倾斜荷载作用下斜桩基础工作性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜桩以及有斜桩群桩广泛应用于桥梁、码头以及大型输电线路基础等。同时,由于施工机具、施工技术的限制,地质条件的变化,有的直桩也因施工原因成为斜桩。目前对于斜桩单桩和有斜桩群桩承载特性的研究,还鲜有文献报道。本文将斜桩单桩和有斜桩群桩作为研究对象,提出了“广义弹性理论法”进行分析,并结合大型输电线路杆塔基础微型桩技术开发,开展了模型试验、原型试验和工程应用研究。
     在弹性理论法的基础上,假设桩-土之间存在相对位移,桩-土相互作用力是相对位移的函数,以模拟桩-土之间的相对位移和塑性作用,本文称为“广义弹性理论法”。这种方法可以考虑桩周土的塑性和桩-桩相互作用,还可以分析斜桩以及有斜桩的群桩。
     把广义弹性理论法用于单桩分析,建立了相应的模型和公式。对于直桩,退化为弹性理论的计算结果同Poulos的结果一致,退化为荷载传递法与他人的结果基本吻合;然后研究了斜桩的荷载-变形特性,把公式用于计算Meyerhof的模型试验以及ZhangLM的离心机试验的荷载-位移关系,发现同试验结果吻合较好。结合前人的研究成果,根据不同模型的计算比较,确定了“广义弹性理论法”模型参数的取值方法。算例表明,竖向受荷直桩比斜桩有更大承载力;水平受荷单桩,“正斜”斜桩有较大的承载力,“负斜”斜桩承载力较小,直桩居中。就桩顶的竖向沉降而言,桩身的微小偏斜(小于10°),对竖向受荷桩的正常使用没有明显的影响;倾角太大的斜桩承受竖向荷载的能力有所减少;直桩可以承受一定倾角(小于10°)的倾斜荷载,这时的倾斜荷载对桩顶的沉降影响较小,但桩顶水平位移增加比较明显。
     把“广义弹性理论法”用于群桩分析,利用本文方法可以考虑桩-土以及桩-桩相互作用的优点,视单桩为轴向刚度、径向刚度和转动刚度己知的柱梁,建立了斜桩群桩分析模型,推导了相应的计算公式,其中单桩刚度采用迭代的方法计算。算例分析表明,随着群桩承受荷载的增加,单桩的轴力和刚度分布逐渐趋于均匀;比较单桩不同布置形式的群桩,发现圆形布置时其单桩轴力更加均匀。与单桩类似,竖向受荷直桩群桩承载力比斜桩群桩大;水平受荷群桩,“正斜”单桩组成的群桩比直桩群桩和“负斜”单桩组成的群桩的承载力大。
     为了检验计算理论的合理性并指导工程设计和施工,分别在室内做了模型试验、在现场做了原型试验。模型试验发现,伸向四周的单桩组成的群桩具有更好的抵抗倾斜荷载的能力,这一点特别有利于输电线路基础等;原型试验发现,微
    
    型桩单桩和群桩的承载力完全达到设计承载要求,其群桩效率在0.9左右。根据
    原型试验和模型试验的地质条件,分别选择计算参数,计算荷载一变形曲线,同
    试验结果取得了比较好的一致,进一步说明计算理论和计算方法的合理性和可靠
    性。
Battered pile and pile group are generally used in bridge, wharf and foundation of transmission power. As the limitation of equipment and technology of construction, some vertical piles are constructed to battered piles. There is less research about bartered pile and pile group. In this paper the "generalized elastic theory" is proposed to solve the problem. A series of model experiments and prototype experiments are run to explore the technology of transmission power foundation.
    Based on the elastic theory, the stress between the pile and the soil is assumed to be a function of the relative displacement. The model is called "generalized elastic theory" in this paper, which can take the plastic behavior of the soil around the pile into account, and also can analyze the battered pile and pile group.
    First, the generalized elastic theory is employed into in single pile analysis. The degeneration solution is accordant with Poulos' results. Analyzing the load-displacement behavior of the battered pile, the results agree well with Meyerhof's model experiments and ZhangLM's centrifuge experiments. Then the author gives the method to determine the parameters of the generalized elastic theory. Computing examples show that the bearing capacity of the piles depend on the load inclination and the pile battered angle. Under the vertical load, the vertical pile has bigger bearing capacity than the battered pile. Under the lateral load, the positive battered pile has bigger bearing capacity than the vertical and the negative pile. The allowable settlement of the pile head is suggested and the vertical pile can bear load with inclination of less than 10 , and the battered pile bearing vertical load can be angle of less than 10 .
    Then the paper employed the generalized elastic theory in pile group, considering the interaction between pile-soil. Some examples are analyzed and indicate that along with the increasing load the distribution of axial load and rigidity of single pile become uniform. Compared with various types of pile group, the pile group in circle distribution contributes to bear inclined load, and the axial load of each pile is more uniform. Under the vertical load, the vertical pile group has bigger bearing capacity than the battered pile group. Under lateral load, the positive battered pile group has bigger bearing capacity than the vertical and negative battered pile group.
