中低阶煤的分级变温热溶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从分子水平上了解中低阶煤中有机质中可溶有机小分子、可溶有机大分子团簇的组成结构可以有的放矢地分离可溶有机小分子并“剪裁”可溶有机大分子团簇,实现中低阶煤中的有机质向低碳燃料和化学品的定向转化。本课题选用锡林浩特褐煤(XL)、霍林郭勒褐煤(HL)和准东次烟煤(ZSB)为研究对象,以丙酮或等体积的丙酮/二硫化碳混合溶剂为溶剂对煤样进行了较为彻底的常温萃取,然后以甲醇为溶剂对常温萃余物进行了分级变温热溶,研究了中低阶煤有机质中可溶有机小分子和大分子团簇的存在形态(包括芳环、桥键和侧链类型)及其在常温分级萃取和变温热溶过程中的溶出规律。选用(1S,2S)-1-(4-羟基-3-甲氧基苯基)-2-(2-甲氧基苯氧基)丙-1,3-二醇(1)、2-甲氧基-4-[(2-甲氧基苯氧基)甲基]苯酚(2)、丁酸苯酯和苯甲酸丙酯作为模型化合物(MC)进行了ReaxFF反应动力学计算,研究了中低阶煤的醇解机理。
     对常温和分级热溶所得液体产物进行了GC/MS分析,得到了酚类(HBs)、酯类、酮类、醇类、芳烃类、甲氧基苯类(MBs)、烷烃类、烯烃类、含氮杂原子化合物(NCOCs)、含硫杂原子化合物(SCOCs)、醛类和其他化合物(OCs)族组分。
     XL和HL甲醇热溶物(MSFs)中的优势组分为HBs,证明XL和HL大分子结构中存在大量的芳醚键(Ar-CH_2-O),并推测出褐煤大分子侧链存在CH_3(CH_2)_(22)COO和-(CH_2)_(19)CH_3前驱体结构。ZSB的热溶产物(TDPs)中芳酯和烷酸酯的含量较高,说明ZSB大分子结构中含有较多的Ar COO基团和R COO基团,后者同样以CH_3(CH_2)_(22)COO基团为主。在ZSB的分级变温热溶过程中观察到正构脂肪烃的爆发性溶出现象,但这些正构烷烃的来源不同于XL和HL,它们主要以游离态和嵌入态的形式存在于ZSB的大孔隙和交联结构中,而非醇解产物。
     根据烷酸酯和芳酯在ZSB分级变温热溶过程中溶出的先后顺序推测存在-(CH_2)n-COO基团连接于ZSB大分子骨架的外侧,Ar (COO)n基团则连接于大分子骨架内侧,从而形成Ar-(COO)n-基团包裹于-(CH_2)n-COO基团的“胶囊”结构。
     用非参数统计检验法证明空气(主要是氧气)对热溶物中各族组分的相对含量和分子量分布没影响。
     ReaxFF反应动力学计算表明,β-O-4和α-O-4类型模型化合物醚键断裂反应为醇解的引发反应,而甲醇作为供氢溶剂参与反应,起到稳定自由基碎片的作用。上述计算结果与实验观测结果一致,并且ReaxFF反应动力学计算所得产物也能很好地与实验结果吻合。相对于MC2而言,MC1含有的较长碳链导致其醇解机理较为复杂,存在的多条反应路径涉及碳骨架重排、羟基重排和羟基消除反应等复杂的反应过程。
     在MC2、丁酸苯酯和苯甲酸丙酯分别与甲醇的可能反应中,甲醇中的氧进攻模型化合物中与醚键相连的脂肪碳的反应所需活化能最低,其次是进攻羰基碳的反应。而甲醇甲基碳进攻羰基氧反应,由于生成的双自由基不稳定导致所需活化能最高,反应不易发生。
     该论文有图82幅,表22个,参考文献239篇。
In order to study the small soluble organic molecules and the dissolved organicmacromolecule clusters in medium-and low-rank coals, Xilinhaote lignite (XL), Huolinguolelignite (HL) and Zhundong subbituminous (ZSB) were selected in this subject. After beingextracted with acetone or carbon disulfide-acetone mixed solvent at mild conditions, they werethen sequential thermal depolymerized with methanol.
     The resulting products were analyzed with GC/MS. The results show that theGC/MS-detectable species can be classifed into hydroxybenzenes (HBs), esters, ketones,alcohols, arenes, methoxybenzene (MBs), alkanes, alkenes, nitrogen-containing organiccompounds (NCOCs), sulfur-containing organic compounds (SCOCs), aldehydes and othercompounds (OCs). These results suggest that XL is rich in Ar-CH_2-O,-(CH_2)_(19)CH_3andCH_3(CH_2)_(22)COO moieties, while ZSB is rich in Ar COO and R COO orCH_3(CH_2)_(22)COO moieties in their macromolecules. XL was depolymerized in supercriticalmethanol at310oC with or without air and the resulting products were investigated withnonparametric statistics. The p-value of nonparametric statistics demonstrates that the groupcomponents and relative molecular mass distribution of the products from supercriticalmethanolysis of XL without and with air are not significantly different.
     In order to investigate the detailed methanolysis mechanisms for medium-and low-rankcoals, we used ReaxFF reactive force feld to perform a series of molecular dynamicssimulations (MDSs) on unimolecular model compound. Phenyl butyrate, propyl benzoate,(1S,2S)-1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy) propane-1,3-diol (1) and2-methoxy-4-((2-methoxyphenoxy)methyl)phenol (2), were selected as representatives oflinkages in medium-and low-rank coals. The reaction products predicted by ReaxFF MDSs areconsistent with those from experimental results reported. For the MC1and MC2, theinitiation reaction observed in ReaxFF MDSs involving cleavage of the ether linkage andparticipation of methanol closely matches with the results observed from previously reportedexperiments. For the phenyl butyrate and propyl benzoate, the most favorable reaction pathwayis the attacking of oxygen atom of hydroxyl moiety in methanol on the carbon atom ofaliphatic ethers in MCs. However, the reaction pathway related to reaction between the carbonatom of methanol and the oxygen atom of carbonyl in MCs, leading to the formation ofbiradicals, is difficult to react.
引文
[1] Thielemann, T.,Schmidt, S.,Gerling, J. P. Lignite and hard coal: Energy suppliers for world needs untilthe year2100-An outlook[J]. International Journal of Coal Geology,2007,72(1):1-14.
    [2] http://www.sp.com.cn/zgdl/zyfb/200805/t20080515_104003.htm.
    [3] Nolan, P.,Shipman, A.,Rui, H. Coal Liquefaction, Shenhua Group, and China's Energy Security[J].European Management Journal,2004,22(2):150-164.
    [4] Hatcher, P. G.,Breger, I. A.,Szeverenyi, N., etc. Nuclear magnetic resonance studies of ancient buriedwood--II. Observations on the origin of coal from lignite to bituminous coal[J]. Organic Geochemistry,1982,4(1):9-18.
    [5] Ralph, J. P.,Catcheside, D. E. A. Action of Aerobic Microorganisms on the Macromolecular Fraction ofLignite[J]. Fuel,1993,72(12):1679-1686.
    [6] http://stock.cnnb.com.cn/content/channel/tglj/c157/2009/0227/2891991780.shtml
    [7] Priyanto, U.,Sakanishi, K.,Okuma, O., etc. Liquefaction of Tanito Harum coal with bottom recycle usingFeNi and FeMoNi catalysts supported on carbon nanoparticles[J]. Fuel Processing Technology,2002,79(1):51-62.
    [8] Giray, E. S.,Sonmez, O. Supercritical extraction of scrap tire with different solvents and the effect of tireoil on the supercritical extraction of coal[J]. Fuel Processing Technology,2004,85(4):251-265.
