负折射率介质的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负折射机制分为两种,局域共振机制和非局域布拉格散射机制。电磁波在多数左手材料中的负折射属于局域共振机制,在光子晶体中,布拉格散射机制起主要作用。局域共振机制不要求周期结构的晶格常数与电磁波的波长相比拟,周期结构的单元可以远小于波长,因此左手材料可以被视为均匀介质。而布拉格机制要求晶格常数与电磁波的波长相比拟,对于THz以及光波段,晶格常数在纳米量级以下,对工艺要求非常高,因此绝大多数光子晶体为各向异性材料,不能用有效介质理论来处理。如果将左手材料定义为介电常数和磁导率同时为负的材料,则光子晶体不属于左手材料,通过对光子晶体的结构及光子能带进行合理设计,也可以实现所需频段的负折射。本论文从研究左手材料的负折射特性着手,延伸到光子晶体中,对两类介质中的负折射机理进行深入剖析,为左手材料和负折射光子晶体在集成光学中的应用提供理论和仿真实验依据。论文的主要工作和创新点包括以下几个方面:
     (1)利用有效介质理论对左手材料中的负折射现象进行了深入的研究,提出了负折射是负相速度的结果,与平面波的空间调制有关,与时间调制无关。代表时间调制特性的单频率脉冲波前和多频率干涉波前发生正折射维持了因果关系。推导了有损耗介质中的后向波条件,即同时满足(?)。在各向同性介质中,只存在两种可能情况,即群速度vg平行于波矢k,或vg与k反平行。
     (2)证明了两个半无限大非磁性均匀介质界面上表面波存在的条件,即ε1ε2<0且ε1+ε2<0。若同时满足ε2<0和μ2<0,表面波可以既为TM模式又为TE模式。证明了改变右手介质或左手介质的结构参数,可以调制表面波透明窗口的大小,还可以改变TE和TM模式表面波的方向。建立了表面波群速度的理论模型,证明了表面波的波矢与坡印廷矢量可以反平行。仿真验证了通过设计材料参数可以控制表面波的传输方向。对均匀介质平板中的TM模式和TE模式场分布进行计算,得到了TM和TE模式表面波的色散关系,得到了平板中对称模式与非对称模式的场分布,分析了平板参数对这两种模式的影响,计算了介质平板的传输系数与反射系数,证明了左手介质平板为倏逝波提供了一个放大因子exp(k2ω2c2xd),给出了平板系统中倏逝波的场强分布。对于介质平板厚度d→+∞的极限情况下倏逝波的衰减系数进行修正。
     (3)将光子晶体中的负折射分为三类,即有效负折射率负折射、全角负折射,和由于特殊的等频线形状引起的负折射。利用正三角形晶格光子晶体的第二能带实现了有效负折射率负折射。提出了理论计算有效参数的方法,得到了有效折射率、有效介电常数与有效磁导率与频率的关系曲线。分析了有效负折射率光子晶体平板的成像特性,验证了入射角度对优先取向波导效应的影响。利用正方形晶格光子晶体的第一能带实现了全角负折射,证明了全角负折射光子晶体比有效负折射率光子晶体更利于实现超透镜现象。对菱形晶格光子晶体的第一、二频带进行分析,仿真验证了不同频率的光分别入射到沿Г-T和Г-M的界面方向均可以发生负折射现象,实现了两个界面方向的超棱镜效应。
     (4)通过对半无限大光子晶体能带结构进行设计,仿真实现了对表面波方向的控制。对光子晶体的近场放大机理进行了理论分析,证明了倏逝波的放大依赖于表面波的谐振耦合机制,提出了光子晶体超透镜与均匀左手介质超透镜最大的不同之处在于光子晶体的周期对可放大的倏逝波横向波矢量加载了一个截止上限。证明了能带曲线中表面模式色散曲线的平坦度体现了倏逝波的放大倍数,光子晶体超透镜的分辨率仅与表面周期大小有关,设计了边缘调制的正方形晶格光子晶体超透镜,光斑的半峰值宽度为0.35λ,突破了衍射极限。
Negative refraction mechanism can be divided into two types, namely localresonance and non-local Bragg scattering. The former doesn’t impose a limit on thesizes of the lattice constants, the period of the structure could be much smaller than theworking wavelength. Left-handed material (LHM) with simultaneously ε<0and μ<0,which belongs to this mechanism, is approximated to be a isotropic homogeneous media.Photonic crystals (PhCs) are inhomogeneous materials whose lattice constants are inorder of the wavelength of light and Bragg scattering strength of each scatter is strong.The propagation of light waves inside such lattices will be modified by the photonicbandgap, and negative refraction will be realized in particular frequency ranges by finedesign the band structure. Currently negative refraction media promise a lot of interestsby the scientific community and are engineered materials functionality for applications.In this work, we study in detail the issue of negative refraction mechanism in bothisotropy and anisotropy metamaterials, typically in LHM and PhCs, the main works areas follows:
     (1) By using the effective media theory, negative refraction phenomena in LHM isinvestigated in detail. It is emphasised that in this kind of isotropic media backwardwaves will appear because of the Poynting vector direction is antiparallel to the phasevelocity direction and negative refraction is a consequence of a negative phase velocity.It has been investigated that the group velocity is always positive without the need ofconsideration of the refractive index. It is point out that the spatial aspect of an incidentwave refracts negatively, and the temporal nature of the wave refracts positively whichpreserves the Causality. It has been confirmed that ε′<0and μ′<0is only anecessary condition for the existence of backward wave, when losses are present,(?)is also required.
     (2) The richness properties of the surface waves generated at the surfaces ofnegative refraction index media is minutely elucidated. By analysising the dispersioncurves of TE and TM surface modes in the single interface configuration, it is fund thatwhen conditionsε1ε2<0andε1+ε2<0are satisfied, there exists surface wave on the interface between the air and semi-infinite non-magnetic media. Media withsimultaneouslyε2<0andμ2<0can support surface wave with both TE and TMpolarization. An interesting idea of controling the group velocity of the surface waves ispresented. Dispersion relationships of symmetric and anti-symmetric surface modesdistribution in the LHM slab interfaces configuration are discussed in detail, whichprovided an amplification factor ofexp(k2ω2c2xd)for the evanescent wave incidentfrom air, and the field distribution of the evanescent wave in the slab system is alsopresented. The attenuation factor of the evanescent wave is modified in the condition ofd→∞.
     (3) Negative refraction effects of light propagating in two-dimensional square,hexagonal and rhombus lattice silicon PhCs are demonstrated. Theoretical analyses andnumerical simulations are presented. Three different kinds of negative refractions,namely, negative refraction with effective negative index, all-angle negative refraction(AANR) without a negative index, and negative refraction as a result of the complexequal-frequency contour (EFC) shapes have been verified and compared. It is fund thatlight focusing effect occurs in both effective negative index PhC slab and AANR PhCslab. The negative refraction in former system has high angular dependence. The AANRPhC slab is more suitable for high-resolution superlensing application. Thepreferential-direction waveguide effect in hexagonal lattice PhCs and superprism effectof both Г-T and Г-M interface direction in rhombus lattice PhCs are also investigated.
     (4) The principles of subwavelength imaging in PhCs slab have been explained indetail. Propagation wave can focal in AANR PhCs without an effective negative index.For evanescent wave with large transverse vector component, PhCs permit existence ofspactial bound surface states which can used to amplify the evanescent wave thatexponentially decay in air. It is imposed an upper cutoff for superlensing using PhCs.The resolution limit of a PhC superlens is derived, and a high resolution PhCs superlensis designed, a full width at half maximum (FWHM) of0.35λ is obtained on the imageplane.