    Both model experiments and prototype experiments are conducted. The model experiments results indicate that the pile group composed of extending all around piles can bear inclined load better. This is beneficial to the foundation of transmission tower. The prototype experiments results indicate that the micropile's load capacity is satisfied with design. The efficiency of the pile group is about 0.9. According to the geology of experiments, the results of presented method agree well with those of the
    
    
    experiments. This further proves that the generalized elastic theory is reasonable and reliable.
引文
1. Alawneh A.S., Nusier O, Malkawi A.T.H. & AI-Kateeb M., Axial compressive capacity of driven piles in sand: a method including post-driving residual stresses[J], Canadian Geotechnical, 2001:38(2):364-377.
    2. Allen W.Cadden, Donald A.Bruce, and Lisa M. Ciamptti, (2001)Micropiles in Karst: a case history of difficulties and success[A], Foundations and Ground Improvement[C], Edited by Thomas, and L. Brandon, Geotechnical Special Publication, ASCE,New York, No. 113, 2001:204-215.
    3. Ashour M. & Norris G., (2000), Modeling lateral soil-pile response based on soil-pile interaction[J], Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5):420-428.
    4. Ashour M., Norris G. & Pilling P.(1998), Laterally loading of a pile in layered soil using the strain wedge model[J], Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(4): 303-315.
    5. Baguelin E, Frank R. & Said Y.H.,(1977), Theoretical study of lateral reaction mechnism of piles, Geotechnique, 27(3):405-434. Baguelin F., Frank R. & Said Y.H.,(1977), Theoretical study of lateral reaction mechnism of piles[J], Geotechnique, 27(3):405-434.
    6. Banerjee P.K., A contribution to the study of pile foundations[D], thesis presented to the University of Southampton, at Southampton, England, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, 1969.
    7. Banerjee P.K., Integral equation methods for analysis of piece -wise non-homogeneous, three-dimensional elastic solids of arbitrary shape[J], Int. J. Mech. Sci., 1976, 18, 293-303.
    8. Banerjee P.K. & Davis T.G., The behaviour of axially and laterally loaded single piles embedded in non-homogeneous soils[J], Geoteehnique, 1978, 28(3), 309-326.
    9. Basile F, (1999), Non-linear analysis of pile groups[J], Proc.Instn Civ. Engrs. Geotech. Engng. 1999, 137:105-115.
    10. Benslimane A., Juran I., and Bruce D.A., Group and network effect in mieropile design practice[A], Proceedings of the 14th international conference on soil mechanics and foundation engineering, Hamburg, International Conference on Mechanics and Foundation Engineering (1936-)[C], 6-12 Sep. 1997: 767-770.
    11. Benslimane A., Juran I., Hanna S., and Drabin S., Seismic behavior of micropile systems[A], Soil Improvement for Big Digs[C], Edited by Ali Maher and David S.Yang, ASCE, Geotechnical Special Publication, No.81, 1998:239-258.
    12. Briaud, J.L., Tucker L.M., Measured and predicted axial response of 98 piles[J], J. Geotech. Engng, ASCE, 1988, 114(9).
    13. Broms B B, Allowable bearing capacity of initially bent piles[J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1963, 89(SM5):73-90.
    14. Bruce D.A., DiMillio A.F., and Juran I., Introduction to Micropiles: An
    
    international perspective, Foundation upgrading[A], Geotechnical Special Publication and Repair for Infrastructure Improvement[C], Edited by William F. Kane and John M. Tehaney, Geotechnical Special Publication, No.50, ASCE, New York, 1995.10:1-26.
    15. Budhu M. & Davies T.G.(1987), Nonlinear analysis of laterally loaded piles in cohesionless soils[J], Canadian Geotechnical Journal, 1987, 24:289-296.
    16. Butterfield R. & Banerjee P.K., A note on the problem of a pile-reinforced half space[J], Geotechnique, 1970, 20(1), 100-103.
    17. Butterfield R. & Banerjee P.K., The elastic analysis of compressible piles and pile groups[J], Geotechnique, 1971a, 21(1), and 43-66.
    18. Butterfield R. & Banerjee P.K., The problem of pile group-pile cap interaction[J], Geotechnique, 1971 b, 21 (2), 135-142.
    19.曹汉志,桩的轴向荷载传递及荷载.沉降曲线的数值计算方法[J],岩土工程学报,1986,8(6):37-49。
    20. Castelli F & Maugeri M, (2002), Simplified nonlinear analysis for settlement prediction of pile groups[J], Journal of Geotechnical and Geoenvironmental Engineering, 2000, 128(1): 76-84.
    21.陈龙珠梁国钱朱金颖葛炜,桩轴向荷载.沉降曲线的一种解析算法[J],岩土工程学报,1994,16(6):30-38。
    22.陈明中,群桩沉降计算理论及桩筏基础优化设计研究[D],2000,浙江大学博士学位论文。
    23.陈仁朋,软弱地基中桩筏基础工作性状及分析设计方法研究[D],2001,浙江大学博士学位论文。
    24.陈仁朋 凌道盛 陈云敏,群桩基础沉降计算中的几个问题[J],土木工程学报,2003,36(9):89-94.
