肠杆菌科细菌对碳青霉烯类抗生素耐药机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究通过对86株碳青霉烯类抗生素耐药或敏感性降低的肠杆菌科细菌进行β-内酰胺酶、外膜蛋白和外排泵检测,旨在阐明肠杆菌科细菌对碳青霉烯类抗生素耐药的分子机制;通过碳青霉烯酶基因周围序列分析,探讨碳青霉烯耐药基因的传播机制。
     方法:琼脂稀释法测定抗生素对细菌的最低抑菌浓度(MIC)。脉冲场凝胶电泳和肠杆菌基因间重复性一致序列-PCR (ERIC-PCR)分析菌株之间的同源性。等电聚焦电泳、PCR扩增和序列分析确定菌株所产β-内酰胺酶的类型。质粒接合试验、质粒消除试验和Southern blot杂交验证碳青霉烯耐药基因是否位于质粒上。提取细菌的外膜蛋白作十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE),检测外膜蛋白表达情况。羰酰氰氯苯腙(CCCP)抑制试验检测细菌中是否存在针对碳青霉烯类抗生素的外排泵。用限制性内切酶EcoRI和HindⅢ对碳青霉烯酶基因编码质粒进行酶切分型。对部分碳青霉烯酶基因编码质粒进行测序,分析碳青霉烯酶基因周围DNA序列的基因结构。
     结果:86株菌株对碳青霉烯有不同程度的耐药,亚胺培南、美罗培南和厄他培南的敏感率分别为43.0%、44.2%和1.2%,其它β-内酰胺类抗生素和环丙沙星的耐药率和耐药水平均很高,多粘菌素B的敏感率最高(92.9%),阿米卡星次之(80.2%)。同一医院内的菌株多数具有同源性,存在克隆传播现象。82株菌株产KPC-2型碳青霉烯酶,5株产IMP型金属β-内酰胺酶(其中3株同时产KPC-2),2株检测不到碳青霉烯酶。TEM-1、SHV-11/-12和CTX-M-14/-M-3等β-内酰胺酶的检出率非常高,大部分菌株同时产多种酶。大多数菌株可通过接合试验将碳青霉烯耐药性传递给大肠埃希菌。Southern blot杂交显示blaKPC-2基因位于50kb的可接合质粒上。4株肺炎克雷伯菌(包括2株检测不到碳青霉烯酶的菌株)由于ompK36基因中存在插入序列或碱基突变而缺失OmpK36膜孔蛋白,一株阴沟肠杆菌缺失一个38kDa的外膜蛋白,弗劳地柠檬酸杆菌的两个外膜蛋白表达量均明显下降。CCCP不能降低亚胺培南对细菌的MIC值。
     82株产KPC-2菌株的blaKPC-2基因编码质粒可根据EcoRI和HindⅢ的限制性酶切图谱分为11种类型(Ⅰ型-Ⅺ型),大部分质粒(62/82)为Ⅰ型,其次为Ⅴ型(8/82)。选取Ⅰ型(pKP1)和V型(pKP20)质粒各一个进行测序,pKP1质粒获得7788bp的DNA序列,pKP20为6000bp。两个质粒的blaKPC-2基因周围序列中均含有多个转座相关元件。pKP1质粒依次编码Tn3转座酶、Tn3解离酶、ISKpn8转座酶、KPC-2和ISKpn6-like样转座酶等蛋白。pKP20质粒依次编码IS26转座酶、Tn3解离酶截短蛋白、ISKpn8转座酶、KPC-2、ISKpn6样转座酶截短蛋白和IS26转座酶等,其中Tn3解离酶截短蛋白、ISKpn8转座酶、KPC-2和ISKpn6样转座酶截短蛋白基因等部分与pKP1质粒相同(共3354bp)。根据pKP1和pKP20质粒的DNA序列设计引物对其它80个blaKPC-2基因编码质粒进行PCR扩增发现,大部分质粒(69/82)的PCR扩增结果与pKP1质粒相同,8个Ⅴ型质粒的PCR结果与pKP20质粒相同。除3个质粒外,其余质粒均具有共同的3354bp序列。另外2个质粒中检测到了2种变异体。
     结论:同一家医院内碳青霉烯类抗生素耐药的肠杆菌科细菌主要以克隆株的形式传播。碳青霉烯酶尤其是KPC-2的产生是肠杆菌科细菌对碳青霉烯耐药的主要原因,碳青霉烯酶合并膜孔蛋白缺失或低表达可引起碳青霉烯高水平耐药,超广谱β-内酰胺酶合并OmpK36缺失也可导致肺炎克雷伯菌对碳青霉烯耐药或敏感性下降。相同的blaKPC-2基因编码质粒在不同菌种中广泛传播。blaKPC-2基因位于约50kb质粒上的复合转座子中。多数blaKPC-2基因位于相同的转座子结构中,另外还检测到了四种变异体。
Objectives:Investigate the mechanisms of carbapenem resistance in 86 clinical isolates of Enterobacteriaceae by detection ofβ-lactamase, outer membrane proteins, and efflux pump. Investigate the transmission mechanisms of carbapenem resistance gene by analysis of genetic structures surrounding carbapenem resistance gene.
     Methods:Antibiotic susceptibilities were determined by agar dilution method. Pulsed-field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) were performed to analyze the molecular epidemiology of isolates. Isoelectric focusing (IEF), PCRs, and DNA sequencing were carried out to confirm the genotype of P-lactamases. Conjugation experiments, elimination of plasmid, and southern blot were performed to confirm whether the carbapenem resistance gene was located on plasmid. Outer membrane proteins (OMPs) were extracted and examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Inhibition assays by carbonyl cyanide m-chlorophenylhydrazone (CCCP) were performed to confirm whether the presence of efflux pump. Typing the carbapenem resistance gene encoding plasmids on the basis of the restriction maps of EcoRI and HindⅢ. Two representative plasmids were sequenced and the DNA sequence surrounding carbapenem resistance gene were analyzed.
     Results:Eighty-six isolates exhibited various level of carbapenem resistance. Susceptibility rate to imipenem, meropenem, and ertapenem were 43.0%,44.2%, and 1.2%, respectively. Resistance rate and resistance level to otherβ-lactams and ciprofloxacin were high, whereas polymoxin B showed strong activity against carbapenem-non-susceptible Enterobacteriaceae with susceptibility rate of 92.9%, followed by amikacin (80.2%). Major isolates from the same hospital were indistinguishable or closely related to each other. Eighty-two isolates produced KPC-2 carbapenemase,5 produced IMP metallo-β-lactamase (3 of them produced KPC-2 simultaneously), and 2 did not produced any carbapenemase. Severalβ-lactamase genes of blaTEM, blaSHV-11 or-12, and blaCTX-M-14 or -3 were prevalent in these isolates, and majority produced more than oneβ-lactamases. Reduced carbapenem susceptibility can be transferred from most isolates to E. coli (EC600) by conjugation. Southern blot analysis confirmed that blaKPC-2 was located on a ca.50kb conjugative plasmid. Four K. pneumoniae (including two isolates which did not produce carbapenemase) failed to express OmpK36 because of nonsense mutations or insertional inactivation by an insertion sequence in ompK36 gene. An E. cloacae lack a 38 kDa OMP, and expression of two OMPs were decreased in a C. freundii. CCCP can not reduced the minimum inhibitory concentrations values (MICs) of imipenem in Enterobacteriaceae.
     Eighty-two blaKPC-2-encoding plasmids can be divided into 11 types (type I to XI) according to the restriction maps of EcoRI and HindⅢ. The type I plasmid predominant (62/82), and 8 isolates carried type V plasmid. Two plasmids of pKP1 (type I) and pKP20 (type V) were sequenced. A 7788bp DNA sequence from pKPl and a 6000bp from pKP20 were obtained. Sequence analysis revealed several transposon-associated elements surround blaKPC-2. pKP1 encoded Tn3 transposase, Tn3 resolvase,ISKpn8 transposase, KPC-2, and ISKpn6-like transposase, while pKP20 encoded IS26 transposase, truncated Tn3 resolvase,ISKpn8 transposase, KPC-2, truncated ISKpn6-like transposase, and IS26 transposase. DNA sequence for truncated Tn3 resolvase,ISKpn8 transposase, KPC-2, and truncated ISKpn6-like transposase were the common segment in two plasmids (total 3354bp). A series of primers were designed according to the sequence of pKP1 and pKP20 to amplify the blaKPC-2-surrounding sequence from other 80 plasmids. Sixty-nine plasmids and pKPl shared the same PCR results, and 8 type V plasmids and pKP20 have the same PCR results. All blaKPC-2-encoding plasmids except 3 contained the common 3354bp segment. Another 2 variants were detected in 2 plasmids.
     Conclusions:Carbapenem-resistant Enterobacteriaceae clonally spread within the same hospital. Carbapenem resistance in Enterobacteriaceae was mainly due to production of carbapenemases, especially KPC-2. Carbapenemases production combined with reduced amounts of porins contributed to high-level resistance to carbapenems. Combination of extended-spectrumβ-lactamase and OmpK36 deficiency resulted in ertapenem resistance, and reduced imipenem and meropenem susceptibility in K. pneumoniae. The same blaKPC-2-encoding plasmids wide disseminated among different species. Majority of the blaKPC-2 genes were located on the same transposon. Four transposon variants were detected in other blaKPC-2-encoding plasmids.
引文
1.汪复.2005中国CHINET细菌耐药性监测结果.中国感染与化疗杂志,2006,6(5):289-295.
    2.汪复.2006年中国CHINET细菌耐药性监测.中国感染与化疗杂志2008,8(1):9.