引文
[1] R. M. Walser. Complex Mediums II: Beyond linear isotropic dielectrics. SPIE, Bellingham,WA,2001,4467:1-15
    [2] J. D. Jackson. Classical Electrodynamics. New York, Chichester: Wiley,1999:10-12
    [3] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, S. Schultz. Microwave transmission through atwo-dimensional, isotropic, left-handed metamaterial. Appl. Phy. Lett.,2001,78(4):489-491
    [4] M. Gokkavas, K. Guven, I. Bulu, et al. Experimental demonstration of a left-handedmetamaterial operating at100GHz. Phys Rev B,2006,73(19):193103
    [5] B. D. F. Casse, H. O. Moser, L. K. Jian, et al. Fabrication of2D and3D metamaterials for theTHz range. Journal of Physics: Conference Series,2006,34(1):885-890
    [6] H. O. Moser, B. D. F. Casse, O. Wilhelmi, et al., Terahertz response of a microfabricatedrod-split-ring-resonator electromagnetic metamaterial. Phys Rev Lett,2005,94(6):063901
    [7] C. Enkrich, M. Wegener, S. Linden, et al. Magnetic metamaterials at telecommunication andvisible frequencies. Phys Rev Lett.2005,95(20):203901
    [8] H. K Yuan, et al. A negative permeability material at red light. Optics Express,2007,15(3):1076-1083
    [9] E.Yablonovitche. Inhibited spontaneous emission in solid-state physics and electronics. Phys.Rev. Lett.,1987,58(20):2059-2062
    [10] J. S. Strong localization of photon in certain disordered dielectric super lattices. Phys. Rev.Lett.,1987,58(23):2486-2489
    [11] S. Foteinopoulou, E. N. Economou, C. M. Soukoulis. Refraction in media with a negativerefractive index. Phys. Rev. Lett.,2003,90(10):107402
    [12] S. Foteinopoulou, C. M. Soukoulis. Electromagnetic wave propagation in two dimensionalphotonic crystals: A study of anomalous refractive effects. Phys.Rev. B,2005,72(16):165112
    [13] V. G. Veselago. The electrodynamics of substances with simultaneously negative values of εand μ. Soviet Physics Uspekhi,1968,10(4):509-514
    [14] J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs. Extremely low frequency plasmons inmetallic mesostructures. Phys. Rev. Lett.,1996,76(25):4773-4776
    [15] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart. Magnetism from conductors andenhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques,1999,47(11):2075-2084
    [16] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz. Composite mediumwith simultaneously negative permeability and permittivity. Phys. Rev. Lett.,2000,84(18):4184-4187
    [17] R. A. Shelby, D. R. Smith,S. Sehultz. Experimental verification of a negative index ofrefraction. Science,2001,292(5514):77-79
    [18] T. J. Cui, J. A. Kong. Time-domain electromagnetic energy in a frequency-dispersiveleft-handed medium. Phy. Rev. B,2004,70(20):205106
    [19] T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, J. A. Kong. Localization of electromagnetic energyusing a left-handed-medium slab. Phys. Rev. B,2005,71(4):045114
    [20] H. Raether. Surface Plasmons on Smooth and Rough Surfaces and Gratings. Berlin:Springer-Verlag,1986,4-13
    [21] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature,2003,424:824–830
    [22] R. Ruppin. Surface polaritons of a left-handed medium. Physics Letters A,2000,277(1):61-64
    [23] M. Born, E.Wolf. Principles of Optics.7th edition. Cambridge,UK: Cambridge UniversityPress,2005,512-513
    [24] M. Tsang, D. Psaltis. Reflectionless evanescent-wave amplification by two dielectric planarwaveguides. OPTICS LETTERS,2006,31(18):2741-2743