    25.陈云敏陈仁朋凌道盛(2001),考虑相互作用的桩筏基础简化分析法[J],岩土工程学报,2001,23(6):686-691.
    26.程泽海凌道盛陈云敏,桩筏基础在竖向荷载作用下的时间效应[J],土木工程学报,2004,37(2):73-77.
    27. Cheung Y.K., Finite strip method in structural analysis[M], Oxford: Pergamon Press, 1976, 175-188.
    28. Cheung Y.K., Tham L.G. & Guo D.J., Analysis of pile group by infinite layer method[J], Geotechnique, 1988, 38(3): 415-431.
    29. Chow Y.K., Analysis of vertically loaded pile groups[J], Int. J. Numer. Analyt. Meth. Geomech. 1986a, 10(1), 59-72.
    30. Chow Y.K., Discrete element analysis of settlement of pile groups[J], Computers and Structures, 1986b, 24(1), 157-166.
    31. Chow Y.K. Iterative analysis of pile-soil-pile interaction[J], Geotechnique, 1987, 37(3): 321-333.
    32. Chow Y K & Teh C I, (1991), Pile-cap-pile group interaction in nonhomogeneous soil[J], Journal of Geoteehnical Engineering, 1991, 117(11): 1655-1668.
    33. Clancy P. & Randolph M.F., An approximate analysis procedure for piles raft foundations[J], International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17, 849-869.
    
    
    34. Clancy P. & Randolph M.E, Simple design tools for piled raft foundations[J], Geotechnique, 1996, 46(2), 313-328.
    35. C.L.Ho-University of Massachusetts, Amhest, Mass, A.G.Coyne-Washington State University, and J.Canou-CERMES, ENPC, Noisy-le-Grand, Model Tests of mieropile networks applied to slope stabilization[A], International conference on soil mechanics and foundation engineering, Proceedings of the 14th international conference on soil mechanics and foundation engineering[C], A.A.Balkema, V.2, 1997.9:1223-1226.
    36. Cooke R.W., The settlement of friction piles foundations[A], Proc. Conf. on Tall Buildings[C], Kuala Lumper, 1974.
    37. Cooke R.W., Price G & Tarr K., Jacked piles in London clay: a study of load transfer and settlement under working conditions[J], Geotechnique, 1979, 29(2), 113-147.
    38. Cooke R.W., Price G & Tart K., Jacked piles in London clay: interaction and group behaviour under working conditions[J], Geotechnique, 1980, 30(2): 97-136.
    39. Coyle H.M. &Reese L.C., Load transfer for axially loaded piles in elay[J], J. Soil Mech. Found. Div., ASCE, 1966, SM2, 1-26.
    40. D'Appolonia E. & Romualdi J.P., Load transfer in end-bearing steel h-piles[J], J.Soil Mech. Found. Div., ASCE, 1963, SM2, 1-25.
    41. David E. Weatherby, Claus J. Ludwig, James A. Lowe, Wayne Magnusen and Michael Yamasaki, (2001)Mini-pile histories and a tensile load test on an instrumented mini-pile, Foundations and Ground Improvement, Edited by Thomas, and L. Brandon[A], Geotechnieal Special Publication[C], ASCE,New York, No.113, 2001:928-942.
    42. Davis E.H. & Poulos H.G, The use of elastic theory for settlement prediction under three-dimensional conditions[J], Geotechnique, 1968, 18, 67-91.
    43. Davison M.T. & Salley J.R. (1970), Model study of laterally loaded piles[J], Journal of the Soil Mechanics and Foundations Division, 1970, 96(SM5):1605-1627.
    44.董建国赵忠,高层建筑桩箱(筏)基础沉降机理分析[J],同济大学学报,1997,25(6):663-668。
    45. Douglas D.J. & Davis E.H.,(1964), The movement of buffed footings due to moment and horizontal load and the movement of anchor plates[J], Geotechnique, 14:115-132.
    46.段继伟龚晓南曾国熙,水泥搅拌桩的荷载传递规律[J],岩土工程学报,1994,16(4):1-8.
    47. Dyson G J & Randolph M F, (2001), Monotonic lateral loading of piles in calcareous sand[J], Journal of G-eotechnical Engineering, 2001, 127(4):346-352.
    48. Ellison R.D., D'Appolonia E. & Thiers G., Load-deformation mechanism of bored piles[J], J. SMFD, ASCE, 1971, 97(4): 661-678.
    49. Etnesto Motta, Approximate elastic-plastic solution for axially loaded piles[J], J. Geotech, Engrg. Div., ASCE, 1994, 1616-1624.
    50. Finno R.J, Perdono C.O., and Calvello M., Compaction-grouted micropiles at the Northwestern University NGES, National Geotechnical Experimentation sites,
    
    Edited by Jean Benait and Alean J. Lutenegger[A], Geotechnical Special Publication[C], ASCE, New York, No.93, 2000:235-249.