    3. Yu Y, Ji S, Chen Y, et al. Resistance of strains producing extended-spectrum beta-lactamases and genotype distribution in China. J Infect,2007,54(1):53-57.
    4.卓超,苏丹虹,朱德妹,等.2007年CHINET大肠埃希菌和克雷伯菌属耐药性监测.中国感染与化疗杂志,2009,9(3):185-191.
    5.汪复,朱德妹,胡付品,等.2008年中国CHINET细菌耐药性监测.中国感染与化疗杂志,2009,9(5):321-329.
    6.杨启文,王辉,徐英春,等.中国教学医院细菌耐药监测研究及现状介绍.中国临床药理学杂志,2008,24(6):570-573.
    7.吕时铭,俞云松,张嵘.浙江省医院细菌耐药检测年鉴.浙江大学出版社,2009,13.
    8. Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs). Clin Microbiol Infect,2000,6(9):460-463.
    9. Queenan AM, Bush K. Carbapenemases:the versatile beta-lactamases. Clin Microbiol Rev,2007,20(3):440-458, table of contents.
    10. Bradford PA, Urban C, Mariano N, et al. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein. Antimicrob Agents Chemother,1997,41(3):563-569.
    11. Cao VT, Arlet G, Ericsson BM, et al. Emergence of imipenem resistance in Klebsiella pneumoniae owing to combination of plasmid-mediated CMY-4 and permeability alteration. J Antimicrob Chemother,2000,46(6):895-900.
    12. Kaczmarek FM, Dib-Hajj F, Shang W, et al. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of bla(ACT-1) beta-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin phoe. Antimicrob Agents Chemother,2006,50(10):3396-3406.
    13. Lee K, Yong D, Choi YS, et al. Reduced imipenem susceptibility in Klebsiella pneumoniae clinical isolates with plasmid-mediated CMY-2 and DHA-1 beta-lactamases co-mediated by porin loss. Int J Antimicrob Agents, 2007,29(2):201-206.
    14. Crowley B, Benedi VJ, Domenech-Sanchez A. Expression of SHV-2 beta-lactamase and of reduced amounts of OmpK36 porin in Klebsiella pneumoniae results in increased resistance to cephalosporins and carbapenems. Antimicrob Agents Chemother,2002,46(11):3679-3682.
    15. Lee CH, Chu C, Liu JW, et al. Collateral damage of flomoxef therapy:in vivo development of porin deficiency and acquisition of blaDHA-1 leading to ertapenem resistance in a clinical isolate of Klebsiella pneumoniae producing CTX-M-3 and SHV-5 beta-lactamases. J Antimicrob Chemother,2007,60(2):410-413.
    16. Mena A, Plasencia V, Garcia L, et al. Characterization of a large outbreak by CTX-M-1-producing Klebsiella pneumoniae and mechanisms leading to in vivo carbapenem resistance development. J Clin Microbiol,2006,44(8):2831-2837.
    17. Bornet C, Chollet R, Mallea M, et al. Imipenem and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem Biophys Res Commun, 2003,301(4):985-990.
    18. Neuwirth C, Siebor E, Duez JM, et al. Imipenem resistance in clinical isolates of Proteus mirabilis associated with alterations in penicillin-binding proteins. J Antimicrob Chemother,1995,36(2):335-342.
    19. Clinical and Laboratory Standard Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically,7th ed. Approved standard M7-A7 (M100-S16).CLSI,2006,Wayne, Pa.
    20. Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis:criteria for bacterial strain typing. J Clin Microbiol,1995,33(9):2233-2239.
    21. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res,1991,19(24):6823-6831.
    22. Yigit H, Queenan AM, Anderson GJ, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother,2001,45(4):1151-1161.
    23. Smith Moland E, Hanson ND, Herrera VL, et al. Plasmid-mediated, carbapenem-hydrolysing beta-lactamase, KPC-2, in Klebsiella pneumoniae isolates. J Antimicrob Chemother,2003,51(3):711-714.
    24. Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol, 2002,40(6):2153-2162.
    25.王辉,刘颖梅,王清涛,等.北京发现同时产DHA-1质粒AmpC型及CTX-M型超广谱β-内酰胺酶的肺炎克雷伯菌.中华微生物学和免疫学杂志,2005,25(5):419-422.
    26. Robicsek A, Strahilevitz J, Sahm DF, et al. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother, 2006,50(8):2872-2874.
    27. Jiang Y, Zhou Z, Qian Y, et al. Plasmid-mediated quinolone resistance determinants qnr and aac(6')-Ib-cr in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J Antimicrob Chemother, 2008,61(5):1003-1006.
    28. Hernandez-Alles S, Alberti S, Alvarez D, et al. Porin expression in clinical isolates of Klebsiella pneumoniae. Microbiology,1999,145 (Pt 3):673-679.
    29. Hasdemir UO, Chevalier J, Nordmann P, et al. Detection and prevalence of active drug efflux mechanism in various multidrug-resistant Klebsiella pneumoniae strains from Turkey. J Clin Microbiol,2004,42(6):2701-2706.
    30. Kelesidis T, Karageorgopoulos DE, Kelesidis I, et al. Tigecycline for the treatment of multidrug-resistant Enterobacteriaceae:a systematic review of the evidence from microbiological and clinical studies. J Antimicrob Chemother,2008,62(5):895-904.
    31. Townsend ML, Pound MW, Drew RH. Tigecycline:a new glycylcycline antimicrobial. Int J Clin Pract,2006,60(12):1662-1672.
    32. Morosini MI, Garcia-Castillo M, Coque TM, et al. Antibiotic coresistance in extended-spectrum-beta-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrob Agents Chemother,2006,50(8):2695-2699.
    33. Castanheira M, Sader HS, Deshpande LM, et al. Antimicrobial activities of tigecycline and other broad-spectrum antimicrobials tested against serine carbapenemase-and metallo-beta-lactamase-producing Enterobacteriaceae:report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother,2008,52(2):570-573.
    34. Pliatsika V, Afkou Z, Protonotariou E, et al. In vitro activity of tigecycline against metallo-beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother, 2007,60(6):1406-1407.
    35. Miriagou V, Tzouvelekis LS, Rossiter S, et al. Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob Agents Chemother,2003,47(4):1297-1300.
    36. Yigit H, Queenan AM, Rasheed JK, et al. Carbapenem-resistant strain of Klebsiella oxytoca harboring carbapenem-hydrolyzing beta-lactamase KPC-2. Antimicrob Agents Chemother,2003,47(12):3881-3889.
    37. Hossain A, Ferraro MJ, Pino RM, et al. Plasmid-mediated carbapenem-hydrolyzing enzyme KPC-2 in an Enterobacter sp. Antimicrob Agents Chemother, 2004,48(11):4438-4440.
    38. Woodford N, Tierno PM, Jr., Young K, et al. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A beta-lactamase, KPC-3, in a New York Medical Center. Antimicrob Agents Chemother,2004,48(12):4793-4799.
    39. Bratu S, Landman D, Alam M, et al. Detection of KPC carbapenem-hydrolyzing enzymes in Enterobacter spp. from Brooklyn, New York. Antimicrob Agents Chemother,2005,49(2):776-778.
    40. Naas T, Nordmann P, Vedel G, et al. Plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC in a Klebsiella pneumoniae isolate from France. Antimicrob Agents Chemother,2005,49(10):4423-4424.
    41. Villegas MV, Lolans K, Correa A, et al. First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America. Antimicrob Agents Chemother,2006,50(8):2880-2882.
    42. Navon-Venezia S, Chmelnitsky I, Leavitt A, et al. Plasmid-mediated imipenem-hydrolyzing enzyme KPC-2 among multiple carbapenem-resistant Escherichia coli clones in Israel. Antimicrob Agents Chemother, 2006,50(9):3098-3101.
    43. Wei ZQ, Du XX, Yu YS, et al. Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother, 2007,51(2):763-765.
    44. Zhang R, Zhou HW, Cai JC, et al. Plasmid-mediated carbapenem-hydrolysing beta-lactamase KPC-2 in carbapenem-resistant Serratia marcescens isolates from Hangzhou, China. J Antimicrob Chemother,2007,59(3):574-576.
    45. Zhang R, Yang L, Cai JC, et al. High-level carbapenem resistance in a Citrobacter freundii clinical isolate is due to a combination of KPC-2 production and decreased porin expression. J Med Microbiol,2008,57(Pt 3):332-337.
    46. Cai JC, Zhou HW, Zhang R, et al. Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli Isolates possessing the plasmid-mediated carbapenem-hydrolyzing. beta-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob Agents Chemother,2008,52(6):2014-2018.
    47.蔡加昌,周宏伟,陈功祥,等.一株耐碳青霉烯类的阴沟肠杆菌的KPC酶检测.中华医学杂志,2008,88(2):135-138.
    48.王彩虹,陈坚,郭杰,等.质粒介导KPC-2型碳青霉烯酶弗劳地柠檬酸盐杆菌的研究.中华检验医学杂志,2009,32(11):1233-1236.
    49. Shen P, Wei Z, Jiang Y, et al. Novel genetic environment of the carbapenem-hydrolyzing beta-lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob Agents Chemother,2009,53(10):4333-4338.
    50. Wu Q, Liu Q, Han L, et al. Plasmid-mediated carbapenem-hydrolyzing enzyme KPC-2 and ArmA 16S rRNA methylase conferring high-level aminoglycoside resistance in carbapenem-resistant Enterobacter cloacae in China. Diagn Microbiol Infect Dis,2010,66(3):326-328.
    51.沈继录,朱德妹,吴卫红,等.革兰阴性杆菌碳青霉烯酶产生与细菌耐药性关系的研究.中华检验医学杂志,2008,31(4):408-414.