    [9] Arso, A.,Iino, M. Effect of the addition of n-alkylamines on liquefaction of Banko coal[J]. FuelProcessing Technology,2004,85(5):325-335.
    [10] Yoshida, T.,Takanohashi, T.,Sakanishi, K., etc. Relationship between thermal extraction yield andsoftening temperature for coals[J]. Energy&Fuels,2002,16(4):1006-1007.
    [11] Yoshida, T.,Takanohashi, T.,Sakanishi, K., etc. The effect of extraction condition on "HyperCoal"production (I)-under room-temperature filtration[J]. Fuel,2002,81(11-12):1463-1469.
    [12] Yoshida, T.,Li, C.,Takanohashi, T., etc. Effect of extraction condition on "HyperCoal" production (2)-effect of polar solvents under hot filtration[J]. Fuel Processing Technology,2004,86(1):61-72.
    [13] Li, C. Q.,Takanohashi, T.,Saito, I. Elucidation of mechanisms involved in acid pretreatment and thermalextraction during ashless coal production[J]. Energy&Fuels,2004,18(1):97-101.
    [14] Takanohashi, T.,Shishido, T.,Kawashima, H., etc. Characterisation of HyperCoals from coals of variousranks[J]. Fuel,2008,87(4-5):592-598.
    [15] Miura, K.,Shimada, M.,Mae, K., etc. Extraction of coal below350oC in flowing non-polar solvent[J].Fuel,2001,80(11):1573-1582.
    [16] Miura, K.,Nakagawa, H.,Ashida, R., etc. Production of clean fuels by solvent skimming of coal ataround350degrees C[J]. Fuel,2004,83(6):733-738.
    [17] Ashida, R.,Nakgawa, K.,Oga, M., etc. Fractionation of coal by use of high temperature solventextraction technique and characterization of the fractions[J]. Fuel,2008,87(4-5):576-582.
    [18] Ashida, R.,Morimoto, M.,Makino, Y., etc. Fractionation of brown coal by sequential high temperaturesolvent extraction[J]. Fuel,2009,88(8):1485-1490
    [19] Morgan, T. J.,George, A.,Davis, D. B., etc. Optimization of H-1and C-13NMR methods for structuralcharacterization of acetone and pyridine soluble/insoluble fractions of a coal tar pitch[J]. Energy&Fuels,2008,22(3):1824-1835.
    [20] Pan, Y. S.,Tang, J. P.,Li, C. Q. NMRI test on two-phase transport of gas-water in coal seam[J]. ChineseJournal of Geophysics-Chinese Edition,2008,51(5):1620-1626.
    [21] Tang, J. P.,Pan, Y. S.,Chuan, X. Y., etc. Experimental research on transport of coalbed methane byNMRI technique[C]. International Conference on Experimental Mechanics,2008,7375,73753N.
    [22] Berardi, M. J.,Shih, W. M.,Harrison, S. C., etc. Mitochondrial uncoupling protein2structuredetermined by NMR molecular fragment searching[J]. Nature,2011,476(7358):109-113.
    [23] Tsukahara, T.,Kachi, Y.,Kayaki, Y., etc.1H,13C, and19F NMR studies on molecular interactions ofCO2with β-Diketones and UO2(β-diketonato)2DMSO Complexes in Supercritical CO2[J]. The Journalof Physical Chemistry B,2008,112(51):16445-16454.
    [24] Altoe, G. F.,Freitas, J. C. C.,Cunha, A. G., etc. Kinetics and C-13NMR study of oxygen incorporationinto PVC-and pitch-derived materials[J]. Energy&Fuels,2009,231373-1378.
    [25] Anand, A.,Nagarajan, S.,Joshi, D. K., etc. Microwave seed treatment reduces hardseededness instylosanthes seabrana and promotes redistribution of cellular water as studied by NMR relaxationmeasurements[J]. Seed Science and Technology,2009,37(1):88-97.
    [26] Evtuguin, D. V.,Rocha, G.,Goodfellow, B. J. Detection of muconic acid type structures in oxidisedlignins using2D NMR spectroscopy10(th) EWLP[J]. Holzforschung,2009,63(6):675-680.
    [27] Guo, R.,Kantzas, A. Assessing the water uptake of alberta coal and the impact of CO2injection withlow-field NMR[J]. Journal of Canadian Petroleum Technology,2009,48(7):40-46.
    [28] Nestle, N.,Haberle, K. Non-invasive analysis of swelling in polymer dispersions by means oftime-domain(TD)-NMR[J]. Analytica Chimica Acta,2009,654(1):35-39.
    [29] Senyel, M.,Unal, A.,Alver, O. Molecular structure, NMR analyses, density functional theory and abinitio Hartree-Fock calculations of3-phenylpropylamine[J]. Comptes Rendus Chimie,2009,12(6-7):808-815.
    [30] Takahashi, T.,Kashiwakura, S.,Kanehashi, K., etc. First High-resolution B-11nuclear magneticresonance (NMR) spectra of coal fly ash by satellite-transition magic angle spinning (STMAS) NMR[J].Energy&Fuels,2009,231778-1780.
    [31] Colorado-Peralta, R.,Xotlanihua-Flores, A.,Galvez-Ruiz, J. C., etc. Tripodal molecules derived fromethanoldithiazinanes centered on boron and phosphorus atoms. Structural analyses by NMR andHF/6-31G(d) calculations[J]. Journal of Molecular Structure,2010,981(1-3):21-33.
    [32] Eckert, H.,Pottgen, R.45SC Solid State NMR Spectroscopy-A complementary tool to x-raycrystallography for structure determination of intermetallic compounds[J]. Zeitschrift Fur AnorganischeUnd Allgemeine Chemie,2010,636(12):2232-2243.
    [33] Erdenetsogt, B.-O.,Lee, I.,Lee, S. K., etc. Solid-state C-13CP/MAS NMR study of Baganuur coal,Mongolia: Oxygen-loss during coalification from lignite to subbituminous rank[J]. International Journalof Coal Geology,2010,82(1-2):37-44.
    [34] Gupta, R. K.,Jain, A.,Saxena, S. New organic-inorganic hybrid complexes of aluminium(III) ofB-diketones and sterically demanding heterocyclic B-diketones: Synthesis, structural aspects andspectroscopic [Ir and Nmr (1h, C-13and (27)al] Characterization[J]. Main Group Met. Chem.,2010,33(1-2):9-23.
    [35] Gutmann, T.,Walaszek, B.,Xu, Y. P., etc. Hydrido-ruthenium cluster complexes as models for reactivesurface hydrogen species of ruthenium nanoparticles. Solid-state2H NMR and quantum chemicalcalculations[J]. Journal of the American Chemical Society,2010,132(33):11759-11767.
    [36] Campbell, J. A.,Hoppe, E. W.,Lohman, J. R., etc. Matrix-assisted laser desorptionionizatio/time-of-flight mass spectrometry (MALDI/TOFMS) for the analysis of Hanford-relatedorganics.[J]. Abstracts of Papers of the American Chemical Society,2003,225U263-U263.
    [37] Meier, M. A. R.,Schubert, U. S. MALDI-TOFMS of synthetic polymers as an advancedhigh-throughput screening tool in combinatorial polymer chemistry.[J]. Abstracts of Papers of theAmerican Chemical Society,2004,227U521-U521.
    [38] Dawson, B.,Qiao, Z. H.,Udeochu, U., etc. MALDI TOFMS for the detection of dna.[J]. Abstracts ofPapers of the American Chemical Society,2005,229U367-U367.
    [39] Estrada, R.,Borchman, D.,Yappert, M. C. Tracking phospholipid biogenesis by MALDI-TOFMS[J].Biophysical Journal,2005,88(1):354a.