    51.符本义 吕建国,输电线路斜插式基础力系变换方法的探讨[J],科技情报开发与经济,1999,(5):77-78。
    52.甘幼琛(2002),非对称竖直群桩基础变位和内力的直接解及变位要素间相互影响分析[J],土木工程学报,2002,35(1):99-106.
    53.高广运 王文东 吴世明,黄土中灌注桩竖向承载力试验分析[J],岩土工程学报,1998,20(3):75-79
    54. Oeddes J.D., Stress in foundation soils due to vertical subsurface loading[J], Geotechnique, 1969, 16(3), 231-255.
    55.葛中华 殷宗泽 马智杰,提高超高层建筑大直径灌注桩承载力的试验和研究[J],岩土工程学报,1999,21(1):31-33.
    56. Guo D.J., Tham L.G. & Cheung Y.K., Infinite layer method for the analysis of single piles[J], Computers and Geotechnics, 1987, 3: 229-249.
    57. Guo W D & Randolph M F, (1999), An efficient approach for settlement prediction of pile groups[J], Geotechnique, 49(2): 161-179.
    58.洪毓康楼晓明,群桩基础的共同作用分析[A],第六届土力学及基础工程学术会议论文集[C],1991,上海:427-430。
    59.何大为,小桩技术在房屋加层改造中的应用及试验研究[J],1997,8(1):45-49.
    60.何颐华 金宝森 韩义夫 王秀珍,高层建筑箱基下满堂摩擦群桩荷载分配的试验分析[J],建筑结构学报,1991,12(4):52-61.
    61.横山幸满,(唐业清 吴庆荪 合译),1984,桩结构物的计算方法和计算实例[M],中国铁道出版社,北京,1984:136-142。
    62. Hsing Y. & Chen Y., (1997), Simplified methods for analyzing laterally loaded single piles in clays[J], Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123: 1018-1029.
    63.洪毓康 陈强华,钻孔灌注桩的荷载传递性能[J],岩土工程学报,1985,7(5):22-34.
    64.胡人礼编,桥梁桩基设计[M],人民铁道出版社,北京,1976:24-64。
    65. Huang A.B., Hsueh C.K., O'Neil M.W., Chem S. & Chen C., (2001), Effects of construction on laterally loading pile groups[J], Journal of Geotechnical and Geoenvironmental engineering, 2001, 127(5):385-397.
    66.黄大维 袁文可,输电线路岩石锚杆基础基础的试验与应用[J],电力建设,1994,15(7):15.18,33。
    67.金波 李志飙 顾尧章,层状地基中的单桩沉降分析[J],岩土工程学报,1997,19(5):35-42.
    68. Ismael N F, (1990), Behavior of laterally loaded bored piles in cemented sands[J], Journal of Geotechnical Engineering, 1990, 116(11): 1678-1699.
    69. Kezdi A., The beating capacity of piles and pile groups[A], Proc. 4th ICSMFE[C], 1957, Vol.2, 46-51.
    70. Kishida H. & Uesugi M. Tests of the interface between sand and steel in the simple shear apparatus[J]. Geotechnique, 1987, 37(1): 45-52.
    71. Kraft L.M.Jr., Ray R.P. & Kagawa T., Theoretical t-z curves[J], J. GE. ASCE, 1981, 107(11), 1543-1561.
    
    
    72. Lee C.Y. & Poulos H.G., Axial response analysis of piles in vertically and horizontally non-homogeneous soils[J], Computer and Geotechnics, 1990, 9, 133-148.
    73. Lee C.Y., Discrete layer analysis of axially loaded piles and pile groups[J], Computer and Geotechnics, 1991a, 11,295-313.
    74. Lee C.Y., Finite-layer analysis of axially loaded piles[J], J.Geotech. Engrg. ASCE, 1991b, 117(11), 1706-1722.
    75. Lee K M & Xiao Z R, (1999), Anew analytical model for settlement analysis of a single pile in multi-layered soil[J], Soils and Foundations, 1999, 39(5): 131-143.
    76.雷继革,钢管塔基础设计探讨[J],山西电力,2001,(3):14-15。
    77.李芳清,锚固式基础在我省送电线路工程上的推广应用及发展[J],安徽电力,1996,(1):53-55。
    78.凌道盛,陈云敏,丁皓江,任意基础板的有限元分析[J],岩土工程学报,2000,22(4):450-455。
    79. Littlejohn G.S., Soil Anchorages, Underpinning and Retention[A], S.Thorburn and G. S. Littlejohn, eds., Blackie Academic and Professional[C], 1993:84-156.
    80.李作勤,摩擦桩的荷载传递及承载力的一些问题[J],岩土力学,1990,11(4):1-12.
    81.刘鸿文 主编,高等材料力学[M],北京:高等教育出版社,1985,62-77.
    82.刘金砺 编著,桩基础设计与计算[M],北京:中国建筑工业出版社,1990。
    83.刘金砺 迟铃泉,桩土变形计算模型和变刚度调平设计[J],岩土工程学报,2000,22(2):151-157.
