jada A, Lestango J E. Location of the shear plane in the electric doublelayer in an organic medium. Journal of Colloid and Interface Science,1994,163(2):327-333
    [182]Dorit Sss, Yachin Cohen and Yeshayahu Talmon. The microstructure of thepoly(ethylene oxide)/sodium dodecyl sulfate system studied bycryogenic-temperature transmission electron microscopy and small-angle X-rayscattering. Polymer.1995(36):1809-1815
    [183]Barreiro-Iglesias R, Alvarez-Lorenzo C and Concheiro A, Thermal and FTIRcharacterization of films obtained from carbopol/surfactantaqueous solutions, J.Therm. Anal. Cal.,68,2002
    [184]Peter N K, L I K, Anatoly M Z, et al., Investigation of mechanically stimulatedsolid phase polymorphic transition of zirconia. Applied Catalysis A: General298(2006)254-260
    [185]R. Mueller, R. Jossen, S.E. Pratsinis, J. Am. Ceram. Soc.87(2004):197-202
    [186]Haase F and Sauer J. The Surface Structure of Sulfated Zirconia: Periodic abInitio Study of Sulfuric Acid Adsorbed on ZrO2(101) and ZrO2(001), J. Am.Chem Soc.120(1998):13503
    [187]Alan V. Chadwick, Nanotechnology: Solid progress in ion conduction, Nature2000, vol.408, No.6806,925-926
    [188]Brian C H Steele and Angelika H. Materials for fuel-cell technologies, Nature,2001, vol.414, No.6861,345-352
    [189]Chen Q, Zhou W, Du G H, et al., Trititanate nanotubes made via a single alkalitreatment, Adv. Mater.2002, vol14, No17,1208-1211
    [190]Kanade K G, Baeg J O, Apte S K, et al., Synthesis and characterization ofnanocrystallined zirconia by hydrothermal method, Materials Research Bulletin,43(2008):723-729
    [191]Tok A I Y, Boey F Y C, Du S W, et al., Flame spray synthesis of ZrO2nano-particles using liquid precursors, Materials Science and Engineering B,130(2006):114-119
    [192]陈娜,梁景新,黄木春,李杨.纳米ZnO/PP及ZnO/CaCO3/PP复合材料的性能研究,塑料制造,2008(1-2):72-75
    [193]张昕景,张修银,朱帮尚,张璐,钱晨.纳米氧化锆对PMMA挠曲强度和表面硬度的影响,《上海口腔医学》,2011(04):12-15
    [194]张昕景.纳米氧化锆聚甲基丙烯酸甲酯硅烷偶联剂表面修饰挠曲强度.上海交通大学.硕士学位论文
    [195]Chou T C, Ling T R, Yang M C, et al., Micro and nano scale metal oxide hollowparticles produced by spray precipitation in a liquid/liquid system. MaterialsScience and Engineering A,2003(359):24-30
    [196]Renger C, Kuschel P, Kristoffersson A, et al., Rheology studies on highly fillednano-zirconia suspensions.Journal of the European Ceramic Society,2007(27):2361-2367
    [197]Jia Y, Duran C, Hotta Y, et al., Macroporous ZrO2ceramics prepared fromcolloidally stable nanoparticles building blocks and organic templates. Journalof Colloid and Interface Science.2005(291):292-295
    [198]Chen M, Lu C and Yu J. Improvement in performance of MgO–CaO refractoriesby addition of nano-sized ZrO2.Journal of the European Ceramic Society,2007,27(16):4633-4638
    [199]Ramakrishna G and Ghosh H N. Determination of Back Electron Transfer Ratefrom the Surface States of Quinizarin-Sensitized ZrO2Nanoparticles byMonitoring Charge Transfer Emission.Langmuir.2004(20):7342-7345
    [200]Huang L, Nair P K, Nair M T S, et al., Chemical deposition of Bi2S3thin filmson glass substrates pretreated with organosilanes. Thin Solid Films268(1995)49-56
    [201]Kolarík J and Jan ár J. Ternary composites of polypropylene/elastomer/calciumcarbonate: effect of functionalized components on phase structure andmechanical properties, Polymer,1992,33(23):4961-4967
    [202]钟明强,王亮梅,益小苏.纳米粒子在聚合物改性中的应用,合成树脂及塑料,2000,3(17):37-40
    [203]Pukanszky B. Particulate filled polypropylene composite. In: Karger-Kocsis J,editor. Polypropylene: an A-Z reference. Kluwer Academic,1999, p574-580
    [204]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面.北京:中国轻工业出版社,2001, p102
    [205]Geneviève C and Robert J P. Some recent developments of polysilsesquioxaneschemistry for material science. Coordination Chemistry Reviews.178-180(1998):1051-1071