    [40] Lorkiewicz, P. K.,Yappert, M. C.2-(2-aminoethylamino)-5-nitropyridine (AAN) as an effective basicmatrix for phospholipid analysis by MALDI-TOFMS (negative mode)[J]. Biophysical Journal,2005,88(1):530a.
    [41] Liang, Z.,Zhao, Z. Z. Histochemical analysis of the stem from Sinomenium acutum (Thunb.) rehd. etwils by fluorescence microscope and MALDI-TOFMS technique[J]. Planta Medica,2008,74(3):362.
    [42] Erhard, M.,Welker, M.,Seyfarth, F., etc. Identification and assessment of diversity of clinical yeastsusing MALDI-TOFMS[J]. Exp Dermatol,2010,19(2):199.
    [43] Sharma, A.,Takanohashi, T.,Morishita, K., etc. Low temperature catalytic steam gasification ofHyperCoal to produce H2and synthesis gas[J]. Fuel,2008,87(4-5):491-497.
    [44] Sharma, A.,Takanohashi, T.,Saito, I. Effect of catalyst addition on gasification reactivity of HyperCoaland coal with steam at775-700degrees C[J]. Fuel,2008,87(12):2686-2690.
    [45] Okuyama, N.,Shigehisa, T.,Nishibata, Y., etc. Thermoplastic performance of the solvent extractedashless coal and its applicability for coke material[J]. Iron And Steel Institute of Japan Japanese Edition,2006,92(3):213-222.
    [46] Blaisten-Barojas, E.,Nyden, M. R. Molecular dynamics study of the depolymerization reaction insimple polymers[J]. Chemical Physics Letters,1990,171(5-6):499-505.
    [47] Jurkiewicz, A.,Bronnimann, C. E.,Maciel, G. E.1H CRAMPS studies of molecular dynamics of apremium coal[J]. Fuel,1990,69(7):804-809.
    [48] Eggenberger, R.,Gerber, S.,Huber, H., etc. Calculation of transport properties of neon in the liquid,supercritical, and gaseous state by molecular dynamics simulations applying an ab initio pairpotential[J]. The Journal of Physical Chemistry,1993,97(9):1980-1984.
    [49] Geers, A.,Kappert, J.,Temps, F., etc. Rotation-vibration state-resolved unimolecular dynamics of highlyvibrationally excited CH3O ((X)over-tilde(2)E).1. observed stimulated-emission pumping spectra[J].Journal of Chemical Physics,1994,101(5):3618-3633.
    [50] Geers, A.,Kappert, J.,Temps, F., etc. Rotation-vibration state-resolved unimolecular dynamics of highlyexcited CH3O ((X)over-tilde(2)E).2. intramolecular vibrational dynamics of excited C-O stretchstates[J]. Journal of Chemical Physics,1994,101(5):3634-3648.
    [51] Caflisch, A.,Karplus, M. Acid and thermal denaturation of barnase investigated by molecular dynamicssimulations[J]. Journal of Molecular Biology,1995,252(5):672-708.
    [52] Dertinger, S.,Geers, A.,Kappert, J., etc. Rotation-vibration state-resolved unimolecular dynamics ofhighly excited CH3O ((X)over-tilde(2)E).3. State-specific dissociation rates from spectroscopic lineprofiles and time-resolved measurements[J]. Faraday Discussions,1995,10231-52.
    [53] Mizan Tahmid, I.,Savage Phillip, E.,Ziff Robert, M. A Molecular dynamics investigation of hydrogenbonding in supercritical water[M]. In Innovations in Supercritical Fluids, American Chemical Society:Washington, DC,1995;47-64.
    [54] Balbuena, P. B.,Johnston, K. P.,Rossky, P. J. Molecular dynamics simulation of electrolyte solutions inambient and supercritical Water.2. Relative acidity of HCl[J]. The Journal of Physical Chemistry,1996,100(7):2716-2722.
    [55] Inomata, H.,Saito, S.,Debenedetti, P. G. Molecular dynamics simulation of infinitely dilute solutions ofbenzene in supercritical CO2[J]. Fluid Phase Equilibria,1996,116(1-2):282-288.
    [56] Wallen, S. L.,Palmer, B. J.,Pfund, D. M., etc. Hydration of bromide ion in supercritical water: An X-rayabsorption fine structure and molecular dynamics study[J]. The Journal of Physical Chemistry A,1997,101(50):9632-9640.
    [57] Xiong, J. C.,Maciel, G. E. In situ variable-temperature high-resolution H-1NMR studies of moleculardynamics and structure in coal[J]. Energy&Fuels,1997,11(4):856-865.
    [58] Asahi, N.,Nakamura, Y. Nuclear magnetic resonance and molecular dynamics study of methanol up tothe supercritical region[J]. Journal of Chemical Physics,1998,109(22):9879-9887.
    [59] Nwobi, O. C.,Long, L. N.,Micci, M. M. Molecular dynamics studies of properties of supercriticalfluids[J]. Journal of Thermophysics and Heat Transfer,1998,12(3):322-327.
    [60] Takanohashi, T.,Iino, M.,Nakamura, K. Simulation of interaction of coal associates with solvents usingthe molecular dynamics calculation[J]. Energy&Fuels,1998,12(6):1168-1173.
    [61] Chalaris, M.,Samios, J. Hydrogen bonding in supercritical methanol. A molecular dynamicsinvestigation[J]. Journal of Physical Chemistry B,1999,103(7):1161-1166.
    [62] Hoffmann, M. M.,Darab, J. G.,Palmer, B. J., etc. A transition in the Ni2+complex structure from six-tofour-coordinate upon formation of ion pair species in supercritical water: An X-ray absorption finestructure, near-infrared, and molecular dynamics study[J]. The Journal of Physical Chemistry A,1999,103(42):8471-8482.
    [63] Berny, F.,Schurhammer, R.,Wipff, G. Distribution of hydrophilic, amphiphilic and hydrophobic ions ata liquid/liquid interface: a molecular dynamics investigation[J]. Inorganica Chimica Acta,2000,300-302384-394.
    [64] Kiselev, M.,Kerdcharoen, T.,Hannongbua, S., etc. The structure of supercritical ammonia as studied bymolecular dynamics simulations[J]. Chemical Physics Letters,2000,327(5-6):425-428.
    [65] Tassaing, T.,Cabaco, M. I.,Danten, Y., etc. The structure of liquid and supercritical benzene as studiedby neutron diffraction and molecular dynamics[J]. Journal of Chemical Physics,2000,113(9):3757-3765.
    [66] Zhou, J.,Lu, X. H.,Wang, Y. R., etc. A molecular dynamics simulation of infinite dilute diffusioncoefficients of benzene and naphthalene in supercritical carbon dioxide[J]. Chemical Journal of ChineseUniversities,2000,21(5):762-765.
    [67] Baaden, M.,Berny, F.,Wipff, G. The chloroform/TBP/aqueous nitric acid interfacial system: amolecular dynamics investigation[J]. Journal of Molecular Liquids,2001,90(1-3):1-9.
    [68] Danten, Y.,Cabaco, M. I.,Tassaing, T., etc. A structural study of the hexafluorobenzene from liquid tosupercritical conditions using neutron diffraction and molecular dynamics[J]. Journal of ChemicalPhysics,2001,115(9):4239-4248.
    [69] Hyun, J. K.,Dong, H. T.,Rhodes, C. P., etc. Molecular dynamics simulations and spectroscopic studiesof amorphous tetraglyme (CH3O(CH2CH2O)4CH3) and tetraglyme: LiCF3SO3structures[J]. Journal ofPhysical Chemistry B,2001,105(16):3329-3337.
    [70] Zhou, J.,Wang, W. C.,Zhong, C. L. Molecular dynamics investigation of benzene in supercriticalwater[J]. Chinese Journal of Chemical Engineering,2001,9(2):196-199.