    84.刘金砺 黄强 李华 高文生,竖向荷载下群桩变形性状及沉降计算[J],岩土工程学报,1995,17(6):1-13.
    85.刘金砺 黄强 李华 胡文龙,软土中群桩承载性能的试验研究[A],第六届全国土力学及基础工程学术会议论文集[C],1991,335-340,上海.
    86.刘前曦 侯学渊 章旭昌,桩-筏-土共同作用分析方法[J],同济大学学报,1996,24(6):625-630。
    87.刘慎之,浅谈高低腿铁塔的基础设计[J],电力建设,2001,22(8):18-20。
    88.刘松玉 季鹏 韦杰,大直径泥质软岩嵌灌注桩的荷载传递性状[J],岩土工程学报,1998,20(4):58-61.
    89.刘志强,输电线路插入式基础分坑及支模施工计算研究[J],华北电力技术,2000,(8):20-22,30。
    90.楼晓明 陈强华 俞有炜 陶兴文,钻孔灌注桩承载力异常现象分析[J],岩土工程学报,2001,23(5):547-551.
    91.陆培俊(1993),高层建筑结构-桩-土共同工作空间分析[J],岩土工程学报,1993,15(6):59-70.
    92.陆贻杰 周国钧,搅拌桩复合地基模型试验及三维有限元分析[J],岩土工程学报,1989,11(5),86-91.
    93. Matlock H, 1970, Correlations for design of laterally loaded piles in soft clay[A], Offshore Technology Conference, No.OTC: 2080.
    94. Mattes N S & Poulos H G, (1969), Settlement of single compressible pile[J], 1969, Soil Mechanics and Foundation Division, SM1:189-207.
    95. Meyerhof G.G., Sastry V.V.R.N. & Yalcin,(1988), Lateral resistance and deflection
    
    of flexible piles[J], Canadian Geotechnical Journal, 1988, 25:511-522.
    96. Meyerhof G.G, Compaction of sands and bearing capacity of piles[J] J. SMFD, ASCE, 1960, Vol.86, No.1, 189-207.
    97. Meyerhof G G, (1995), Behaviour of pile foundations under special loading conditions: 1994 R.M. Hardy keynote address[J], Canadian Geotechnical Journal, 1995, 32:204-222.
    98. Meyerhof G.G., Sastry V.V.R.N. & Yalcin A.S.,(1988), Lateral resistance and deflection of flexible piles[J], Canadian Geotechnical Journal, 1988, 25:511-522.
    99. Meyerhof G G &Yalcin A S, (1993), Behaviour of flexible batter piles under inclined loads in layered soil[J], Canadian Geotechnical Journal, 1993, 30:247-256.
    100. Mindlin R D, Force at a point in the interior of a semi-infinite solid[J], Physics 1936,7:195-202.
    101. Mokwa R L & Duncan J M, Experimental evaluation of lateral-load resistance of pile caps[J], Joumal of Geotechnical and Geoenvironmental Engineering, 2001a, 127(2): 185-192.
    102. Mokwa R L & Ducan J M, (2001), Laterally loaded pile group effects and p-y multipliers [A], Foundation and Ground Improvement[C], Edited by Brandon T L, Geotechnical Special Publication, No. 113,2001b, pp728-142.
    103. Mononakis G. & Gazatas G., Settlement and additional internal forces of grouped piles in layered soil[J], Geotechnique, 1998, 48(1), 55-72.
    104. Mylonakis G., Winkler modulus for axially loaded piles [J], Geotechnique, 2001,51(5): 455-461.
    105. Naylor D.J. & Hooper J.A., An effective stress finite element analysis to predict the short and long-term behaviour of a pile -raft foundation on London Clay, Symp. on Settlement of Structures, Cambridge, 1975.
    106. Ng C.W.W., Yau T.L.Y., Li J.H.M. & Tang W.H., New failure load criterion for large diameter bored piles in weathered geomaterials[J], Journal of Geotechnical and Geoenvironmental engineering, 2001,127(6):288-498.
    107. Ng C.W.W., Zhang L.M. & Nip D.C.N.(2001), Response of laterally loaded large-diameter bored pile groups[J], Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(8):658-669.
    108. Nishida Y., An estimation of the point resistance of a pile[J], J.SMFD, ASCE, Proc., 1957, 83(2): 1206.
    109.倪新华,筏基-桩基-土体共同作用的数值分析[D],1990,同济大学博士学位论文。
    110.牛宗安,浅议铁塔采用高柱桩基础[J],电力建设,1996,(9):34-35。
    111. Novak M. & EI-Sharnoby B., Pile groups under static and dynamic loading[A], Proc. 11th ICSMFE, San Francisco, 1985, 3:1449-1454.
    112. Omer J R, Delpak R, & Robinson R B, (2002), Instrumented load tests in mudstone: pile capacity and settlement prediction[J], Canadian Geotechnical Journal,39:1254-1272.
    113. O'Neill M W, (2001), Side resistance in piles and drilled shafts[J], Journal of Geotechnical and Geoenvironmental Engineering, 2001.1:3-16.