    [25] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett.,2000,85(18):3966-3969
    [26] A. Iyer, P. Kremer, G. V. Eleftheriades. Experimental and theoretical verification of focusingin a large, periodically loaded transmission line negative refractive index metamaterial. Opt.Express,2003,11(7):696-708
    [27] A. Grbic, G. V. Eleftheriades. Overcoming the diffraction limit with a planar left-handedtransmission-line lens. Phys. Rev. Lett.,2004,92(11):117403
    [28] N. Fang, H. Lee, C. Sun, X. Zhang. Sub-Diffraction-Limited Optical Imaging with a SilverSuperlens. Science,2005,308(5721):534-537
    [29] B. Garg, M. Gautam. Microstrip patch antenna using left-handed metamaterial structure forbandwidth improvement. I JECT,2011,2(3):151-153
    [30] M. A. Antoniades, G. V. Eleftheriades. A CPS leaky wave antenna with reduced beamsquinting using NRI-TL metamaterials. IEEE Trans. Ante. Prop.,2008,56(3):708-721
    [31] W. H. Fang, S. J. Xu. Complete polarization conversion characteristics of dielectric gratingcomposed of left-handed materials. Int. J Infrared Milli.,2008,29(6):617-626
    [32] B. Jokanovic1, V. C. Bengin. Novel Reconfigurable left-handed unit cell for filter Applications.PIERS,2007,3(3):254-258
    [33] I. Ionita, D. Dragoman. Anisotropic composite right/left-handed-material switch. J. Appl. Phys.2009,106(5):053111
    [34] I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar. Beam shaping by a periodic structure withnegative refraction. Appl. Phy. Lett.,82(22):3820-3822
    [35] M. Scalora, D. de Ceglia, G. D’Aguanno, et al. Gap solitons in a nonlinear quadraticnegative-index cavity. Phys. Rev. E,2007,75(6):066606
    [36] Z. Y. Wang, X. M. Chen, X. Q. He, S. L. Fan. Photonic crystal narrow filters with negativerefractive index structural defects. Progress In Electromagnetics Research, PIER,2008,80:421-430
    [37] Z. M. Zhang, C. J. Fu. Unusual photon tunneling in the presence of a layer with a negativerefractive index. Appl. Phys. Lett.,2002,80(6):1097-1099
    [38] J. Li, L. Zhou, C. T. Chan, P. Sheng. Photonic band gap from a stack of positive and negativeindex materials. Phys. Rev. Lett.2003,90(8):083901
    [39] K. Y. Xu, X. G. Zheng, C. L. Li, W. L. She. Design of omnidirectional and multiple channeledfilters using one-dimensional photonic crystals containing a defect layer with a negativerefractive index. Phys. Rev. E,2005,71(6):066604
    [40] I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar. Complete Band Gaps in One-DimensionalLeft-Handed Periodic Structures. Phys. Rev. Lett.,2005,95(19):193903
    [41] H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, S. Y. Zhu. Properties of one-dimensionalphotonic crystals containing single-negative materials. Phy. Rev. E,2004,69(6):066607
    [42] L. G. Wang, H. Chen, S. Y. Zhu. Omnidirectional gap and defect mode of one-dimensionalphotonic crystals with single-negative materials. Phy. Rev. B,2004,70(24):245102
    [43] H. Kosaka. Superprism phenomena in photonic crystals. Phy. Rev. B,1998,58(16): R10096
    [44] M. Notomi. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Phy. Rev. B,2000,62(16):10696-10705
    [45] M. Notomi. Negative refraction in photonic crystals. Opt. Quant. Electr.,2002,34(1):133-143
    [46] A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyle′n, A. Talneau,S. Anand. Negative refractionat infrared wavelengths in a two-dimensional photonic crystal. Phy. Rev. Lett.,2004,93(7):073902