    [71] Baaden, M.,Schurhammer, R.,Wipff, G. Molecular dynamics study of the uranyl extraction bytri-n-butylphosphate (TBP): Demixing of Water/―Oil‖/TBP solutions with a comparison of supercriticalCO2and chloroform[J]. The Journal of Physical Chemistry B,2002,106(2):434-441.
    [72] Dong, H. T.,Hyun, J. K.,Rhodes, C. P., etc. Molecular dynamics simulations and vibrationalspectroscopic studies of local structure in tetraglyme: sodium triflate (CH3O(CH2CH2O)4CH3:NaCF3SO3) solutions[J]. Journal of Physical Chemistry B,2002,106(18):4878-4885.
    [73] Goddard, W. A.,Zhang, Q. S.,Uludogan, M., etc. The ReaxFF polarizable reactive force fields formolecular dynamics simulation of ferroelectrics[J]. Fundamental Physics of Ferroelectrics,2002,626:45-55.
    [74] Laria, D.,Skaf, M. S. Path Integral molecular dynamics study of electronic states in supercriticalwater[J]. The Journal of Physical Chemistry A,2002,106(35):8066-8069.
    [75] Charnetskaya, A. G.,Polizos, G.,Shtompel, V. I., etc. Phase morphology and molecular dynamics of apolyurethane ionomer reinforced with a liquid crystalline filler[J]. European Polymer Journal,2003,39(11):2167-2174.
    [76] Chatzis, G.,Samios, J. Binary mixtures of supercritical carbon dioxide with methanol. A moleculardynamics simulation study[J]. Chemical Physics Letters,2003,374(1-2):187-193.
    [77] Galand, N.,Wipff, G. Solvation of benzene derivatives in SC-CO2: a molecular dynamics study offluorination effects[J]. New Journal of Chemistry,2003,27(9):1319-1325.
    [78] Galliero, G.,Duguay, B.,Caltagirone, J. P., etc. Thermal diffusion sensitivity to the molecularparameters of a binary equimolar mixture, a non-equilibrium molecular dynamics approach[J]. FluidPhase Equilibria,2003,208(1-2):171-188.
    [79] Kim, S. P.,Chung, Y. C.,Lee, S. C., etc. Surface alloy formation of Co on Al surface: Moleculardynamics simulation[J]. Journal of Applied Physics,2003,93(10):8564-8566.
    [80] Kim, S. P.,Lee, S. C.,Lee, K. R., etc. A comparative study on the differences in the evolutions of thinfilm morphologies of Co-Al binary system: Molecular dynamics study[J]. Nanostructuring Materialswith Energetic Beams,2003,777:183-188.
    [81] Murakami, T.,Kurita, N.,Naruse, I. Molecular dynamics simulations of the effect of NaCl-doping on thecalcination characteristics in desulfurization processes[J]. Journal of Chemical Engineering of Japan,2003,36(3):225-230.
    [82] Rogel, E.,Carbognani, L. Density estimation of asphaltenes using molecular dynamics simulations[J].Energy&Fuels,2003,17(2):378-386.
    [83] Takanohashi, T.,Sato, S.,Saito, I., etc. Molecular dynamics simulation of the heat-induced relaxation ofasphaltene aggregates[J]. Energy&Fuels,2003,17(1):135-139.
    [84] Chalaris, M.,Samios, J. Translational and rotational dynamics in supercritical methanol from moleculardynamics simulation[J]. Pure and Applied Chemistry2004,76(1):203-213.
    [85] Luo, Y.,Ito, Y.,Zhong, H. F., etc. Density functional theory and tight-binding quantum chemicalmolecular dynamics calculations on Ce1-xCuxO2-delta catalyst and the adsorptions of CH3OH andCH3O on Ce1-xCuxO2-delta[J]. Chemical Physics Letters,2004,384(1-3):30-34.
    [86] Andoh, Y.,Yasuoka, K. Two-dimensional supercritical behavior of an ethanol monolayer: A moleculardynamics study[J]. Langmuir,2005,21(23):10885-10894.
    [87] Higashi, H.,Iwai, Y.,Miyazaki, K., etc. Molecular dynamics simulation of fluorination effect forsolvation of trifluoromethylbenzoic acid isomers in supercritical carbon dioxide[J]. MolecularSimulation,2005,31(10):725-730.
    [88] Saharay, M.,Balasubramanian, S. Electron donor acceptor interactions in ethanol CO2mixtures: An abinitio molecular dynamics study of supercritical carbon dioxide[J]. The Journal of Physical Chemistry B,2005,110(8):3782-3790.
    [89] Shimojo, F.,Kalia, R. K.,Nakano, A., etc. Embedded divide-and-conquer algorithm on hierarchicalreal-space grids: parallel molecular dynamics simulation based on linear-scaling density functionaltheory[J]. Computer Physics Communications,2005,167(3):151-164.
    [90] Bhargava, B. L.,Balasubramanian, S. Intermolecular structure and dynamics in an ionic liquid: ACar-Parrinello molecular dynamics simulation study of1,3-dimethylimidazolium chloride[J]. ChemicalPhysics Letters,2006,417(4-6):486-491.
    [91] Davidson, J. E.,Hinchley, S. L.,Harris, S. G., etc. Molecular dynamics simulations to aid the rationaldesign of organic friction modifiers[J]. Journal of Molecular Graphics and Modelling,2006,25(4):495-506.
    [92] Elola, M. D.,Ladanyi, B. M. Molecular dynamics study of polarizability anisotropy relaxation inaromatic liquids and its connection with local structure[J]. Journal of Physical Chemistry B,2006,110(31):15525-15541.
    [93] Kim, S. P.,Chung, Y. C.,Lee, S. C., etc. Co/CoAl/Co trilayer fabrication using spontaneous intermixingof Co and Al: Molecular dynamics simulation[J]. Materials Science and Engineering B-Solid StateMaterials for Advanced Technology,2006,135(1):25-29.
    [94] Saharay, M.,Balasubramanian, S. Evolution of intermolecular structure and dynamics in supercriticalcarbon dioxide with pressure: An ab Initio Molecular Dynamics Study[J]. The Journal of PhysicalChemistry B,2006,111(2):387-392.
    [95] Shukla, C. L.,Hallett, J. P.,Popov, A. V., etc. Molecular dynamics simulation of the cybotactic region ingas-expanded methano-carbon dioxide and acetone-carbon dioxide mixtures[J]. Journal of PhysicalChemistry B,2006,110(47):24101-24111.
    [96] Zhang, L.,Zybin, S. V.,van Duin, A. C. T., etc. Shock induced decomposition and sensitivity ofenergetic materials by ReaxFF molecular dynamics[J]. Shock Compression of Condensed Matter,2005,845:585-588.
    [97] Zhang, L. Z.,Zybin, S. V.,van Duin, A. C. T., etc. Thermal decomposition of energetic materials byReaxFF reactive molecular dynamics[J]. Shock Compression of Condensed Matter,2005,845:589-592.
    [98] Zhao, C.,Cann, N. M. Solvation of the Whelk-O1chiral stationary phase: A molecular dynamicsstudy[J]. Journal of Chromatography A,2006,1131(1-2):110-129.
    [99] Chaumont, A.,Wipff, G. Solvation of "big" spherical solutes in room temperature ionic liquids and attheir aqueous interface: A molecular dynamics simulation study[J]. Journal of Molecular Liquids,2007,131-132:36-47.
    [100] Picaud, S.,Hoang, P. N. M.,Partay, L. B., etc. Molecular dynamics and Monte Carlo simulations oforganic compounds adsorbed on ice surfaces[J]. Aip Conf Proc,2007,963:296-307.