    
    
    114. O'Neil M.W., Ghazzaly O.I. & Ha H. B., Analysis of three-dimensional pile groups with nonlinear soil response and pile-soil-pile interaction[A], 1977, Pro. 9th Annual Offshore Technology Conference, Houston, Texas.
    115. Onuselogu P., & Zongze Y., Pile behaviour in sand through experiments[J], Chinese Journal of Geoteehnieal Engineering, 1998, 20(3):85-89.
    116. Ottaviani M., Three-dimensional finite element analysis of vertically loaded pile groups[J], Geoteehnique, 1975, 25(2): 159-174.
    117. Paik K, Salgado R, Lee J & Kim B, Behavior of open- and closed-ended piles driven into sands[J], Journal of Geoteehnical and Geoenvironmental Engineering, 2003, 129(4):296-306.
    118.潘时声,桩基础分层位移迭代法计算理论及其应用[J],强度与环境,1990,(3):34-37。
    119. Patra N.R. & Pise P.J.(2001), Ultimate lateral resistance of pile groups in sand[J], Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(6):481-487.
    120. Pells P.J.N. & Turner R.M., Elastic solutions for the design and analysis of rock-socketed piles[J], Can. Geoteehnique J., 1979, 16:481-487.
    121. Poulos H.G., Analysis of the settlement of pile groups[J], Geotechnique, 1968, 18, 449-471.
    122. Poulos H.G,(1971), Behavior of laterally loaded piles:Ⅰ—single piles[J], Journal of the Soil mechanics and Foundations Division, 1971, 97(SM5): 711-731.
    123. Poulos H.G.,(1973), Analysis of piles in soil undergoing lateral movement[J], Journal of Soil Mechanics and Foundation Division, 1973, 99(SM5): 391-406.
    124. Poulos H.G., Settlement of single piles in non-homogeneous soil[J], J. Geotech. Engng., ASCE, 1979, GT5, 627-641.
    125. Poulos H.G., Pile behaviour—theory and application [J], Geoteehnique, 1989,39(3): 365-415.
    126. Poulos H,G., settlement prediction for driven piles and pile groups, Geoteehnieal Special Publication No.40, Edited by Yeung A.T. & Felio G.Y., Published by ASCE, 1994, 1629-1649.
    127. Poulos H.G. & Davis E.H., The settlement behaviour of single axially loaded incompressible piles and piers[J], Geotechnique, 1968, 18(3), 350-370.
    128. Poulos H.G. & Davis E.H., Pile Foundation Analysis and Design [M], John Wily & Sons, Inc. 1980, 74-84.
    129. Prakash S. & Kumar S., (1996), Nonlinear lateral pile deflection prediction in sands[J], Journal of Geotechnieal Engineering, 1996, 122(2): 130-138.
    130. Proceedings of sessions sponsored by the Committee on Soil Improvement and Geosynthetics of The Geo-Institute of the American Society of Civil Engineers in conjunction with Geo-Logan'97, Ground Improvement Ground Reinforcement Ground Treatment, Edited by Vernon R. Schaefer, ASCE, Geoteehnieal Special Publication No.69, 1997:151-175.
    131. Rajapakse R.K.N.D., Response of an axially loaded elastic pile in a Gibson soil[J], Geotechnique, 1990, 40(2), 237-249.
    132. Rajashree S S & Sitharam T G, (2001), Nonlinear finite-element modeling of
    
    batter piles under lateral loads, Journal of Geotechnical and Geoenvironmental[J] Engineering, 2001, 127(7): 604-612.
    133. Randolph M.F. (1981), The response of flexible piles to lateral loading[J], Geotechnique, 1981, 31 (2): 247-259.
    134. Randolph M.F., Dolwin J. & Beck R., (1994), Design of driven piles in sand[J], Geotechnique, 44(3):427-448.
    135. Randolph M.F. & Wroth C.P., (1978), analysis of deformation of vertically loaded piles[J], Journal of the Geotechnical Engineering Division, 1978, 104(GT12): 1465-1488.
    136. Reese L.C., Design and construction of drilled shafts[A], Geothchnical Special Publication(l): Terzaghi Lectures 1974-1982[C], ASCE, New York, 1986:98-119.
    137. Reese LC, & Van Impr WF, (2001), Single piles and pile groups under Lateral loading[M], A.A.Balkerma, 2001:70-108.
    138. Reul O. & Randolph M.F., (2003), Piled rafts in overeonsolidated clay: comparison of in situ measurements and numerical analysis, Geotechnique, 53(3): 301-315.
    139. Richard J. Finno, Catalina O. Perdono, and Michele Calvello, (2000)Compaction-grouted micropiles at the Northwestren University NGES, National Geotechnical Experimentation sites, Edited by Jean Benait and Alean J. Lutenegger, Geoteehnical Special Publication, ASCE, New York, No.93, 2000:235-249.
    140. Ruesta P.F. & Townsend F.C., Evaluation of laterally loading pile group at Roosevelelt Bridge[J], Journal of Geotechnical and Geoenvironmental engineering, 1997, 123(12): 1153-1161.