    52.汤瑾,蒋燕群,李卿,等.一例碳青霉烯类抗菌药物耐药的肺炎克雷伯菌耐药机制研究.检验医学,2009,24(5):343-346.
    53.蒯守刚,邵海枫,王卫萍,等.肺炎克雷伯菌介导碳青霉烯类耐药的基因型检测.临床检验杂志,2008,26(5):358-361.
    54.蒯守刚,邵海枫,王卫萍,等.大肠埃希菌质粒型碳青霉烯酶KPC-2检测和分析.中华检验医学杂志,2009,32(10):1120-1123.
    55.李轶,冯羡菊.河南发现产KPC-2型碳青霉烯酶的肺炎克雷伯菌.中华检验医学杂志,2009,32(9):1045-1046.
    56.苏丹虹,李敏亮,金光耀,等.肺炎克雷伯菌及大肠埃希菌产KPC酶的检测研
    究.中国抗生素杂志,2009,34(11):684-687.
    57. Peleg AY, Franklin C, Bell JM, et al. Dissemination of the metallo-beta-lactamase gene blaIMP-4 among gram-negative pathogens in a clinical setting in Australia. Clin Infect Dis,2005,41(11):1549-1556.
    58. Herbert S, Halvorsen DS, Leong T, et al. Large outbreak of infection and colonization with gram-negative pathogens carrying the metallo-beta-lactamase gene blaIMP-4 at a 320-bed tertiary hospital in Australia. Infect Control Hosp Epidemiol,2007,28(1):98-101.
    59. Yan JJ, Ko WC, Wu JJ. Identification of a plasmid encoding SHV-12, TEM-1, and a variant of IMP-2 metallo-beta-lactamase, IMP-8, from a clinical isolate of Klebsiella pneumoniae. Antimicrob Agents Chemother,2001,45(8):2368-2371.
    60. Yan JJ, Ko WC, Chuang CL, et al. Metallo-beta-lactamase-producing Enterobacteriaceae isolates in a university hospital in Taiwan:prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii. J Antimicrob Chemother,2002,50(4):503-511.
    61. Liu YF, Yan JJ, Ko WC, et al. Characterization of carbapenem-non-susceptible Escherichia coli isolates from a university hospital in Taiwan. J Antimicrob Chemother,2008,61(5):1020-1023.
    62. Koh TH, Babini GS, Woodford N, et al. Carbapenem-hydrolysing IMP-1 beta-lactamase in Klebsiella pneumoniae from Singapore. Lancet, 1999,353(9170):2162.
    63. Lincopan N, McCulloch JA, Reinert C, et al. First isolation of metallo-beta-lactamase-producing multiresistant Klebsiella pneumoniae from a patient in Brazil. J Clin Microbiol,2005,43(1):516-519.
    64. Lincopan N, Leis R, Vianello MA, et al. Enterobacteria producing extended-spectrum beta-lactamases and IMP-1 metallo-beta-lactamases isolated from Brazilian hospitals. J Med Microbiol,2006,55(Pt 11):1611-1613.
    65. Aktas Z, Bal C, Midilli K, et al. First IMP-1-producing Klebsiella pneumoniae isolate in Turkey. Clin Microbiol Infect,2006,12(7):695-696.
    66. Deshpande LM, Jones RN, Fritsche TR, et al. Occurrence and characterization of carbapenemase-producing Enterobacteriaceae:report from the SENTRY Antimicrobial Surveillance Program (2000-2004). Microb Drug Resist, 2006,12(4):223-230.
    67. Woodford N, Dallow JW, Hill RL, et al. Ertapenem resistance among Klebsiella and Enterobacter submitted in the UK to a reference laboratory. Int J Antimicrob Agents,2007,29(4):456-459.
    68. Biendo M, Canarelli B, Thomas D, et al. Successive emergence of extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacter aerogenes isolates in a university hospital. J Clin Microbiol, 2008,46(3):1037-1044.
    69. Hawkey PM, Xiong J, Ye H, et al. Occurrence of a new metallo-beta-lactamase IMP-4 carried on a conjugative plasmid in Citrobacter youngae from the People's Republic of China. FEMS Microbiol Lett,2001,194(1):53-57.
    70.骆俊,朱德妹,徐晓刚,等.泛耐药弗劳地柠檬酸杆菌产β内酰胺酶及同源性.中华传染病杂志,2006,24(5):291-295.
    71. Mendes RE, Bell JM, Turnidge JD, et al. Carbapenem-resistant isolates of Klebsiella pneumoniae in China and detection of a conjugative plasmid (blaKPC-2 plus qnrB4) and a blaIMP-4 gene. Antimicrob Agents Chemother, 2008,52(2):798-799.
    72. Yang Q, Wang H, Sun H, et al. Phenotypic and genotypic characterization of Enterobacteriaceae with decreased susceptibility to carbapenems:results from large hospital-based surveillance studies in China. Antimicrob Agents Chemother, 2010,54(1):573-577.
    73. Chen LR, Zhou HW, Cai JC, et al. Combination of IMP-4 metallo-beta-lactamase production and porin deficiency causes carbapenem resistance in a Klebsiella oxytoca clinical isolate. Diagn Microbiol Infect Dis,2009,65(2):163-167.
    74. Chen LR, Zhou HW,, Cai JC, et al. Detection of plasmid-mediated IMP-1 metallo-beta-lactamase and quinolone resistance determinants in an ertapenem-resistant Enterobacter cloacae isolate. J Zhejiang Univ Sci B, 2009,10(5):348-354.
    75. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev,2001,14(4):933-951, table of contents.
    76. Domenech-Sanchez A, Hernandez-Alles S, Martinez-Martinez L, et al. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in beta-lactam antibiotic resistance. J Bacteriol,1999,181(9):2726-2732.
    77. van de Klundert JA, van Gestel MH, Meerdink G, et al. Emergence of bacterial resistance to cefamandole in vivo due to outer membrane protein deficiency. Eur J Clin Microbiol Infect Dis,1988,7(6):776-778.
    78. Rice LB, Carias LL, Etter L, et al. Resistance to cefoperazone-sulbactam in Klebsiella pneumoniae:evidence for enhanced resistance resulting from the coexistence of two different resistance mechanisms. Antimicrob Agents Chemother, 1993,37(5):1061-1064.
    79. Martinez-Martinez L, Hernandez-Alles S, Alberti S, et al. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins. Antimicrob Agents Chemother, 1996,40(2):342-348.
    1. Queenan AM, Bush K. Carbapenemases:the versatile beta-lactamases. Clin Microbiol Rev,2007,20(3):440-458.
    2. Robledo IE, Aquino EE, Sante MI, et al. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob Agents Chemother,2010,54(3):1354-1357.
    3. Castanheira M, Deshpande LM, DiPersio JR, et al. First descriptions of blaKPC in Raoultella spp. (R. planticola and R. ornithinolytica):report from the SENTRY Antimicrobial Surveillance Program. J Clin Microbiol,2009,47(12):4129-4130.
    4. Naas T, Cuzon G, Villegas MV, et al. Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. Antimicrob Agents Chemother, 2008,52(4):1257-1263.
    5. Gootz TD, Lescoe MK, Dib-Hajj F, et al. Genetic organization of transposase regions surrounding blaKPC carbapenemase genes on plasmids from Klebsiella strains isolated in a New York City hospital. Antimicrob Agents Chemother, 2009,53(5):1998-2004.
    6. Rice LB, Carias LL, Hutton RA, et al. The KQ element, a complex genetic region conferring transferable resistance to carbapenems, aminoglycosides, and fluoroquinolones in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2008,52(9):3427-3429.
    7. Leavitt A, Chmelnitsky I, Ofek I, et al. Plasmid pKpQIL encoding KPC-3 and TEM-1 confers carbapenem resistance in an extremely drug-resistant epidemic Klebsiella pneumoniae strain. J Antimicrob Chemother,2010,65(2):243-248.
    8. Shen P, Wei Z, Jiang Y, et al. Novel genetic environment of the carbapenem-hydrolyzing beta-lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob Agents Chemother,2009,53(10):4333-4338.
    1. Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs). Clin Microbiol Infect,2000,6(9):460-463.
    2. Yang Y, Bhachech N, Bush K. Biochemical comparison of imipenem, meropenem and biapenem:permeability, binding to penicillin-binding proteins, and stability to hydrolysis by beta-lactamases. J Antimicrob Chemother,1995,35(1):75-84.
    3. Nord CE, Lindmark A, Persson I. Susceptibility of anaerobic bacteria to meropenem. J Antimicrob Chemother,1989,24 Suppl A:113-117.
    4. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother,1995,39(6):1211-1233.
    5. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci, 1980,289(1036):321-331.
    6. Naas T, Vandel L, Sougakoff W, et al. Cloning and sequence analysis of the gene for a carbapenem-hydrolyzing class A beta-lactamase, Sme-1, from Serratia marcescens S6. Antimicrob Agents Chemother,1994,38(6):1262-1270.
    7. Yang YJ, Wu PJ, Livermore DM. Biochemical characterization of a beta-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrob Agents Chemother,1990,34(5):755-758.
    8. Troillet N, Carmeli Y, Venkataraman L, et al. Epidemiological analysis of imipenem-resistant Serratia marcescens in hospitalized patients. J Hosp Infect, 1999,42(1):37-43.
    9. Queenan AM, Torres-Viera C, Gold HS, et al. SME-type carbapenem-hydrolyzing class A beta-lactamases from geographically diverse Serratia marcescens strains. Antimicrob Agents Chemother,2000,44(11):3035-3039.