    [101] Quenneville, J.,Germann, T. C.,Thompson, A. P., etc. Molecular dynamics studies of thermal inducedchemistry in TATB[J]. Shock Compression of Condensed Matter,2007,2007,955:451-454.
    [102] Xu, Z.,Yang, X.,Yang, Z. Adsorption and self-assembly of surfactant/supercritical CO2systems inconfined pores: A molecular dynamics simulation[J]. Langmuir,2007,23(18):9201-9212.
    [103] Zoranic, L.,Sokolic, F.,Perera, A. Density and energy distribution in water and organic solvents: Amolecular dynamics study[J]. Journal of Molecular Liquids,2007,136(3):199-205.
    [104] Gohres, J. L.,Shukla, C. L.,Popov, A. V., etc. Effects of solute structure on local solvation and solventinteractions: Results from UV/Vis spectroscopy and molecular dynamics simulations[J]. Journal ofPhysical Chemistry B,2008,112(47):14993-14998.
    [105] Li, J.,Feng, J.,Ll, W. Y., etc. Determining influences of the aggregative state of deoxidized coal on itsextraction by molecular mechanics and molecular dynamics analysis[J]. Acta Physico-Chimica Sinica,2008,24(12):2297-2303.
    [106] Qin, Y.,Yang, X.,Zhu, Y., etc. Molecular dynamics simulation of interaction between supercriticalCO2fluid and modified silica surfaces[J]. The Journal of Physical Chemistry C,2008,112(33):12815-12824.
    [107] Algaer, E. A.,Alaghemandi, M.,Bohm, M. C., etc. Thermal conductivity of amorphous polystyrene insupercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations[J]. TheJournal of Physical Chemistry A,2009,113(43):11487-11494.
    [108] Algaer, E. A.,Alaghemandi, M.,Bohm, M. C., etc. Anisotropy of the thermal conductivity of stretchedamorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium moleculardynamics simulations[J]. The Journal of Physical Chemistry B,2009,113(44):14596-14603.
    [109] Boek, E. S.,Yakovlev, D. S.,Headen, T. F. Quantitative molecular representation of asphaltenes andmolecular dynamics simulation of their aggregation[J]. Energy&Fuels,2009,23:1209-1219.
    [110] Davis, J. E.,Rahaman, O.,Patel, S. Molecular dynamics simulations of a DMPC bilayer usingnonadditive interaction models[J]. Biophysical Journal,2009,96(2):385-402.
    [111] Gohres, J. L.,Popov, A. V.,Hernandez, R., etc. Molecular dynamics simulations of solvation andsolvent reorganization dynamics in CO2-expanded methanol and acetone[J]. Journal of ChemicalTheory and Computation,2009,5(2):267-275.
    [112] Idrissi, A.,Vyalov, I.,Damay, P., etc. Assessment of the spatial distribution in sub-and supercriticalCO2using the nearest neighbor approach: a molecular dynamics analysis[J]. The Journal of PhysicalChemistry B,2009,113(48):15820-15830.
    [113] Nahtigal, I. G.,Svishchev, I. M. Generation and integration of NaOH into NaCl clusters in supercriticalwater: A molecular dynamics study on hydrolysis product partitioning[J]. The Journal of PhysicalChemistry B,2009,113(44):14681-14688.
    [114] Romer, F.,Kraska, T. Molecular Dynamics simulation of naphthalene particle formation by rapidexpansion of a supercritical solution[J]. The Journal of Physical Chemistry C,2009,113(44):19028-19038.
    [115] Yaneva, J.,Dimitrov, D. I.,Milchev, A., etc. Nanoinclusions in polymer brushes with explicit solvent-Amolecular dynamics investigation[J]. Journal of Colloid and Interface Science,2009,336(1):51-58.
    [116] Yang, X. F.,Qin, Z. F.,Wang, G. F., etc. Molecular dynamics simulation of benzene-propene-cumenemixtures in different phases[J]. Journal of Physical Chemistry B,2009,113(36):12299-12305.
    [117] Warrier, M.,Pahari, P.,Chaturvedi, S. Validation of a reactive force field included with an open source,massively parallel code for molecular dynamics simulations of RDX[J]. International Conference onPhysics of Emerging Functional Materials,2010,1313:278-280.
    [118] Chang, C. Y.,Powell, R. L. Dynamic simulation of bimodal suspensions of hydrodynamicallyinteracting spherical-particles[J]. Journal of Fluid Mechanics,1993,253:1-25.
    [119] Rui, Z.,Salahub, D. R. Mechanisms of nucleotidyl transfer catalyzed by the yeast RNA polymeraseII[J]. Aip Conf Proc,2007,963:104-110.
    [120] Yuan, W.,Li, H.,Wang, Y., etc. Computer simulation of intermolecular interaction ofN-(1-naphthyl)-succinimide[J]. Acta Physico-Chimica Sinica,2007,23(5):630-633.
    [121] Bhatia, S. K.,Nguyen, T. X. Pore accessibility in nanoporous carbons: Experiment, theory andsimulation[J]. Characterisation of Porous Solids VIII,2009,(318):1-8.
    [122] Shin, M. K.,Yoon, J. K.,Tokuda, M. Simulation analysis of coal packed-bed type smelting reductionprocess[J]. Isij International,1993,33(3):385-390.
    [123] Provine, W. D.,Klein, M. T. Molecular simulation of thermal direct coal-liquefaction[J]. ChemicalEngineering Science,1994,49(24A):4223-4248.
    [124] Nakamura, K.,Takanohashi, T.,Iino, M., etc. A model structure of zao-zhuang bituminous coal[J].Energy&Fuels,1995,9(6):1003-1010.
    [125] Dong, T. L.,Murata, S.,Miura, M., etc. Computer-aided molecular design study of coal modelmolecules.3. Density simulation for model structures of bituminous akabira coal[J]. Energy&Fuels,1993,7(6):1123-1127.
    [126] Murata, S.,Nomura, M.,Nakamura, K., etc. CAMD study of coal model molecules.2. Densitysimulation for4Japanese coals[J]. Energy&Fuels,1993,7(4):469-472.
    [127] Nakamura, K.,Murata, S.,Nomura, M. CAMD study of coal model molecules.1. Estimation ofphysical density of coal model molecules[J]. Energy&Fuels,1993,7(3):347-350.
    [128] Mathews, J. P.,Hatcher, P. G.,Scaroni, A. W. Proposed model structures for upper freeport andLewiston-Stockton vitrinites[J]. Energy&Fuels,2001,15(4):863-873.
    [129] Miller, J. A.,Pilling, M. J.,Troe, J. Unravelling combustion mechanisms through a quantitativeunderstanding of elementary reactions[J]. Proceedings of the Combustion Institute,2005,30(1):43-88.
    [130] Allinger, N. L. Conformational analysis.130. MM2. A hydrocarbon force field utilizing V1and V2torsional terms[J]. Journal of the American Chemical Society,1977,99(25):8127-8134.
    [131] Cornell, W. D.,Cieplak, P.,Bayly, C. I., etc. A second generation force field for the simulation ofproteins, nucleic acids, and organic molecules[J]. Journal of the American Chemical Society,1995,117(19):5179-5197.
    [132] Brooks, B. R.,Brooks, C. L.,Mackerell, A. D., etc. CHARMM: The biomolecular simulationprogram[J]. Journal of Computational Chemistry,2009,30(10):1545-1614.
    [133] van Gunsteren, W. F.,Hünenberger, P. H.,Mark, A. E., etc. Computer simulation of protein motion[J].Computer Physics Communications,1995,91(1–3):305-319.
    [134] Baskes, M. I. Application of the embedded-atom method to covalent materials: A semiempiricalpotential for silicon[J]. Physical Review Letters,1987,59(23):2666-2669.