    141. Sastry V V R N & Meyerhof G G, (1995), Behaviour of flexible piles in layered clays under eccentric and inclined loads [J], Canadian Geotechnieal Journal, 1995, 32:387-396.
    142. Shen W Y & Teh C I, (2002), Practical solution for group stiffness analysis of piles[J], Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(8):692-698.
    143. Shen W Y, Chow Y K & Yong K Y, (2000), Practical method for settlement analysis of pile groups[J], Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(10): 890-897.
    144. Skempton A.W. Discussion: Piles and pile foundations, Settlement of pile foundations. Proc. 3rd ICSMFE, Zurich, 1953, 172-174.
    145.宋永发 甘凤林 金载南等,群锚基础承载力的计算方法[J],东北电力学报,1996,16(1):52-56。
    146. Stewart D P, Jewell R J & Randolph, (1994), Design of piled bridge abutment on soft clay for loading from lateral soil movements[J], Geotechnique, 1994, 44(2):277-296.
    147.舒翔 陈竹昌 祝龙根,摩擦桩中单桩的等效轴向刚度及其应用[J],同济大学学报,2000,28(6):651-655.
    148. Szavits-Nossan A, Kovacevic M S & Mavar R, Analysis of pile deformations during static load tests, Proceedings of the 15th International Conference on Soil
    
    Mechanics and Geotechnical Engineering, Editor: Publications Committee of the XV ICSMGE, AA Balkema Publishers, Tokyo, 2001,1:1021-1024.
    149. Tarek E, Haider, P.E., Michael J., Byle P.E. and Richard E. Horvath, P.E., Dam within a dam [J], Civil Engineering, 2001,71(12): 56-61.
    150. Tejchman A, Gwizdala K & Dyka I, (2001), Analysis of settlement of piled foundations [A], in: Publications Committee of the XV ICSMGE, Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Tokyo: A. Balkerma Publishers, 2001, Vol.1: 1025-1030.
    151. Terzaghi H. & Peck R.B. Soil Mechanics in engineering practice[M]. John Wiley & Sons, New York, N.Y. 1948.
    152. Trochanis A M, Bielak J & Christiano P, (1991), Simplified model for analysis of one or two piles[J], Journal of Geotechnical Engineering, 1991, 117(3):448-466.
    153.屠毓敏 魏汝龙,(1999),曲桩竖向承载力的确定[J],土木工程学报,1999,32(4):64-68.
    154. Uesugi M. & Kishida H. Influential factors of friction between steel and dry sands[J]. Soils Fdns. 1986, 26(2): 33-46.
    155. Verruijt A. & Kooijman A.P., (1989), Laterally loaded piles in a layered elastic medium[J], Geotechnique, 39(1):39-46.
    156. Vesic A.S., Tests on instrumented piles, Ogeechee River site[J], J. SMFD, ASCE, 1970, 96(2): 561-584.
    157.王桂钦 茜平一 雷万民,软土中承受竖向荷载被动曲桩的粘弹塑性分析[J],武汉水利电力大学学报,1998,31(2):14-17.
    158.王国光,拉压模量不同弹性理论解及桩基沉降计算[D],2002,浙江大学博士学位论文。
    159.王建平,饱和黄土地基树根桩承载力与荷载传递规律(C),李俊杰 主编,岩土力学与工程(C)(下册),大连理工大学出版社,1995.9:558-563.
    160.王建平,董继洲,不同土质条件下树根桩承载性状分析[J],土工基础,1997(3):34-38.
    161.王启铜,柔性桩的沉降(位移)特性及荷载传递规律[D],1991,浙江大学博士学位论文。
    162.王文 顾晓鲁,桩-土-筏片体系的数值与半数值三维非线性分析模型[J],土木工程学报,1998,31(3):30-40。
    163. Weatherby D. E., Ludwig C.J., Lowe J.A., Magnusen W. and Yamasaki M., Mini-pile histories and a tensile load test on an instrumented mini-pile[A], Foundations and Ground Improvement, Edited by Thomas, and L. Brandon, Geotechnical Special Publication, ASCE, New York, No. 113, 2001:928-942.
    164.温晓贵,复合地基三维性状分析[D],1999,浙江大学博士学位论文。
    165. Wolf J.P. & Darbre G.R., Dynamic stiffness matrix of pile foundations by indirect boundary element method[C], Proc. 7th SMIRT, Chicago, 1983, 245-258.
    166.吴广苏,荷载偏心对单桩受力的影响[J],岩土工程学报,1999,21(5):635-637.
    167.吴永红,考虑桩土滑移问题的桩基有限元分析,李俊杰主编,岩石力学与工程(下册)[C],大连:大连理工大学出版社,1995:613-618.
    168.吴永红 顾晓鲁,桩基加固软土地基的有限元分析[C],第三届全国地基处理学术讨论会会议论文集,秦皇岛,1992:538-541。
    
    
    169.严平 龚晓南,(2000),桩筏基础在上下部共同作用下的极限分析[J],土木工程学报,2000,33(2):87-95.