    10. Gales AC, Biedenbach DJ, Winokur P, et al. Carbapenem-resistant Serratia marcescens isolates producing Bush group 2f beta-lactamase (SME-1) in the United States:results from the MYSTIC Programme. Diagn Microbiol Infect Dis, 2001,39(2):125-127.
    11. Deshpande LM, Rhomberg PR, Sader HS, et al. Emergence of serine carbapenemases (KPC and SME) among clinical strains of Enterobacteriaceae isolated in the United States Medical Centers:report from the MYSTIC Program (1999-2005). Diagn Microbiol Infect Dis,2006,56(4):367-372.
    12. Queenan AM, Shang W, Schreckenberger P, et al. SME-3, a novel member of the Serratia marcescens SME family of carbapenem-hydrolyzing beta-lactamases. Antimicrob Agents Chemother,2006,50(10):3485-3487.
    13. Nordmann P, Mariotte S, Naas T, et al. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob Agents Chemother, 1993,37(5):939-946.
    14. Radice M, Power P, Gutkind G, et al. First class a carbapenemase isolated from enterobacteriaceae in Argentina. Antimicrob Agents Chemother, 2004,48(3):1068-1069.
    15. Pottumarthy S, Moland ES, Juretschko S, et al. NmcA carbapenem-hydrolyzing enzyme in Enterobacter cloacae in North America. Emerg Infect Dis, 2003,9(8):999-1002.
    16. Rasmussen BA, Bush K, Keeney D, et al. Characterization of IMI-1 beta-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrob Agents Chemother,1996,40(9):2080-2086.
    17. Aubron C, Poirel L, Ash RJ, et al. Carbapenemase-producing Enterobacteriaceae, U.S. rivers. Emerg Infect Dis,2005,11(2):260-264.
    18. Yu YS, Du XX, Zhou ZH, et al. First isolation of blaIMI-2 in an Enterobacter cloacae clinical isolate from China. Antimicrob Agents Chemother, 2006,50(4):1610-1611.
    19. Henriques I, Moura A, Alves A, et al. Molecular characterization of a carbapenem-hydrolyzing class A beta-lactamase, SFC-1, from Serratia fonticola UTAD54. Antimicrob Agents Chemother,2004,48(6):2321-2324.
    20. Fonseca F, Sarmento AC, Henriques I, et al. Biochemical Characterization of SFC-1, a class A carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother,2007,51(12):4512-4514.
    21. Poirel L, Heritier C, Podglajen I, et al. Emergence in Klebsiella pneumoniae of a chromosome-encoded SHV beta-lactamase that compromises the efficacy of imipenem. Antimicrob Agents Chemother,2003,47(2):755-758.
    22. Girlich D, Poirel L, Nordmann P. Novel ambler class A carbapenem-hydrolyzing beta-lactamase from a Pseudomonas fluorescens isolate from the Seine River, Paris, France. Antimicrob Agents Chemother,2010,54(1):328-332.
    23. Poirel L, Le Thomas I, Naas T, et al. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum beta-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother,2000,44(3):622-632.
    24. Giakkoupi P, Tzouvelekis LS, Tsakris A, et al. IBC-1, a novel integron-associated class A beta-lactamase with extended-spectrum properties produced by an Enterobacter cloacae clinical strain. Antimicrob Agents Chemother, 2000,44(9):2247-2253.
    25. Poirel L, Weldhagen GF, Naas T, et al. GES-2, a class A beta-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob Agents Chemother,2001,45(9):2598-2603.
    26. Wachino J, Doi Y, Yamane K, et al. Molecular characterization of a cephamycin-hydrolyzing and inhibitor-resistant class A beta-lactamase, GES-4, possessing a single G170S substitution in the omega-loop. Antimicrob Agents Chemother,2004,48(8):2905-2910.
    27. Vourli S, Giakkoupi P, Miriagou V, et al. Novel GES/IBC extended-spectrum beta-lactamase variants with carbapenemase activity in clinical enterobacteria. FEMS Microbiol Lett,2004,234(2):209-213.
    28. Jeong SH, Bae IK, Kim D, et al. First outbreak of Klebsiella pneumoniae clinical isolates producing GES-5 and SHV-12 extended-spectrum beta-lactamases in Korea. Antimicrob Agents Chemother,2005,49(11):4809-4810.
    29. Yigit H, Queenan AM, Anderson GJ, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother,2001,45(4):1151-1161.
    30. Smith Moland E, Hanson ND, Herrera VL, et al. Plasmid-mediated, carbapenem-hydrolysing beta-lactamase, KPC-2, in Klebsiella pneumoniae isolates. J Antimicrob Chemother,2003,51(3):711-714.
    31. Woodford N, Tierno PM, Jr., Young K, et al. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A beta-lactamase, KPC-3, in a New York Medical Center. Antimicrob Agents Chemother, 2004,48(12):4793-4799.
    32. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis,2009,9(4):228-236.
    33. Naas T, Nordmann P, Vedel G, et al. Plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC in a Klebsiella pneumoniae isolate from France. Antimicrob Agents Chemother,2005,49(10):4423-4424.
    34. Petrella S, Ziental-Gelus N, Mayer C, et al. Genetic and structural insights into the dissemination potential of the extremely broad-spectrum class A beta-lactamase KPC-2 identified in an Escherichia coli strain and an Enterobacter cloacae strain isolated from the same patient in France. Antimicrob Agents Chemother, 2008,52(10):3725-3736.
    35. Dortet L, Radu I, Gautier V, et al. Intercontinental travels of patients and dissemination of plasmid-mediated carbapenemase KPC-3 associated with OXA-9 and TEM-1. J Antimicrob Chemother,2008,61(2):455-457.
    36. Villegas MV, Lolans K, Correa A, et al. First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America. Antimicrob Agents Chemother,2006,50(8):2880-2882.
    37. Navon-Venezia S, Chmelnitsky I, Leavitt A, et al. Plasmid-mediated imipenem-hydrolyzing enzyme KPC-2 among multiple carbapenem-resistant Escherichia coli clones in Israel. Antimicrob Agents Chemother, 2006,50(9):3098-3101.
    38. Leavitt A, Navon-Venezia S, Chmelnitsky I, et al. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob Agents Chemother,2007,51(8):3026-3029.
    39. Navon-Venezia S, Leavitt A, Schwaber MJ, et al. First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob Agents Chemother, 2009,53(2):818-820.
    40. Marchaim D, Navon-Venezia S, Schwaber MJ, et al. Isolation of imipenem-resistant Enterobacter species:emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes. Antimicrob Agents Chemother,2008,52(4):1413-1418.
    41. Samra Z, Ofir O, Lishtzinsky Y, et al. Outbreak of carbapenem-resistant Klebsiella pneumoniae producing KPC-3 in a tertiary medical centre in Israel. Int J Antimicrob Agents,2007,30(6):525-529.
    42. Chmelnitsky I, Navon-Venezia S, Strahilevitz J, et al. Plasmid-mediated qnrB2 and carbapenemase gene bla(KPC-2) carried on the same plasmid in carbapenem-resistant ciprofloxacin-susceptible Enterobacter cloacae isolates. Antimicrob Agents Chemother,2008,52(8):2962-2965.
    43. Wei ZQ, Du XX, Yu YS, et al. Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother, 2007,51(2):763-765.
    44. Pasteran FG, Otaegui L, Guerriero L, et al. Klebsiella pneumoniae Carbapenemase-2, Buenos Aires, Argentina. Emerg Infect Dis, 2008,14(7):1178-1180.
    45. Tsakris A, Kristo I, Poulou A, et al. First occurrence of KPC-2-possessing Klebsiella pneumoniae in a Greek hospital and recommendation for detection with boronic acid disc tests. J Antimicrob Chemother,2008,62(6):1257-1260.
    46. Giakoupi P, Maltezou H, Polemis M, et al. KPC-2-producing Klebsiella pneumoniae infections in Greek hospitals are mainly due to a hyperepidemic clone. Euro Surveill,2009,14(21).
    47. Woodford N, Zhang J, Warner M, et al. Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J Antimicrob Chemother, 2008,62(6):1261-1264.
    48. Monteiro J, Santos AF, Asensi MD, et al. First report of KPC-2-producing Klebsiella pneumoniae strains in Brazil. Antimicrob Agents Chemother, 2009,53(1):333-334.
    49. Peirano G, Seki LM, Val Passos VL, et al. Carbapenem-hydrolysing beta-lactamase KPC-2 in Klebsiella pneumoniae isolated in Rio de Janeiro, Brazil. J Antimicrob Chemother,2009,63(2):265-268.
    50. Pavez M, Mamizuka EM, Lincopan N. Early dissemination of KPC-2-producing Klebsiella pneumoniae strains in Brazil. Antimicrob Agents Chemother, 2009,53(6):2702.
    51. Zavascki AP, Machado AB, de Oliveira KR, et al. KPC-2-producing Enterobacter cloacae in two cities from Southern Brazil, Int J Antimicrob Agents, 2009,34(3):286-288.
    52. Samuelsen O, Naseer U, Tofteland S, et al. Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing plasmid-mediated KPC carbapenemase in Norway and Sweden. J Antimicrob Chemother, 2009,63(4):654-658.
    53. Roche C, Cotter M, N OC, et al. First identification of class A carbapenemase-producing Klebsiella pneumoniae in the Republic of Ireland. Euro Surveill,2009,14(13).
    54. Goldfarb D, Harvey SB, Jessamine K, et al. Detection of plasmid-mediated KPC-producing Klebsiella pneumoniae in Ottawa, Canada:evidence of intrahospital transmission. J Clin Microbiol,2009,47(6):1920-1922.