    [135] Tersoff, J. New empirical approach for the structure and energy of covalent systems[J]. PhysicalReview B,1988,37(12):6991-7000.
    [136] Abell, G. C. Empirical chemical pseudopotential theory of molecular and metallic bonding[J]. PhysicalReview B,1985,31(10):6184-6196.
    [137] Brenner, D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapordeposition of diamond films[J]. Physical Review B,1990,42(15):9458-9471.
    [138] van Duin, A. C. T.,Dasgupta, S.,Lorant, F., etc. ReaxFF: A reactive force field for hydrocarbons[J].Journal of Physical Chemistry A,2001,105(41):9396-9409.
    [139] Nielson, K. D.,van Duin, A. C. T.,Oxgaard, J., etc. Development of the ReaxFF reactive force field fordescribing transition metal catalyzed reactions, with application to the initial stages of the catalyticformation of carbon nanotubes[J]. Journal of Physical Chemistry A,2005,109(3):493-499.
    [140] van Duin, A. C. T.,Strachan, A.,Stewman, S., etc. ReaxFFSiO Reactive Force Field for Silicon andSilicon Oxide Systems[J]. The Journal of Physical Chemistry A,2003,107(19):3803-3811.
    [141] Buehler, M. J.,van Duin, A. C. T.,Goddard, W. A. Multiparadigm modeling of dynamical crackpropagation in silicon using a reactive force field[J]. Physical Review Letters,2006,96(9),095505.
    [142] Nguyen-Manh, D.,Cockayne, D.,Doeblinger, M., etc. Structural modelling of nano-amorphous Si-O-Nfilms in silicon nitride ceramics[J]. Inst. Phys. Conf. Ser.2004,179(2),139-142.
    [143] Hudson, T. S.,Nguyen-Manh, D.,van Duin, A. C. T., etc. Grand canonical Monte Carlo simulations ofintergranular glassy films in silicon nitride[J]. Materials Science and Engineering: A,2006,422(1-2):123-135.
    [144] Zhang, Q.,Cagin, T.,van Duin, A., etc. Adhesion and nonwetting-wetting transition in theAl/alpha-Al2O3interface[J]. Physical Review B,2004,69(4),045423.
    [145] Chenoweth, K.,Cheung, S.,van Duin, A. C. T., etc. Simulations on the thermal decomposition of apoly(dimethylsiloxane) polymer using the ReaxFF reactive force field[J]. Journal of the AmericanChemical Society,2005,127(19):7192-7202.
    [146] Goddard, W. A.,van Duin, A.,Chenoweth, K., etc. Development of the ReaxFF reactive force field formechanistic studies of catalytic selective oxidation processes on BiMoOx[J]. Topics in Catalysis,2006,38(1-3):93-103.
    [147] Strachan, A.,van Duin, A. C. T.,Goddard, W. A. Initial chemical events in the energetic material RDXunder shock loading: Role of defects[J]. Shock Compression of Condensed Matter,2004,706:895-898.
    [148] van Duin, A. C. T.,Nielson, K.,Deng, W. Q., etc. Application of ReaxFF reactive force fields totransition metal catalyzed nanotube formation.[J]. Abstracts of Papers of the American ChemicalSociety,2004,227: U1031-U1031.
    [149] van Duin, A.,Zybin, S.,Chenoweth, K., etc. Reactive force fields based on quantum mechanics forapplications to materials at extreme conditions[J]. AIP Conference Proceedings,2005,845:581-584.
    [150] Buehler, M. J.,Dodson, J.,van Duin, A. C. T., etc. The Computational Materials Design Facility(CMDF): A powerful frame-work for multi-paradigm multi-scale simulations[J]. CombinatorialMethods and Informatics in Materials Science,2006,894:327-332.
    [151] Goddard, W. A.,Merinov, B.,Van Duin, A., etc. Multi-paradigm multi-scale simulations for fuel cellcatalysts and membranes[J]. Molecular Simulation,2006,32(3-4):251-268.
    [152] Oleynik, I. I.,Conroy, M.,Zybin, S. V., etc. Energetic materials at high compression: First-principlesdensity functional theory and reactive force field studies[J]. Shock Compression of Condensed Matter,2006,845:573-576.
    [153] Goverapet Srinivasan, S.,van Duin, A. C. T. Molecular-dynamics-based study of the collisions ofhyperthermal atomic oxygen with graphene using the ReaxFF reactive force field[J]. The Journal ofPhysical Chemistry A,2011,115(46):13269-13280.
    [154] Bouchet, M. I. D.,Matta, C.,Le-Mogne, T., etc. Superlubricity mechanism of diamond-like carbon withglycerol. Coupling of experimental and simulation studies [J]. International Conference on Science ofFriction,2007,89,12003-12003.
    [155] Sen, D.,Buehler, M. J. Chemical complexity in mechanical deformation of metals[J]. Int J MultiscaleCom,2007,5(3-4):181-202.
    [156] Tang, H.,Rye, J.,Buehler, M. J., etc. Quantization of crack speeds in dynamic fracture of silicon:multiparadigm ReaxFF modeling[J]. Amorphous and polycrystalline thin-film silicon science andtechnology2007,910:149-154.
    [157] Endo, K.,Masumoto, C.,Matsumoto, D., etc. Fragment distribution of thermal decomposition for PSand PET with QMD calculations by considering the excited and charged model molecules[J]. AppliedSurface Science,2008,255(4):856-859.
    [158] Goddard, W. A.,Chenoweth, K.,Pudar, S., etc. Structures, mechanisms, and kinetics of selectiveammoxidation and oxidation of propane over multi-metal oxide catalysts[J]. Topics in Catalysis,2008,50(1-4):2-18.
    [159] Leininger, J. P.,Minot, C.,Lorant, F. Two theoretical simulations of hydrocarbons thermal cracking:Reactive force field and density functional calculations[J]. Journal of Molecular Structure-Theochem,2008,852(1-3):62-70.
    [160] Raymand, D.,Edvinsson, T.,Spangberg, D., etc. Water adsorption beyond monolayer coverage on ZnOsurfaces and nanoclusters[J]. Solar Hydrogen and Nanotechnology III,2008,7044:70440E.
    [161] Goddard, W. A.,Mueller, J. E.,Chenoweth, K., etc. ReaxFF Monte Carlo reactive dynamics applicationto resolving the partial occupations of the M1phase of the MoVNbTeO catalyst[J]. Catalysis Today,2010,157(1-4):71-76.
    [162] Lee, E. K.,Chung, Y. C. Strain-induced wurtzite to h-BN phase transformation in zinc oxidenanorods[J]. Inec:20103rd International Nanoelectronics Conference,2010,1-2:1022-1023.
    [163]彭耀丽.锡林浩特和霍林郭勒褐煤的超临界醇解[D].中国矿业大学2009.
    [164] Lei, Z.,Liu, M.,Shui, H., etc. Study on the liquefaction of Shengli lignite with NaOH/methanol[J]. FuelProcessing Technology,2010,91(7):783-788.
    [165]芦海云,魏贤勇,孙兵,等.氧化钙催化的霍林郭勒褐煤的超临界甲醇解研究[J].武汉科技大学学报:自然科学版,2010,33(001):83-87.
    [166]周学华.流体与流体混合物的临界与超临界特性[J].力学进展,1987,17(2):1000-0992.
    [167]张阳,杨基础,于养信,等.分子模拟在超临界流体领域中的应用[J].化学进展,2005,17(6):955-962.
    [168] Imahara, H.,Minami, E.,Hari, S., etc. Thermal stability of biodiesel in supercritical methanol[J]. Fuel,2008,87(1):1-6.
    [169] Tang, S. R.,Zong, Z. M.,Zhou, L., etc. Molecular composition of soluble fraction from depolymerizedcornstalk powder in supercritical methanol and ethanol[J]. Renewable Energy,2010,35(5):946-951.