    [47] X. Y. Ao, L. Liu, L. Wosinski, S. L. He. Polarization beam splitter based on a two-dimensionalphotonic crystal of pillar type. Appl. Phy. Lett.,2006,89(17):171115
    [48] Z. C. Ruanand, S. L. He. Open cavity formed by a photonic crystal with negative effectiveindex of refraction. Opt. Lett.,2005,30(17):2308-2310
    [49] Z. L. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, D. W. Prather.Three-Dimensional subwavelength imaging by a photonic-crystal flat lens using negativerefraction at microwave frequencies. Phy. Rev. Lett.,2005,95(15):153901
    [50] Z. L. Lu, D. W. Prather. Calculation of effective permittivity, permeability, and surfaceimpedance of negative-refraction photonic crystals. OPTICS EXPRESS,2007,15(13):8340-8354
    [51] T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, B. Gralak. Photonic Crystal Lens: FromNegative Refraction and Negative Index to Negative Permittivity and Permeability. Phy. Rev.Lett.,2006,97(7):073905
    [52] X. D. Zhang. Tunable non-near-field focus and imaging of an unpolarized electromagneticwave. Phy. Rev. B,2005,71(23):235103
    [53] X. D. Zhang. Image resolution depending on slab thickness and object distance in atwo-dimensional photonic-crystal-based superlens. Phy. Rev. B,2004,70(19):195110
    [54] S. Feng, Z. Y. Li, Z. F. Feng, et al. Imaging properties of an elliptical-rod photonic-crystal slablens. Phy. Rev. B2005,72(7):075101
    [55] R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, C. M. Soukoulis.Negative refraction and superlens behavior in a two-dimensional photonic crystal. Phy. Rev. B,2005,71(8):085106
    [56] S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck. Near-infrared double negativemetamaterials. OPTICS EXPRESS,2005,13(13):4922-4930
    [57] L. Liu, X. Aob, L. Wosinskia, S. Heb. Compact polarization beam splitter employingpositive/negative refraction based on photonic crystals of pillar type. Proc. of SPIE,2006,6352:635209
    [58] G. Dolling, M. Wegener. Negative-index metamaterial at780nm wavelength. OPTICSLETTERS,2007,32(1):53-55
    [59] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis. Electromagnetic waves:Negative refraction by photonic crystals. Nature,2003,423(6940):604-605
    [60] E. Ozbay, I. Bului, K. Guven, H. Caglayan, K. Aydin. Observation of negative refraction andfocusing in two-dimensional photonic crystals. Japanese Journal of Applied Physics,2006,45(8A):6064-6070
    [61] C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry. All-angle negative refraction withoutnegative effective index. Phys.Rev. B,2002,65(20):201104
    [62] C. Luo, S.G. Johnson, J. D. Joannopoulos. All-angle negative refraction in athree-dimensionally periodic photonic crystal. Appl. Phys. Lett,2002,81(13):2352-2354
    [63] W. Belhadj, D. Gamra, F. AbdelMalek, S. Haxha, H. Bouchriha. Design of two-dimensionalphotonic crystal structure based in all-angle negative refractive effect for application infocusing systems. IET Optoelectron,2007,1(2):91-95
    [64] Z. L. lu, C. H. Chen, Christopher A. etc.Subwavelength imaging by a flat cylindrical lens usingoptimized negative refraction. Appl. Phys. Lett.,2005,87(9):091907
    [65] A. M. Bratkovskya. Strong effect of surfaces on resolution limit of negative-index "superlens".Appl. Phy. Lett.,2005,87(10):103507
    [66] Z. J. He, X. C. Li, J. Mei, Z. Y. Liu. Improving imaging resolution of a phononic crystal lensby employing acoustic surface waves. J. Appl. Phy.,2009,106(2):026105