    55. Baraniak A, Izdebski R, Herda M, et al. Emergence of Klebsiella pneumoniae ST258 with KPC-2 in Poland. Antimicrob Agents Chemother, 2009,53(10):4565-4567.
    56. Giani T, D'Andrea MM, Pecile P, et al. Emergence in Italy of Klebsiella pneumoniae sequence; type 258 producing KPC-3 Carbapenemase. J Clin Microbiol,2009,47(11):3793-3794.
    57. Fontana C, Favaro M, Sarmati L, et al. Emergence of KPC-producing Klebsiella pneumoniae in Italy. BMC Res Notes,2010,3(1):40.
    58. Osterblad M, Kirveskari J, Koskela S, et al. First isolations of KPC-2-carrying ST258 Klebsiella pneumoniae strains in Finland, June and August 2009. Euro Surveill,2009,14(40).
    59. Bogaerts P, Montesinos I, Rodriguez-Villalobos H, et al. Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing KPC-2 carbapenemase in Belgium. J Antimicrob Chemother,2010,65(2):361-362.
    60. Hammerum AM, Hansen F, Lester CH, et al. Detection of the first two Klebsiella pneumoniae isolates with sequence type 258 producing KPC-2 carbapenemase in Denmark. Int J Antimicrob Agents,2010.
    61. Rhee JY, Park YK, Shin JY, et al. KPC-producing extreme-drug resistant (XDR) Klebsiella pneumoniae isolate from a patient with diabetic mellitus and chronic renal failure on hemodialysis in South Korea. Antimicrob Agents Chemother, 2010.
    62. Wendt C, Schutt S, Dalpke AH, et al. First outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in Germany. Eur J Clin Microbiol Infect Dis,2010.
    63. Tibbetts R, Frye JG, Marschall J, et al. Detection of KPC-2 in a clinical isolate of Proteus mirabilis and first reported description of carbapenemase resistance caused by a KPC beta-lactamase in P. mirabilis. J Clin Microbiol, 2008,46(9):3080-3083.
    64. Villegas MV, Lolans K, Correa A, et al. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother,2007,51(4):1553-1555.
    65. Wolter DJ, Khalaf N, Robledo IE, et al. Surveillance of carbapenem-resistant Pseudomonas aeruginosa isolates from Puerto Rican Medical Center Hospitals: dissemination of KPC and IMP-18 beta-lactamases. Antimicrob Agents Chemother,2009,53(4):1660-1664.
    66. Akpaka PE, Swanston WH, Ihemere HN, et al. Emergence of KPC-producing Pseudomonas aeruginosa in Trinidad and Tobago. J Clin Microbiol, 2009,47(8):2670-2671.
    67. Bennett JW, Herrera ML, Lewis JS,2nd, et al. KPC-2-producing Enterobacter cloacae and pseudomonas putida coinfection in a liver transplant recipient. Antimicrob Agents Chemother,2009,53(1):292-294.
    68. Castanheira M, Deshpande LM, DiPersio JR, et al. First descriptions of blaKPC in Raoultella spp. (R. planticola and R. ornithinolytica):report from the SENTRY Antimicrobial Surveillance Program. J Clin Microbiol,2009,47(12):4129-4130.
    69. Robledo IE, Aquino EE, Sante MI, et al. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob Agents Chemother,2010,54(3):1354-1357.
    70. Bradford PA, Bratu S, Urban C, et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis, 2004,39(1):55-60.
    71. Bratu S, Landman D, Haag R, et al. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City:a new threat to our antibiotic armamentarium. Arch Intern Med,2005,165(12):1430-1435.
    72. Cai JC, Zhou HW, Zhang R, et al. Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli Isolates possessing the plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob Agents Chemother,2008,52(6):2014-2018.
    73. Souli M, Galani I, Antoniadou A, et al. An outbreak of infection due to beta-Lactamase Klebsiella pneumoniae Carbapenemase 2-producing K. pneumoniae in a Greek University Hospital:molecular characterization, epidemiology, and outcomes. Clin Infect Dis,2010,50(3):364-373.
    74. Zhang R, Zhou HW, Cai JC, et al. Plasmid-mediated carbapenem-hydrolysing beta-lactamase KPC-2 in carbapenem-resistant Serratia marcescens isolates from Hangzhou, China. J Antimicrob Chemother,2007,59(3):574-576.
    75. Zhang R, Yang L, Cai JC, et al. High-level carbapenem resistance in a Citrobacter freundii clinical isolate is due to a combination of KPC-2 production and decreased porin expression. J Med Microbiol,2008,57(Pt 3):332-337.
    76.蔡加昌,周宏伟,陈功祥,等.一株耐碳青霉烯类的阴沟肠杆菌的KPC酶检测.中华医学杂志,2008,88(2):135-138.
    77.王彩虹,陈坚,郭杰,等.质粒介导KPC-2型碳青霉烯酶弗劳地柠檬酸盐杆菌的研究.中华检验医学杂志,2009,32(11):1233-1236.
    78. Shen P, Wei Z, Jiang Y, et al. Novel genetic environment of the carbapenem-hydrolyzing beta-lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob Agents Chemother,2009,53(10):4333-4338.
    79. Wu Q, Liu Q, Han L, et al. Plasmid-mediated carbapenem-hydrolyzing enzyme KPC-2 and ArmA 16S rRNA methylase conferring high-level aminoglycoside resistance in carbapenem-resistant Enterobacter cloacae in China. Diagn Microbiol Infect Dis,2010,66(3):326-328.
    80.沈继录,朱德妹,吴卫红,等.革兰阴性杆菌碳青霉烯酶产生与细菌耐药性关系的研究.中华检验医学杂志,2008,31(4):408-414.
    81.汤瑾,蒋燕群,李卿,等.一例碳青霉烯类抗菌药物耐药的肺炎克雷伯菌耐药机制研究.检验医学,2009,24(5):343-346.
    82.蒯守刚,邵海枫,王卫萍,等.肺炎克雷伯菌介导碳青霉烯类耐药的基因型检测.临床检验杂志,2008,26(5):358-361.
    83.蒯守刚,邵海枫,王卫萍,等.大肠埃希菌质粒型碳青霉烯酶KPC-2检测和分析.中华检验医学杂志,2009,32(10):1120-1123.
    84.李轶,冯羡菊.河南发现产KPC-2型碳青霉烯酶的肺炎克雷伯菌.中华检验医学杂志,2009,32(9):1045-1046.
    85.苏丹虹,李敏亮,金光耀,等.肺炎克雷伯菌及大肠埃希菌产KPC酶的检测研究.中国抗生素杂志,2009,34(11):684-687.
    86. Doi Y, Potoski BA, Adams-Haduch JM, et al. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type beta-lactamase by use of a boronic acid compound. J Clin Microbiol,2008,46(12):4083-4086.
    87. Tsakris A, Kristo I, Poulou A, et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol,2009,47(2):362-367.
    88. Samra Z, Bahar J, Madar-Shapiro L, et al. Evaluation of CHROMagar KPC for rapid detection of carbapenem-resistant Enterobacteriaceae. J Clin Microbiol, 2008,46(9):3110-3111.
    89. Hindiyeh M, Smollen G, Grossman Z, et al. Rapid detection of blaKPC carbapenemase genes by real-time PCR. J Clin Microbiol,2008,46(9):2879-2883.
    90. Cole JM, Schuetz AN, Hill CE, et al. Development and evaluation of a real-time PCR assay for detection of Klebsiella pneumoniae carbapenemase genes. J Clin Microbiol,2009,47(2):322-326.
    91. Kotlovsky T, Shalginov R, Austin L, et al. Rapid detection of bla(KPC)-positive Klebsiella pneumoniae in a clinical setting. Eur J Clin Microbiol Infect Dis, 2009,28(3):309-311.
    92. Miriagou V, Tzouvelekis LS, Rossiter S, et al. Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob Agents Chemother,2003,47(4):1297-1300.
    93. Naas T, Cuzon G, Villegas MV, et al. Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. Antimicrob Agents Chemother, 2008,52(4):1257-1263.
    94. Gootz TD, Lescoe MK, Dib-Hajj F, et al. Genetic organization of transposase regions surrounding blaKPC carbapenemase genes on plasmids from Klebsiella strains isolated in a New York City hospital. Antimicrob Agents Chemother, 2009,53(5):1998-2004.
    95. Rice LB, Carias LL, Hutton RA, et al. The KQ element, a complex genetic region conferring transferable resistance to carbapenems, aminoglycosides, and fluoroquinolones in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2008,52(9):3427-3429.
    96. Leavitt A, Chmelnitsky I, Ofek I, et al. Plasmid pKpQIL encoding KPC-3 and TEM-1 confers carbapenem resistance in an extremely drug-resistant epidemic Klebsiella pneumoniae strain. J Antimicrob Chemother,2010,65(2):243-248.
    97. Queenan AM, Bush K. Carbapenemases:the versatile beta-lactamases. Clin Microbiol Rev,2007,20(3):440-458, table of contents.
    98. Peleg AY, Franklin C, Bell JM, et al. Dissemination of the metallo-beta-lactamase gene blaIMP-4 among gram-negative pathogens in a clinical setting in Australia. Clin Infect Dis,2005,41(11):1549-1556.
    99. Herbert S, Halvorsen DS, Leong T, et al. Large outbreak of infection and colonization with gram-negative pathogens carrying the metallo-beta-lactamase gene blaIMP-4 at a 320-bed tertiary hospital in Australia. Infect Control Hosp Epidemiol,2007,28(1):98-101.