    [170] Dong, L. H.,Yuan, Q.,Yuan, H. L. Changes of chemical properties of humic acids from crude andfungal transformed lignite[J]. Fuel,2006,85(17-18):2402-2407.
    [171]王三跃.褐煤结构的分子动力学模拟及量子化学研究[D].太原:太原理工大学2004.
    [172] Siskin, M.,Aczel, T. Pyrolysis studies on the structure of ethers and phenols in coal[J]. Fuel,1983,62(11):1321-1326.
    [173] Hatcher, P. G. Chemical structural models for coalified wood (vitrinite) in low rank coal[J]. OrganicGeochemistry,1990,16(4-6):959-968.
    [174] Deno, N. C.,Jones, A. D.,Owen, D. O., etc. Arylmethoxyl groups in coal macerals[J]. Fuel,1985,64(9):1286-1290.
    [175] Xu, X.,Qian, X.,Li, Z., etc. Polyfluoroalkoxylation and methoxylation of polychloropyridines[J].Journal of Fluorine Chemistry,1998,88(1):9-13.
    [176] Fabianska, M. J. GC-MS investigation of distribution of fatty acids in selected Polish brown coals[J].Chemometrics and Intelligent Laboratory Systems,2004,72(2):241-244.
    [177] Mudamburi, Z.,Given, P. H. Multifacetted study of a cretaceous coal with algal affinities—II.Composition of liquefaction products[J]. Organic Geochemistry,1985,8(3):221-231.
    [178]妥进才,张明峰,王先彬.鄂尔多斯盆地北部东胜铀矿区沉积有机质中脂肪酸甲酯的检出及意义[J].沉积学报,2006,24(3):432-439.
    [179] Bare, S. R.,Stroscio, J. A.,Ho, W. The effects of preadsorbed oxygen on the adsorption anddecomposition of methanol on Ni (110)[J]. Surface Science,1985,155(2-3): L281-L291.
    [180] Silva, S. L.,Lemor, R. M.,Leibsle, F. M. STM studies of methanol oxidation to formate on Cu(110)surfaces: II. codosing experiments[J]. Surface Science,1999,421(1-2):146-156.
    [181] Yürüm, Y.,Tgˇluhan, A. Supercritical extraction and desulphurization of beypazari lignite by ethylalcohol/NaOH treatment1. Effect of ethyl alcohol/coal ratio and NaOH[J]. Fuel Science&TechnologyInternational,1990,8(2):87-105.
    [182] Yürüm, Y.,Tugluhan, A. Supercritical extraction and desulphurization of beypazari lignite by ethylalcohol/NaOH treatment2. kinetics[J]. Petroleum Science and Technology,1990,8(3):221-240.
    [183] Kasuya, E. Wilcoxon signed-ranks test: symmetry should be confirmed before the test[J]. AnimalBehaviour,2010,79(3):765-767.
    [184] Webley, P. A.,Tester, J. W. Fundamental kinetics of methane oxidation in supercritical water[J]. AcsSymposium Series,1989,406:259-275.
    [185] Webley, P. A.,Tester, J. W. Fundamental kinetics of methane oxidation in supercritical water[J].Energy&Fuels,1991,5(3):411-419.
    [186] Vogel, F.,Blanchard, J. L. D.,Marrone, P. A., etc. Critical review of kinetic data for the oxidation ofmethanol in supercritical water[J]. The Journal of Supercritical Fluids,2005,34(3):249-286.
    [187]刘滋武.灵武烟煤中有机化合物的分离与分析[D].中国矿业大学2009.
    [188]鞠彩霞,徐伟,宗志敏,等.微波条件下两种煤丙酮萃取物的GC/MS分析[J].煤炭转化,2007,30(1):1-4.
    [189]秦志宏,江春,孙昊等.童亭亮煤CS2溶剂分次萃取物的GC/MS分析[J].中国矿业大学学报,2006,34(6):707-711.
    [190] Given, P. H.,Weldon, D.,Zoeller, J. H. Calculation of calorific values of coals from ultimate analyses:theoretical basis and geochemical implications[J]. Fuel,1986,65(6):849-854.
    [191] Saka, S.,Kusdiana, D.,Minami, E. Non-catalytic biodiesel fuel production with supercritical methanoltechnologies[J]. Journal of Scientific&Industrial Research,2006,65(5):420-425.
    [192] Demirbas, A. Biodiesel from sunflower oil in supercritical methanol with calcium oxide[J]. EnergyConversion and Management,2007,48(3):937-941.
    [193] Issariyakul, T.,Kulkarni, M. G.,Dalai, A. K., etc. Production of biodiesel from waste fryer grease usingmixed methanol/ethanol system[J]. Fuel Processing Technology,2007,88(5):429-436.
    [194] Yang, Y.,Lu, Y.,Xiang, H., etc. Study on methanolytic depolymerization of PET with supercriticalmethanol for chemical recycling[J]. Polymer Degradation and Stability,2002,75(1):185-191.
    [195] Sako, T.,Sugeta, T.,Otake, K., etc. Depolymerization of polyethylene terephthalate to monomers withsupercritical methanol[J]. Journal of Chemical Engineering of Japan,1997,30(2):342-346.
    [196] Dong, L.,Yuan, Q.,Yuan, H. Changes of chemical properties of humic acids from crude and fungaltransformed lignite[J]. Fuel,2006,85(17-18):2402-2407.
    [197] Yokoyama, C.,Nishi, K.,Nakajima, A., etc. Thermolysis of organosolv lignin in supercritical water andsupercritical methanol[J]. Sekiyu Gakkaishi-Journal of the Japan Petroleum Institute,1998,41(4):243-250.
    [198] Yokoyama, C.,Nishi, K.,Otake, K., etc. Thermolysis of dibenzyl ether in supercritical methanol[J].Sekiyu Gakkai Shi,1994,37(1):34-44.
    [199] Yokoyama, C.,Nishi, K.,Takahashi, S. Thermolysis of benzyl phenyl ether in subcritical andsupercritical water, and supercritical methanol[J]. Sekiyu Gakkai Shi,1997,40(6):465-473.
    [200] Tsujino, J.,Kawamoto, H.,Saka, S. Reactivity of lignin in supercritical methanol studied with variouslignin model compounds[J]. Wood Science and Technology,2003,37(3-4):299-307.
    [201] Minami, E.,Kawamoto, H.,Saka, S. Reaction behavior of lignin in supercritical methanol as studiedwith lignin model compounds[J]. Journal of Wood Science,2003,49(2):158-165.
    [202] van Duin, A. C. T.,Dasgupta, S.,Lorant, F., etc. ReaxFF: A Reactive Force Field for Hydrocarbons[J].The Journal of Physical Chemistry A,2001,105(41):9396-9409.
    [203] Chenoweth, K.,van Duin, A. C. T.,Goddard III, W. A. ReaxFF reactive force field for moleculardynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A,2008,112(5):1040-1053.
    [204] Kamat, A. M.,van Duin, A. C. T.,Yakovlev, A. Molecular dynamics simulations of laser-inducedincandescence of soot using an extended ReaxFF reactive force field[J]. The Journal of PhysicalChemistry A,2010,114(48):12561-12572.
    [205] Salmon, E.,van Duin, A. C. T.,Lorant, F., etc. Early maturation processes in coal. Part2: Reactivedynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures[J].Organic Geochemistry,2009,40(12):1195-1209.
    [206] Salmon, E.,van Duin, A. C. T.,Lorant, F., etc. Thermal decomposition process in algaenan ofbotryococcus braunii race L. Part2: Molecular dynamics simulations using the ReaxFF reactive forcefield[J]. Organic Geochemistry,2009,40(3):416-427.