    [206]Lange F F and Radford K C. Fracture energy of an epoxy composite system,Journal of Materials Science, Volume6, Number9(1971):1197-1203
    [207]Adams T. Polypropylene-graft-maleic anhydride nanocomposites: fire behaviorof nanocomposites produced under nitrogen and in air.[J]. Polymer Degradationand Stability,87(2005):43-49
    [208]徐卫兵,戈明亮,何平笙,等.聚丙烯/蒙脱土纳米复合材料的制备与性能[J].中国塑料,2000,14(11):27
    [209]宋军,汪丽,黄福堂.环氧树脂/蒙脱土纳米复合材料的制备和性能[J].热固性树脂,2008,20(4):14-16
    [210]庄伟,张强,张建华,等.聚丙烯/蒙脱土纳米复合材料的制备和表面特征[J].复合材料新进展,2006B卷:151
    [211]La Mantia F P, Dintchevant, Filipone G, et al., Structure and dynamics ofpolyethylene/clayfilms[J]. Applied Polymer Science,2006,102:4749-4758
    [212]Liu B, Wang X, Yang B, et al., Rapid modification of montmorillonite withnovel cationic Gemini surfactants and its adsorption for methyl orange.MaterialsChemistry and Physics,130(3)2011:1220-1226
    [213]蒋涛,王玉花,姚丽.蒙脱土的有机化改性.胶体与聚合物.2003, l21(3):21-22
    [214]盛仲夷,谢松桂.蒙脱土的有机化处理及其在塑料改性中的应用.纳米材料与应用.2010,7(3):6-9
    [215]聂聪,赵臻璐,王小群.球磨改性处理对MMT及PET/MMT复合材料的影响.塑料.2011,02期
    [216]宋聪,刘学民,陈红.双子阳离子表面活性剂改性蒙脱土的制备与表征.应用化工.2010,39(8):1198-1200
    [217]Nagi G, Patrice C H, Valeska C, et al., Adsorption of2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and related compounds onto montmorilloniteclay. Journal of Colloid and Interface Science,319(2008):2-11
    [218]乔放,李强,漆宗能等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究.高分子通报.1997(3):135-138
    [219]章永化,龚克成.有机-无机混杂纳米材料.高技术通讯.1995,5(7):56-59
    [220]翁永良.聚苯胺/膨润土层状纳米复合材料的合成、表征及其电化学性能研究.石家庄.河北师范大学,1998.2
    [221]漆宗能,尚文宇.聚合物层状硅酸盐纳米复合材料理论与实践.北京:化学工业出版社,2002.9
    [222]赵竹第,李强,漆宗能.尼龙6/蒙脱土纳米复合材料的制备、结构与力学性能的研究.高分子学报,1997,(5):519-523
    [223]Liu H B and Xiao H N. Investigation on intercalation modification ofsodium-montmorillonite by cationic surfactant, Journal of Inorganic Materials,(27)7(2012):780-784;
    [224]Denecke M A. Actinide speciation using X-ray absorption fine structurespectroscopy, Coord. Chem. Rev.250(2006):730-754
    [225]Zhao F, Wan C, Bao X, et al., Modification of montmorillonite withaminopropylisooctyl polyhedral oligomeric silsequioxane, Journal of Colloidand Interface Science,333(2009):164-170
    [226]He H, Frost R L, Bostrom T, et al., Changes in the morphology of organoclayswith HDTMA+surfactant loading, Appl. Clay Sci.,31(2006):262–271
    [227]Yui T, Yoshida H, Tachibana H, et al., Intercalation of polyfluorinatedsurfactants into clay minerals and the characterization of the hybrid compounds,Langmuir,18(2002):891-896
    [228]Harris D J, Bonagamba T J, and Schmidt-Rohr K. Conformation ofpoly(ethylene oxide) intercalated in clay and MoS2studied by two-dimensionaldouble-quantum NMR, Macromolecules,32(1999):6718-6724
    [229]朱建喜,何宏平.不同链长烷基季铵离子在蒙脱石层间域内排列方式的对比[J].矿物学报,2003,23(3):210-213
    [230]Lagaly G. Interaction of alkylamines with different types of layeredcompounds.Solid State Ionics,1986(22):43-51
    [231]闫雷鸽.聚丙烯/有机蒙脱土纳米复合材料的制备及性能研究.四川大学硕士论文,2004
    [232]邹志明,章永化,蒋智杰等.改性蒙脱土对聚丙烯的抗紫外老化作用.中国塑料.2000,14(11):81-84
    [233]Lange F F and Radford K C. Fracture energy of an epoxy composite system,Journal of Materials Science, Volume6, Number9(1971):1197-1203
    [234]Adams T. Polypropylene-graft-maleic anhydride nanocomposites: fire behaviorof nanocomposites produced under nitrogen and in air.[J]. Polymer Degradationand Stability,87(2005):43-49
    [235]戎欠欠.聚丙烯/蒙脱土复合材料热稳定性能的研究.广东化工.2011,38(1):16-17
    [236]Marco Z, Giovanni C, Peter R, et al., Thermal behaviour of poly(proprlene)layered silicate nanocomposites [J]. Macromol Rapid Commum,22(2001):176-180
    [237]Chiu F C, Lai S M, Chen J W, etal., Combined effects of clay modifications andcompatibilizers on the physical properties of melt-mixed polypropylene/claynanocomposites [J]. Journal of Polymer Science Part B: Polymer Physics,42(2004):139-4150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700