    100. Yan JJ, Ko WC, Wu JJ. Identification of a plasmid encoding SHV-12, TEM-1, and a variant of IMP-2 metallo-beta-lactamase, IMP-8, from a clinical isolate of Klebsiella pneumoniae. Antimicrob Agents Chemother,2001,45(8):2368-2371.
    101. Yan JJ, Ko WC, Chuang CL, et al. Metallo-beta-lactamase-producing Enterobacteriaceae isolates in a university hospital in Taiwan:prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii. J Antimicrob Chemother,2002,50(4):503-511.
    102. Wu JJ, Ko WC, Tsai SH, et al. Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrob Agents Chemother, 2007,51(4):1223-1227.
    103. Liu YF, Yan JJ, Ko WC, et al. Characterization of carbapenem-non-susceptible Escherichia coli isolates from a university hospital in Taiwan. J Antimicrob Chemother,2008,61(5):1020-1023.
    104. Wu JJ, Ko WC, Wu HM, et al. Prevalence of Qnr determinants among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae in a Taiwanese hospital,1999-2005. J Antimicrob Chemother,2008,61(6):1234-1239.
    105. Koh TH, Babini GS, Woodford N, et al. Carbapenem-hydrolysing IMP-1 beta-lactamase in Klebsiella pneumoniae from Singapore. Lancet, 1999,353(9170):2162.
    106. Lincopan N, McCulloch JA, Reinert C, et al. First isolation of metallo-beta-lactamase-producing multiresistant Klebsiella pneumoniae from a patient in Brazil. J Clin Microbiol,2005,43(1):516-519.
    107. Lincopan N, Leis R, Vianello MA, et al. Enterobacteria producing extended-spectrum beta-lactamases and IMP-1 metallo-beta-lactamases isolated from Brazilian hospitals. J Med Microbiol,2006,55(Pt 11):1611-1613.
    108. Aktas Z, Bal C, Midilli K, et al. First IMP-1-producing Klebsiella pneumoniae isolate in Turkey. Clin Microbiol Infect,2006,12(7):695-696.
    109. Deshpande LM, Jones RN, Fritsche TR, et al. Occurrence and characterization of carbapenemase-producing Enterobacteriaceae:report from the SENTRY Antimicrobial Surveillance Program (2000-2004). Microb Drug Resist, 2006,12(4):223-230.
    110. Woodford N, Dallow JW, Hill RL, et al. Ertapenem resistance among Klebsiella and Enterobacter submitted in the UK to a reference laboratory. Int J Antimicrob Agents,2007,29(4):456-459.
    111. Biendo M, Canarelli B, Thomas D, et al. Successive emergence of extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacter aerogenes isolates in a university hospital. J Clin Microbiol, 2008,46(3):1037-1044.
    112. Hawkey PM, Xiong J, Ye H, et al. Occurrence of a new metallo-beta-lactamase IMP-4 carried on a conjugative plasmid in Citrobacter youngae from the People's Republic of China. FEMS Microbiol Lett,2001,194(1):53-57.
    113.骆俊,朱德妹,徐晓刚,等.泛耐药弗劳地柠檬酸杆菌产β内酰胺酶及同源性.中华传染病杂志,2006,24(5):291-295.
    114. Mendes RE, Bell JM, Turnidge JD, et al. Carbapenem-resistant isolates of Klebsiella pneumoniae in China and detection of a conjugative plasmid (blaKPC-2 plus qnrB4) and a blaIMP-4 gene. Antimicrob Agents Chemother, 2008,52(2):798-799.
    115. Chen LR, Zhou HW, Cai JC, et al. Combination of IMP-4 metallo-beta-lactamase production and porin deficiency causes carbapenem resistance in a Klebsiella oxytoca clinical isolate. Diagn Microbiol Infect Dis,2009,65(2):163-167.
    116. Chen LR, Zhou HW, Cai JC, et al. Detection of plasmid-mediated IMP-1 metallo-beta-lactamase and quinolone resistance determinants in an ertapenem-resistant Enterobacter cloacae isolate. J Zhejiang Univ Sci B, 2009,10(5):348-354.
    117.张嵘,蔡加昌,胡云建,等.IMP-4型金属β-内酰胺酶合并膜孔蛋白OmpK36缺失引起肺炎克雷伯菌对碳青霉烯高水平耐药.中华检验医学杂志,2010.
    118. Yang Q, Wang H, Sun H, et al. Phenotypic and genotypic characterization of Enterobacteriaceae with decreased susceptibility to carbapenems:results from large hospital-based surveillance studies in China. Antimicrob Agents Chemother, 2010,54(1):573-577.
    119. Senda K, Arakawa Y, Ichiyama S, et al. PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams. J Clin Microbiol,1996,34(12):2909-2913.
    120. Shibata N, Doi Y, Yamane K, et al. PCR typing of genetic determinants for metallo-beta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol, 2003,41(12):5407-5413.
    121. Arakawa Y, Murakami M, Suzuki K, et al. A novel integron-like element carrying the metallo-beta-lactamase gene blaIMP. Antimicrob Agents Chemother, 1995,39(7):1612-1615.
    122. Lauretti L, Riccio ML, Mazzariol A, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother,1999,43(7):1584-1590.
    123. Poirel L, Naas T, Nicolas D, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid-and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother,2000,44(4):891-897.
    124. Vatopoulos A. High rates of metallo-beta-lactamase-producing Klebsiella pneumoniae in Greece--a review of the current evidence. Euro Surveill, 2008,13(4).
    125. Giakkoupi P, Xanthaki A, Kanelopoulou M, et al. VIM-1 Metallo-beta-lactamase-producing Klebsiella pneumoniae strains in Greek hospitals. J Clin Microbiol,2003,41(8):3893-3896.
    126. Loli A, Tzouvelekis LS, Tzelepi E, et al. Sources of diversity of carbapenem resistance levels in Klebsiella pneumoniae carrying blaVIM-1. J Antimicrob Chemother,2006,58(3):669-672.
    127. Ikonomidis A, Tokatlidou D, Kristo I, et al. Outbreaks in distinct regions due to a single Klebsiella pneumoniae clone carrying a bla VIM-1 metallo-{beta}-lactamase gene. J Clin Microbiol,2005,43(10):5344-5347.
    128. Psichogiou M, Tassios PT, Avlamis A, et al. Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece:a prospective survey. J Antimicrob Chemother,2008,61(1):59-63.
    129. Miriagou V, Tzelepi E, Gianneli D, et al. Escherichia coli with a self-transferable, multiresistant plasmid coding for metallo-beta-lactamase VIM-1. Antimicrob Agents Chemother,2003,47(1):395-397.
    130. Scoulica EV, Neonakis IK, Gikas AI, et al. Spread of bla(VIM-1)-producing E. coli in a university hospital in Greece. Genetic analysis of the integron carrying the bla(VIM-1) metallo-beta-lactamase gene. Diagn Microbiol Infect Dis, 2004,48(3):167-172.
    131. Galani I, Souli M, Chryssouli Z, et al. Characterization of a new integron containing bla(VIM-1) and aac(6')-IIc in an Enterobacter cloacae clinical isolate from Greece. J Antimicrob Chemother,2005,55(5):634-638.
    132. Vourli S, Tsorlini H, Katsifa H, et al. Emergence of Proteus mirabilis carrying the bla metallo-beta-lactamase gene. Clin Microbiol Infect,2006,12(7):691-694.
    133. Tsakris A, Ikonomidis A, Poulou A, et al. Transmission in the community of clonal Proteus mirabilis carrying VIM-1 metallo-beta-lactamase. J Antimicrob Chemother,2007,60(1):136-139.
    134. Tsakris A, Ikonomidis A, Spanakis N, et al. Characterization of In3Mor, a new integron carrying VIM-1 metallo-beta-lactamase and satl gene, from Morganella morganii. J Antimicrob Chemother,2007,59(4):739-741.
    135. Miriagou V, Douzinas EE, Papagiannitsis CC, et al. Emergence of Serratia liquefaciens and Klebsiella oxytoca with metallo-beta-lactamase-encoding IncW plasmids:further spread of the blaVIM-1-carrying integron In-e541. Int J Antimicrob Agents,2008,32(6):540-541.
    136. Vitti D, Protonotariou E, Sofianou D. Carbapenem-resistant Escherichia coli carrying the blaVIM-1 gene in the community. Int J Antimicrob Agents, 2009,34(2):187-188.
    137. Kassis-Chikhani N, Decre D, Gautier V, et al, First outbreak of multidrug-resistant Klebsiella pneumoniae carrying blaVIM-1 and blaSHV-5 in a French university hospital. J Antimicrob Chemother,2006,57(1):142-145.
    138. Tortola MT, Lavilla S, Miro E, et al. First detection of a carbapenem-hydrolyzing metalloenzyme in two enterobacteriaceae isolates in Spain. Antimicrob Agents Chemother,2005,49(8):3492-3494.
    139. Tato M, Coque TM, Ruiz-Garbajosa P, et al. Complex clonal and plasmid epidemiology in the first outbreak of Enterobacteriaceae infection involving VIM-1 metallo-beta-lactamase in Spain:toward endemicity? Clin Infect Dis, 2007,45(9):1171-1178.
    140. Cendejas E, Gomez-Gil R, Gomez-Sanchez P, et al. Detection and characterization of Enterobacteriaceae producing metallo-beta-lactamases in a tertiary-care hospital in Spain. Clin Microbiol Infect,2010,16(2):181-183.
    141. Weile J, Rahmig H, Gfroer S, et al. First detection of a VIM-1 metallo-beta-lactamase in a carbapenem-resistant Citrobacter freundii clinical isolate in an acute hospital in Germany. Scand J Infect Dis,2007,39(3):264-266.