    [67] S. H. Xiao, M. Qiu, Z. C. Ruan, Sailing He. Influence of the surface termination to the pointimaging by a photonic crystal slab with negative refraction. Appl. Phy. Lett.,2004,85(19):4269-4271
    [68] L. Zhou, C. T. Chan. Vortex-like surface wave and its role in the transient Phenomena of meta-material focusing. Appl. Phys. Lett.,2005,86(10):101104
    [69] L. Zhou. Relaxation mechanisms in three-dimensional metamaterial lens focusing. OPTICSLETTERS,2005,30(14):1812-1814
    [70] J. Wang, M. Yan, M. Qiu. Silicon photonic crystal surface mode microcavities. Frontiers ofPhysics in China,2010,5(3):260-265
    [71] M. Qiu, S. H. Xiao. Optical microcavity based on zero-group-velocity surface modes inphotonic crystals. Proc. SPIE,2005,6020:602019
    [72] R. K. Sinha, Anshu D Varshney. Structural study of superprism phenomena in photoniccrystals. Proc. of SPIE,2008,7056:70561C
    [73] B. Momeni, Jiandong Huang, Mohammad Soltani, Murtaza Askari, et al. Compact wavelengthdemultiplexing using focusing negative index photonic crystal superprisms. OPTICSEXPRESS,2006,14(6):2413-2422
    [74] A. Khorshidahmad, A. G. Kirk. Composite superprism photonic crystal demultiplexer: analysisand design OPTICS EXPRESS,2010,18(19):20518-20528
    [75] L. Wu, M. Mazilu, T. Karle, T. F. Krauss. Superprism phenomena in planar photonic crystals.IEEE J. Quantum Electron.,2002,38(7):915-918
    [76] E. Cassan, D. Bernier, A. Lupu, X. L. Roux, D. M. Morini, Laurent. Vivien. Asuperprism-based photonic crystal demultiplexer in nearly-perfect collimation conditions. Proc.of SPIE,2010,7713:77130J
    [77] T. Matsumoto, S. Fujita, T. Baba. Wavelength demultiplexer consisting of photonic crystalsuperprism and superlens. Optics Express,2005,13(26):10768-10776
    [78] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, et al. Photonic crystals for micro lightwavecircuits using wavelength-dependent angular beam steering. Appl. Phys. Lett.,1999,74(10):1370-1372
    [79] T. Baba, M. Nakamura. Photonic crystal light deflection devices using the superprism effect.IEEE J. Quantum Electron.,2002,38(7):909-914
    [80] T. Baba, T. M. Yokohama. Light propagation in photonic crystal superprisms. Proc. of SPIE,2004,5360:373-380
    [81] B. Momeni, A. Adibi. Preconditioned superprism-based photonic crystal demultiplexers:analysis and design. Appl. Opt.,2006,45(33):8466-8476
    [82]温熙森等.光子/声子晶体理论与技术,北京:科学出版社,2006,13-14
    [83] J. D. Joannopoulos. Steven G. Johnson, Joshua N. Winn, Robert D. Meade. Photonic crystals:molding the flow of light. Princeton and Oxford: Princeton University Press,2008,6-10
    [84] W. B. J. Zimmerman,中仿科技公司. Comsol Multiphysics有限元法多物理场建模与分析.北京:人民交通出版社,2007,45-46
    [85] M. Born, E.Wolf. Principles of Optics.7th edition, Cambridge, UK: Cambridge UniversityPress,2005,19-23
    [86] P. W. Milonni. Controlling the speed of light pulses. J Phys B,2002,35(6):R31-R56
    [87] R. Loudon, L. Allen. R. Loudon. Propagation of electromagnetic energy and momentumthrough an absorbing dielectric. Phys. Rev. E,1997,55(1):1071-1085
    [88] M. K. K rkk inen. Numerical study of wave propagation in uniaxially anisotropic Lorentzianbackward-wave slabs. Phys Rev E,2003,68(2):026602
    [89] J.B. Pendry, D.R. Smith. Comment on ‘‘Wave Refraction in Negative-Index Media: AlwaysPositive and Very Inhomogeneous’’, Phys. Rev. Lett.,2003,90(2):029703]
    [90] A. L. Pokrovsky, A. L. Efros. Sign of refractive index and group velocity in left-handed media.Sol. Stat. Comm.,2002,124:283-287