    [207] Strachan, A.,van Duin, A. C. T.,Chakraborty, D., etc. Shock waves in high-energy materials: Theinitial chemical events in nitramine RDX[J]. Physical Review Letters,2003,91(9):098301.
    [208] Strachan, A.,Kober, E. M.,van Duin, A. C. T., etc. Thermal decomposition of RDX from reactivemolecular dynamics[J]. The Journal of chemical physics,2005,122054502.
    [209] van Duin, A. C. T.,Zeiri, Y.,Dubnikova, F., etc. Atomistic-scale simulations of the initial chemicalevents in the thermal initiation of triacetonetriperoxide[J]. Journal of the American Chemical Society,2005,127(31):11053-11062.
    [210] Chenoweth, K.,van Duin, A. C. T.,Dasgupta, S., etc. Initiation mechanisms and kinetics of pyrolysisand combustion of JP-10hydrocarbon jet fuel[J]. The Journal of Physical Chemistry A,2009,113(9):1740-1746.
    [211] Weismiller, M. R.,Duin, A. C. T. v.,Lee, J., etc. ReaxFF reactive force field development andapplications for molecular dynamics simulations of ammonia borane dehydrogenation andcombustion[J]. The Journal of Physical Chemistry A,2010,114(17):5485-5492.
    [212] Mueller, J. E.,van Duin, A. C. T.,Goddard, W. A. Application of the ReaxFF reactive force field toreactive dynamics of hydrocarbon chemisorption and decomposition[J]. Journal of Physical ChemistryC,2010,114(12):5675-5685.
    [213] Mueller, J. E.,van Duin, A. C. T.,Goddard, W. A. Development and validation of ReaxFF reactiveforce field for hydrocarbon chemistry catalyzed by nickel[J]. The Journal of Physical Chemistry C,2010,114(11):4939-4949.
    [214] van Duin, A. C. T.,Damsté, J. S. S. Computational chemical investigation into isorenieratenecyclisation[J]. Organic Geochemistry,2003,34(4):515-526.
    [215] Rahaman, O.,van Duin, A. C. T.,Goddard, W. A., etc. Development of a ReaxFF reactive force fieldfor glycine and application to solvent effect and tautomerization[J]. Journal of Physical Chemistry B,2011,115(2):249-261.
    [216] Bazaev, A. R.,Abdulagatov, I. M.,Bazaev, E. A., etc. PVT measurements for pure methanol in thenear-critical and supercritical regions[J]. Journal of Supercritical Fluids,2007,41(2):217-226.
    [217] Chenoweth, K.,Duin, A. C. T. v.,Persson, P., etc. Development and application of a ReaxFF reactiveforce field for oxidative dehydrogenation on vanadium oxide catalysts[J]. The Journal of PhysicalChemistry C,2008,112(37):14645-14654.
    [218] Cerro-Alarcón, M.,Corma, A.,Iborra, S., etc. Biomass to fuels: A water-free process for biodieselproduction with phosphazene catalysts[J]. Applied Catalysis A: General,2008,346(1-2):52-57.
    [219] Kalita, D.,Sarma, R.,Baruah, J. B. Catalytic alcoholysis of quinolin-8-yl esters by manganesecomplexes[J]. Inorganic Chemistry Communications,2009,12(6):569-571.
    [220] Chapuzet, J.-M.,Beauchemin, S.,Daoust, B., etc. On the mechanism of alcoholysis of allylic andbenzylic alcohols and of epoxides in the presence of ceric ammonium nitrate[J]. Tetrahedron,1996,52(12):4175-4180.
    [221] Juárez, R.,Corma, A.,García, H. Towards a phosgene-free synthesis of aryl isocyanates: alcoholysis ofN-phenylurea to N-phenyl-O-methyl methyl Carbamate Promoted by basic metal oxide nanoparticlesand organocatalysts[J]. Topics in Catalysis,2009,52(12):1688-1695.
    [222] Bolotin, B. M.,Kunavin, N. I.,Zeryukina, L. S., etc.2-Aryl-4H-3,1-benzoxazin-4-ones alcoholysis[J].Chemistry of Heterocyclic Compounds,1974,10(6):658-661.
    [223] Isaeva, Z. G.,Bakaleinik, G. A.,Kovylyaeva, G. I., etc. Methanolysis of stereoisomeric4β-chloro-3,10-epoxycaranes[J]. Russian Chemical Bulletin,1987,36(12):2606-2609.
    [224] Zhao, W.,Xu, W.-J.,Lu, X.-J., etc. Preparation and property measurement of liquid fuel fromsupercritical ethanolysis of wheat stalk[J]. Energy&Fuels,2009,24(1):136-144.
    [225] Chen, B.,Wei, X. Y.,Zong, Z. M., etc. Difference in chemical composition of supercriticalmethanolysis products between two lignites[J]. Applied Energy,2011,88(12):4570-4576.
    [226] Wu, B. C.,Klein, M. T.,Sandler, S. I. The benzylphenylether thermolysis mechanism: Insights fromphase behavior[J]. Aiche Journal,1990,36(8):1129-1136.
    [227] Madix, R. J. Reaction Kinetics and Mechanism: Model studies on metal single crystals [J]. CatalysisReviews,1984,26(2):281-297.
    [228] Kumbhar, P. S.,Rajadhyaksha, R. A. A new type of selectivity by using bimetallic catalysts[J].Catalysis Letters,1991,10(1):131-135.
    [229] Andanson, J. M.,Bopp, P. A.,Soetens, J. C. Relation between hydrogen bonding and intramolecularmotions in liquid and supercritical methanol[J]. Journal of Molecular Liquids,2006,129(1-2):101-107.
    [230] Asahi, N.,Nakamura, Y. Chemical shift study of liquid and supercritical methanol[J]. ChemicalPhysics Letters,1998,290(1-3):63-67.
    [231] Yao, M.,Hiejima, Y. Dielectric relaxation of supercritical water and methanol[J]. Journal of MolecularLiquids,2002,96-97:207-220.
    [232] Hiejima, Y.,Kajihara, Y.,Kohno, H., etc. Dielectric relaxation measurements on methanol up to thesupercritical region[J]. Journal of Physics: Condensed Matter,2001,13(46):10307.
    [233] Hiejima, Y.,Yao, M. Dielectric relaxation of lower alcohols in the whole fluid phase[J]. Journal ofChemical Physics,2003,119(15):7931-7942.
    [234] Franck, E.,Deul, R. Dielectric behaviour of methanol and related polar fluids at high pressures andtemperatures[J]. Faraday Discuss. Chem. Soc.,1978,66(0):191-198.
    [235] Hiejima, Y.,Yao, M. Apparatus for dielectric relaxation measurements under high pressure andtemperature[C].14thinternational conference on the properties of water and steam in Kyoto,2004,424-428.
    [236] Durov, V. A.,Shilov, I. Y. Modeling of supramolecular structure and dielectric properties of methanolfrom melting point to supercritical state[J]. Journal of Molecular Liquids,2007,136(3):300-309.
    [237] Raspoet, G.,Nguyen, M. T.,McGarraghy, M., etc. The alcoholysis reaction of isocyanates givingurethanes: Evidence for a multimolecular mechanism[J]. The Journal of Organic Chemistry,1998,63(20):6878-6885.
    [238]陈博,魏贤勇,杨竹晟,刘畅,宗志敏.准东煤CS2-丙酮萃取物的GC/MS分析[J].河南师范大学(自然科学版),2012,40(1):73-77.
    [239] Wei XY, Wang XH, Zong ZM, Ni ZH, Zhang LF, Ji YF, et al. Identifcation of organochlorines andorganobromines in coals[J]. Fuel,2004,83(17–18):2435–2438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700