    142. Weile J, Ohler S, Schonthal S, et al. A VIM-1 metallo-beta-lactamase-producing Klebsiella pneumoniae clinical isolate in an acute hospital in Germany. Int J Antimicrob Agents,2009,33(4):389-391.
    143. Cagnacci S, Gualco L, Roveta S, et al. Bloodstream infections caused by multidrug-resistant Klebsiella pneumoniae producing the carbapenem-hydrolysing VIM-1 metallo-beta-lactamase:first Italian outbreak. J Antimicrob Chemother, 2008,61 (2):296-300.
    144. Aschbacher R, Doumith M, Livermore DM, et al. Linkage of acquired quinolone resistance (qnrS1) and metallo-beta-lactamase (blaVIM-1) genes in multiple species of Enterobacteriaceae from Bolzano, Italy. J Antimicrob Chemother, 2008,61(3):515-523.
    145. Perilli M, Mezzatesta ML, Falcone M, et al. Class I integron-borne bla(VIM-1) carbapenemase in a strain of Enterobacter cloacae responsible for a case of fatal pneumonia. Microb Drug Resist,2008,14(1):45-47.
    146. Conceicao T, Brizio A, Duarte A, et al. First isolation of bla(VIM-2) in Klebsiella oxytoca clinical isolates from Portugal. Antimicrob Agents Chemother, 2005,49(1):476.
    147. Luzzaro F, Docquier JD, Colinon C, et al. Emergence in Klebsiella pneumoniae and Enterobacter cloacae clinical isolates of the VIM-4 metallo-beta-lactamase encoded by a conjugative plasmid. Antimicrob Agents Chemother, 2004,48(2):648-650.
    148. Ktari S, Arlet G, Mnif B, et al. Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-beta-lactamase, CTX-M-15 extended-spectrum beta-lactamase, and CMY-4 AmpC beta-lactamase in a Tunisian university hospital. Antimicrob Agents Chemother, 2006,50(12):4198-4201.
    149. Gacar GG, Midilli K, Kolayli F, et al. Genetic and enzymatic properties of metallo-beta-lactamase VIM-5 from a clinical isolate of Enterobacter cloacae. Antimicrob Agents Chemother,2005,49(10):4400-44.03.
    150. Robin F, Aggoune-Khinache N, Delmas J, et al. Novel VIM metallo-beta-lactamase variant from clinical isolates of Enterobacteriaceae from Algeria. Antimicrob Agents Chemother,2010,54(1):466-470.
    151. Rodriguez-Martinez JM, Nordmann P, Fortineau N, et al. VIM-19, a metallo-beta-lactamase with increased carbapenemase activity from Escherichia coli and Klebsiella pneumoniae. Antimicrob Agents Chemother, 2010,54(1):471-476.
    152. Jeong SH, Lee K, Chong Y, et al. Characterization of a new integron containing VIM-2, a metallo-beta-lactamase gene cassette, in a clinical isolate of Enterobacter cloacae. J Antimicrob Chemother,2003,51(2):397-400.
    153. Yum JH, Yong D, Lee K, et al. A new integron carrying VIM-2 metallo-beta-lactamase gene cassette in a Serratia marcescens isolate. Diagn Microbiol Infect Dis,2002,42(3):217-219.
    154. Yong D, Choi YS, Roh KH, et al. Increasing prevalence and diversity of metallo-beta-lactamases in Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae from Korea. Antimicrob Agents Chemother, 2006,50(5):1884-1886.
    155. Toleman MA, Simm AM, Murphy TA, et al. Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America:report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother, 2002,50(5):673-679.
    156. Poirel L, Magalhaes M, Lopes M, et al. Molecular analysis of metallo-beta-lactamase gene bla(SPM-1)-surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recife, Brazil. Antimicrob Agents Chemother,2004,48(4):1406-1409.
    157. Castanheira M, Toleman MA, Jones RN, et al. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob Agents Chemother,2004,48(12):4654-4661.
    158. Lee K, Yum JH, Yong D, et al. Novel acquired metallo-beta-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother,2005,49(11):4485-4491.
    159. Sekiguchi J, Morita K, Kitao T, et al. KHM-1, a novel plasmid-mediated metallo-beta-lactamase from a Citrobacter freundii clinical isolate. Antimicrob Agents Chemother,2008,52(11):4194-4197.
    160. Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother,2009,53(12):5046-5054.
    161. Fluit AC, Schmitz FJ. Resistance integrons and super-integrons. Clin Microbiol Infect,2004,10(4):272-288.
    162. Paton R, Miles RS, Hood J, et al. ARI 1:beta-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int J Antimicrob Agents,1993,2(2):81-87.
    163. Scaife W, Young HK, Paton RH, et al. Transferable imipenem-resistance in Acinetobacter species from a clinical source. J Antimicrob Chemother, 1995,36(3):585-586.
    164. Donald HM, Scaife W, Amyes SG, et al. Sequence analysis of ARI-1, a novel OXA beta-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob Agents Chemother,2000,44(1):196-199.
    165. Poirel L, Heritier C, Tolun V, et al. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2004,48(1):15-22.
    166. Nazic H, Poirel L, Nordmann P. Further identification of plasmid-mediated quinolone resistance determinant in Enterobacteriaceae in Turkey. Antimicrob Agents Chemother,2005,49(5):2146-2147.
    167. Cuzon G, Naas T, Bogaerts P, et al. Plasmid-encoded carbapenem-hydrolyzing beta-lactamase OXA-48 in an imipenem-susceptible Klebsiella pneumoniae strain from Belgium. Antimicrob Agents Chemother,2008,52(9):3463-3464.
    168. Aktas Z, Kayacan CB, Schneider I, et al. Carbapenem-hydrolyzing oxacillinase, OXA-48, persists in Klebsiella pneumoniae in Istanbul, Turkey. Chemotherapy, 2008,54(2):101-106.
    169. Gulmez D, Woodford N, Palepou MF, et al. Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae isolates from Turkey with OXA-48-like carbapenemases and outer membrane protein loss. Int J Antimicrob Agents, 2008,31(6):523-526.
    170. Carrer A, Poirel L, Eraksoy H, et al. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother,2008,52(8):2950-2954.
    171. Carrer A, Poirel L, Yilmaz M, et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother,2010,54(3):1369-1373.
    172. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev,2003,67(4):593-656.
    173. Nikaido H. Proteins forming large channels from bacterial and mitochondrial outer membranes:porins and phage lambda receptor protein. Methods Enzymol, 1983,97:85-100.
    174. Nikaido H, Rosenberg EY, Foulds J. Porin channels in Escherichia coli:studies with beta-lactams in intact cells. J Bacteriol,1983,153(1):232-240.
    175. Domenech-Sanchez A, Martinez-Martinez L, Hernandez-Alles S, et al. Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother,2003,47(10):3332-3335.
    176. Alberti S, Rodriquez-Quinones F, Schirmer T, et al. A porin from Klebsiella pneumoniae:sequence homology, three-dimensional model, and complement binding. Infect Immun,1995,63(3):903-910.
    177. Santiviago CA, Toro CS, Bucarey SA, et al. A chromosomal region surrounding the ompD porin gene marks a genetic difference between Salmonella typhi and the majority of Salmonella serovars. Microbiology,2001,147(Pt 7):1897-1907.
    178. Bornet C, Saint N, Fetnaci L, et al. Omp35, a new Enterobacter aerogenes porin involved in selective susceptibility to cephalosporins. Antimicrob Agents Chemother,2004,48(6):2153-2158.
    179. Mitsuyama J, Hiruma R, Yamaguchi A, et al. Identification of porins in outer membrane of Proteus, Morganella, and Providencia spp. and their role in outer membrane permeation of beta-lactams. Antimicrob Agents Chemother, 1987,31(3):379-384.
    180. Domenech-Sanchez A, Hernandez-Alles S, Martinez-Martinez L, et al. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in beta-lactam antibiotic resistance. J Bacteriol,1999,181(9):2726-2732.
    181. van de Klundert JA, van Gestel MH, Meerdink G, et al. Emergence of bacterial resistance to cefamandole in vivo due to outer membrane protein deficiency. Eur J Clin Microbiol Infect Dis,1988,7(6):776-778.
    182. Rice LB, Carias LL, Etter L, et al. Resistance to cefoperazone-sulbactam in Klebsiella pneumoniae:evidence for enhanced resistance resulting from the coexistence of two different resistance mechanisms. Antimicrob Agents Chemother,1993,37(5):1061-1064.
    183. Martinez-Martinez L, Hernandez-Alles S, Alberti S, et al. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins. Antimicrob Agents Chemother, 1996,40(2):342-348.
    184. Bradford PA, Urban C, Mariano N, et al. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein. Antimicrob Agents Chemother,1997,41(3):563-569.
    185. Cao VT, Arlet G, Ericsson BM, et al. Emergence of imipenem resistance in Klebsiella pneumoniae owing to combination of plasmid-mediated CMY-4 and permeability alteration. J Antimicrob Chemother,2000,46(6):895-900.
    186. Kaczmarek FM, Dib-Hajj. F, Shang W, et al. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of bla(ACT-1) beta-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin phoe. Antimicrob Agents Chemother,2006,50(10):3396-3406.
    187. Lee K, Yong D, Choi YS, et al. Reduced imipenem susceptibility in Klebsiella pneumoniae clinical isolates with plasmid-mediated CMY-2 and DHA-1 beta-lactamases co-mediated by porin loss. Int J Antimicrob Agents, 2007,29(2):201-206.