    170.杨克己 李启新 王福元,(1988),基础-桩-土共同作用的性状与承载力研究[J],岩土工程学报,1988,10(1):30-38.
    171.杨敏 王树娟 王伯钧 周融华,使用Geddes应力系数公式求解单桩沉降[J],同济大学学报,1997,25(4):379-385.
    172.杨敏 王树娟 王伯钧 周融华,考虑极限承载力下的桩筏基础相互作用分析[J],岩土工程学报,1998a,20(5):82-86。
    173.杨敏 张俊峰(1998),软土地区桩基础沉降计算使用方法和公式[J],建筑结构,1998,No.7:43-48.
    174.杨敏 赵锡宏,分层土中的单桩分析法[J],同济大学学报,1992,20(4):421-428.
    175.阳吉宝,超长桩荷载传递机理研究[J],岩土工程技术,1998,(4):31-33。
    176.杨永浩,树根桩技术试验及其应用[J],地基处理,1992,3(4):27-36.
    177.殷宗泽 朱泓 许国华,土与结构材料接触面处的变形及其数学模拟[J],岩土工程学报,1994,16(3):14-21.
    178.袁建新 钟晓雄,桩荷载与变位的数值模拟分析[J],岩土力学,1991,12(1):1-8。
    179.云天铨,简便积分方程法分析桩[J],应用数学和力学[J],1981,2(3):307-319.
    180.云天铨,(1999),线载荷积分方程法分析桩顶受任意荷载的弹性斜桩[J],应用数学和力学,1999,20(4):351-357.
    181.云天铨 云飞 张桂标,(1992),刚性斜桩顶部受任意力的位移的线载荷积分方程法的分析[J],应用力学学报,1992,9(4):114-123.
    182.张保良 姜洪伟 赵锡宏,多桩数桩筏基础沉降分析方法[J],同济大学学报,1997,25(3):282-286。
    183.张保良 赵锡宏 姜洪伟,上部结构-筏-桩-地基共同作用分析[J],建筑结构学报,1997,18(2):72-78。
    184.张诚厚 施健 戴济群,孔压静力触探试验的应用[J],岩土工程学报,1997,19(1):50-57。
    185.张德才,浅谈掏挖式基础在输电线路上的运用[J],广东电力,2000,13(4):25-26。
    186.张季如,大规模带桩筏基模拟试验研究[J],岩土工程学报,1992,14(6):81-89.
    187.张季如 朱乃龙 李孝钰,桩-土体系荷载传递特性和若干问题探讨[J],武汉工业大学学报,1996,18(3):95-97.
    188. Zhang L M, McVay M C & Lai P W, (1999), Centrifuge modeling of laterally loaded single battered piles in sands [J], Canadian Geotechnical Journal, 1999, 36:1074-1084.
    189. Zhang L M, McVay M C, Han S J et al, (2002), Effects of dead loads on the lateral response of battered pile groups[J], Canadian Geoteehnical Journal, 2002, 39:561-575.
    190.张雁,桩基工程技术发展综述[J],岩土工程师,1997,9(1):17-22。
    191.张永谋 杨敏,层状地基中单桩荷载与沉降的数值模拟[J],工程勘察,1999,(2):1-4。
    192.张忠苗 汤展飞 吴世明,基于桩顶与桩端沉降的钻孔灌注桩受力性状研究
    
    [J],岩土工程学报,1997,19(4):88-93.
    193.张钟贤 于林澍 潘水清,旋锚桩基础在送电线路施工中的应用[J],电力建设,1995,(8):39-40。
    194.赵春洪 赵锡宏(1990),上部结构-筏-桩-地基共同作用分析的新方法[J],建筑结构学报,1990,11(2):69-77.
    195.赵法锁 俞剑勇 罗丽娟等,灌注桩桩土相互作用试验及有限元模拟研究[J],工程地质学报,9(1):87-92。
    196.赵明华 侯运秋 曹喜仁,(1997),倾斜荷载下基桩的受力研究[J],湖南大学学报,1997,24(2):98-109.
    197.赵明华 胡志清,预估试桩极限承载力的调整双曲线法[J],建筑结构,1995,No.3:47-52.
    198.赵明华 王季柏,基桩计入摩阻力的屈曲分析[J],岩土工程学报,1996,18(3):87-90.
    199.赵学勤 李达祥 王安玲 陈彩渠,(1981),组合斜孔桩变形机理的试验研究[A],见:中国土木工程学会第三届土力学及基础工程学术会议论文集[C],北京:中国建筑工业出版社,1981.10.
    200.浙江大学土木工程测试中心,长兴县人民医院迁建工程综合门诊楼桩基单桩静载荷试验检测报告[R],2002.9.
    201.浙江大学岩土工程研究所,长兴电厂技改工程试桩试验总报告[R],2000.4.
    202.朱金颖 陈龙珠 葛炜,层状地基中桩静载荷试验数据的拟合分析[J],岩土工程学报,1998,20(3):34-39。
    203.中国建筑科学研究院,《建筑桩基技术规范(JGJ 94-94)》[S],北京:中国建筑工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700