    188. Doumith M, Ellington MJ, Livermore DM, et al. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother,2009,63(4):659-667.
    189. Crowley B, Benedi VJ, Domenech-Sanchez A. Expression of SHV-2 beta-lactamase and of reduced amounts of OmpK36 porin in Klebsiella pneumoniae results in increased resistance to cephalosporins and carbapenems. Antimicrob Agents Chemother,2002,46(11):3679-3.682.
    190. Lee CH, Chu C, Liu JW, et al. Collateral damage of flomoxef therapy:in vivo development of porin deficiency and acquisition of blaDHA-1 leading to ertapenem resistance in a clinical isolate of Klebsiella pneumoniae producing CTX-M-3 and SHV-5 beta-lactamases. J Antimicrob Chemother, 2007,60(2):410-413.
    191. Mena A, Plasencia V, Garcia L, et al. Characterization of a large outbreak by CTX-M-1-producing Klebsiella pneumoniae and mechanisms leading to in vivo carbapenem resistance development. J Clin Microbiol,2006,44(8):2831-2837.
    192. Wang XD, Cai JC, Zhou HW, et al. Reduced susceptibility to carbapenems in Klebsiella pneumoniae clinical isolates associated with plasmid-mediated beta-lactamase production and OmpK36 porin deficiency. J Med Microbiol, 2009,58(Pt 9):1196-1202.
    193. Landman D, Bratu S, Quale J. Contribution of OmpK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniae. J Med Microbiol, 2009,58(Pt 10):1303-1308.
    194. Hernandez-Alles S, Alberti S, Alvarez D, et al. Porin expression in clinical isolates of Klebsiella pneumoniae. Microbiology,1999,145 (Pt 3):673-679.
    195. Cornaglia G, Guan L, Fontana R, et al. Diffusion of meropenem and imipenem through the outer membrane of Escherichia coli K-12 and correlation with their antibacterial activities. Antimicrob Agents Chemother,1992,36(9):1902-1908.
    196. Stapleton PD, Shannon KP, French GL. Carbapenem resistance in Escherichia coli associated with plasmid-determined CMY-4 beta-lactamase production and loss of an outer membrane protein. Antimicrob Agents Chemother, 1999,43(5):1206-1210.
    197. Poirel L, Heritier C, Spicq C, et al. In vivo acquisition of high-level resistance to imipenem in Escherichia coli. J Clin Microbiol,2004,42(8):3831-3833.
    198. Oteo J, Delgado-Iribarren A, Vega D, et al. Emergence of imipenem resistance in clinical Escherichia coli during therapy. Int J Antimicrob Agents, 2008,32(6):534-537.
    199. Pavez M, Neves P, Dropa M, et al. Emergence of carbapenem-resistant Escherichia coli producing CMY-2-type AmpC beta-lactamase in Brazil. J Med Microbiol,2008,57(Pt 12):1590-1592.
    200.李轶,张嵘,周宏伟,等.亚胺培南耐药大肠埃希菌的耐药机制研究.中华检验医学杂志,2008,10(31):1167-1169.
    201. Chia JH, Siu LK, Su LH, et al. Emergence of carbapenem-resistant Escherichia coli in Taiwan:resistance due to combined CMY-2 production and porin deficiency. J Chemother,2009,21(6):621-626.
    202. Lartigue MF, Poirel L, Poyart C, et al. Ertapenem resistance of Escherichia coli. Emerg Infect Dis,2007,13(2):315-317.
    203. Charrel RN, Pages JM, De Micco P, et al. Prevalence of outer membrane porin alteration in beta-lactam-antibiotic-resistant Enterobacter aerogenes. Antimicrob Agents Chemother,1996,40(12):2854-2858.
    204. Hopkins JM, Towner KJ. Enhanced resistance to cefotaxime and imipenem associated with outer membrane protein alterations in Enterobacter aerogenes. J Antimicrob Chemother,1990,25(1):49-55.
    205. Chow JW, Shlaes DM. Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J Antimicrob Chemother, 1991,28(4):499-504.
    206. Tzouvelekis LS, Tzelepi E, Mentis AF, et al. Imipenem resistance in Enterobacter aerogenes is associated with derepression of chromosomal cephalosporinases and impaired permeability. FEMS Microbiol Lett,1992,74(2-3):195-199.
    207. de Champs C, Henquell C, Guelon D, et al. Clinical and bacteriological study of nosocomial infections due to Enterobacter aerogenes resistant to imipenem. J Clin Microbiol,1993,31(1):123-127.
    208. Tzouvelekis LS, Tzelepi E, Kaufmann ME, et al. Consecutive mutations leading to the emergence in vivo of imipenem resistance in a clinical strain of Enterobacter aerogenes. J Med Microbiol,1994,40(6):403-407.
    209. Bornet C, Davin-Regli A, Bosi C, et al. Imipenem resistance of enterobacter aerogenes mediated by outer membrane permeability. J Clin Microbiol, 2000,38(3):1048-1052.
    210. Yigit H, Anderson GJ, Biddle JW, et al. Carbapenem resistance in a clinical isolate of Enterobacter aerogenes is associated with decreased expression of OmpF and OmpC porin analogs. Antimicrob Agents Chemother,2002,46(12):3817-3822.
    211. Sturenburg E, Sobottka I, Mack D, et al. Cloning and sequencing of Enterobacter aerogenes OmpC-type osmoporin linked to carbapenem resistance. Int J Med Microbiol,2002,291(8):649-654.
    212. Fernandez-Cuenca F, Rodriguez-Martinez JM, Martinez-Martinez L, et al. In vivo selection of Enterobacter aerogenes with reduced susceptibility to cefepime and carbapenems associated with decreased expression of a 40 kDa outer membrane protein and hyperproduction of AmpC beta-lactamase. Int J Antimicrob Agents, 2006,27(6):549-552.
    213. Chen YG, Zhang Y, Yu YS, et al. In vivo development of carbapenem resistance in clinical isolates of Enterobacter aerogenes producing multiple beta-lactamases. Int J Antimicrob Agents,2008,32(4):302-307.
    214. De E, Basle A, Jaquinod M, et al. A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol Microbiol,2001,41(1):189-198.
    215. Thiolas A, Bornet C, Davin-Regli A, et al. Resistance to imipenem, cefepime, and cefpirome associated with mutation in Omp36 osmoporin of Enterobacter aerogenes. Biochem Biophys Res Commun,2004,317(3):851-856.
    216. Leying H, Cullmann W, Dick W. Carbapenem resistance in Enterobacter aerogenes is due to lipopolysaccharide alterations. Chemotherapy, 1991,37(2):106-113.
    217. Bush K, Tanaka SK, Bonner DP, et al. Resistance caused by decreased penetration of beta-lactam antibiotics into Enterobacter cloacae. Antimicrob Agents Chemother,1985,27(4):555-560.
    218. Raimondi A, Traverso A, Nikaido H. Imipenem-and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins. Antimicrob Agents Chemother,1991,35(6):1174-1180.
    219. Lee EH, Collatz E, Trias J, et al. Diffusion of beta-lactam antibiotics into proteoliposomes reconstituted with outer membranes of isogenic imipenem-susceptible and-resistant strains of Enterobacter cloacae. J Gen Microbiol,1992,138(11):2347-2351.
    220. Cornaglia G, Russell K, Satta G, et al. Relative importances of outer membrane permeability and group 1 beta-lactamase as determinants of meropenem and imipenem activities against Enterobacter cloacae. Antimicrob Agents Chemother, 1995,39(2):350-355.
    221. Lee EH, Nicolas MH, Kitzis MD, et al. Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high-level resistance to imipenem. Antimicrob Agents Chemother,1991,35(6):1093-1098.
    222. Cai JC, Zhou HW, Chen GX, et al. [Detection of plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in a strain of carbapenem-resistant Enterobacter cloacae]. Zhonghua Yi Xue Za Zhi, 2008,88(2):135-138.
    223. Mehtar S, Tsakris A, Pitt TL. Imipenem resistance in Proteus mirabilis. J Antimicrob Chemother,1991,28(4):612-615.
    224. Mainardi JL, Mugnier P, Coutrot A, et al. Carbapenem resistance in a clinical isolate of Citrobacter freundii. Antimicrob Agents Chemother, 1997,41(11):2352-2354.
    225. Armand-Lefevre L, Leflon-Guibout V, Bredin J, et al. Imipenem resistance in Salmonella enterica serovar Wien related to porin loss and CMY-4 beta-lactamase production. Antimicrob Agents Chemother,2003,47(3):1165-1168.
    226. Ghosh AS, Kar AK, Kundu M. Impaired imipenem uptake associated with alterations in outer membrane proteins and lipopolysaccharides in imipenem-resistant Shigella dysenteriae. J Antimicrob Chemother, 1999,43(2):195-201.
    227. Davin-Regli A, Bolla JM, James CE, et al. Membrane permeability and regulation of drug "influx and efflux" in enterobacterial pathogens. Curr Drug Targets, 2008,9(9):750-759.
    228. Bornet C, Chollet R, Mallea M, et al. Imipenem and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem Biophys Res Commun, 2003,301(4):985-990.
    229. Szabo D, Silveira F, Hujer AM, et al. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother,2006,50(8):2833-2835.
    230. Neuwirth C, Siebor E, Duez JM, et al. Imipenem resistance in clinical isolates of Proteus mirabilis associated with alterations in penicillin-binding proteins. J Antimicrob Chemother,1995,36(2):335-342.
    231. Villar HE, Danel F, Livermore DM. Permeability to carbapenems of Proteus mirabilis mutants selected for resistance to imipenem or other beta-lactams. J Antimicrob Chemother,1997,40(3):365-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700