    [91] D. R. Smith, N. Kroll. Negative refractive index in Left-handed materials. Phy. Rev. Lett.,2000,85(14):2933-2936
    [92] M. W. McCall, A. Lakhtakia, W. S. Weiglhofer. The negative index of refraction demystified.Eur. J. Phys.,2002,23(3):353-359
    [93] T. J. S.. Causality and the dispersion relation: logical foundations. Phys. Rev.1956,104(6):1760-1770
    [94] P.M. Valanju, R. M. Walser, A. P. Valanju. Wave refraction in negative index media: alwayspositive and very inhomogenous. Phys. Rev. Lett.,2002,88(18):187401
    [95] B. Gralak, S. Enoch, G. Tayeb. Anomalous refractive properties of photonic crystals. J. Opt.Soc. Am. A,2000,17(6):1012-1020
    [96] D. R. Smith, D. Schurig, J. B. Pendry. Negative refraction of modulated electromagnetic waves.Appl. Phys. Lett.,2002,81(15):2713-2715
    [97] A. D. Boardman, N. King, L. Velasco. Negative refraction in perspective. Electromagnetics,2005,25(5):365-389
    [98] L. Rayleigh. On Waves propagated along the plane surface of an elastic solid. Proc. Lond.Math. Soc.,1885,17(1):4-11
    [99] S. A. Schelkunoff. Anatomy of "Surface Waves". IEEE Trans. Ant. Prop. AP.,1959,7(5):133-139
    [100] G. Goubau. Waves On Interfaces. IEEE TransAnt Prop,1959:140-146
    [101] H. M. Barlow. Surface Waves. Proc. IRE,1958,46(7):1413-1417
    [102] U. Fano. The theory of anomalous diffraction gratings and of quasi-stationary waves onmetallic surfaces (Sommerfeld's Waves). J. Opt. Soc. Am.1974,31(3):213-222
    [103] A. V. Kats, Sergey Savel’ev, V. A. Yampol’skii, Franco Nori. Left-handed interfaces forelectromagnetic surface waves. Phys. Rev. Lett.,2007,98(7):073901
    [104] A.D. Boardman, L. Velasco, N. King, P. Egan. Ultranarrow bright solitons interacting withleft-handed surfaces. J. Opt. Soc. Am. B,2005,22(7):1443-1452
    [105] M. W. Feise, P. J. Bevelacqua, J. B. Schneider. Effects of surface waves on the behavior ofperfect lenses. Phy. Rev. B,2002,66(3):035113
    [106] A. Ramakrishna and A. D. Armour. Propagating and evanescent waves in absorbing media.Am. J. Phys.,2003,71(6):562-571
    [107] Y. Zhang, B. Fluegel, and A. Mascarenhas, Total negative refraction in real crystals forballistic electrons and light. Phys Rev Lett,2003,91(15):157404
    [108] Y. J. Huang, W. T. Lu, Sridhar. Alternative approach to all-angle negative refraction intwo-dimensional photonic cryst als. Phy. Rev. A,2007,76(1):013824
    [109] A. Rose1, K. Kempa. Negative refraction in three-dimensional point-dipolelike polaritonic. J.Appl. Phy.2010,108(9):094301
    [110] X. D. Zhang. Negative refraction of acoustic waves in two-dimensional phononic crystals.Appl. Phy. Lett.2004,85(2):341-343
    [111] R. Zengerle, P. C. Hoang. All-angle beam refocusing in nonunif orm triangular photoniccrystal slabs, J. Opt. Soc. Am. B,2007,24(4):997-1003
    [112] S. Foteinopoulou, C. M. Soukoulis. Negative refraction and left-handed behavior intwo-dimensional photonic crystals. Phy. Rev. B,2003,67(23):235107
    [113] P. Jiang, K. Xie, H. Y. Yang, Zhenhai Wu. Negative propagation effects in two dimensionalsilicon photonic crystals. International Journal of Photoenergy,2012,702637:1-7
    [114] A. A. Erchak, D. J. Ripin, S. H. Fan, et al. Enhanced coupling to vertical radiation using atwo-dimensional photonic crystal in a semiconductor light-emitting diode. Appl. Phy. Lett.2001,78(5):563-566
    [115] Z. C. Ruan. Dispersion engineering: negative refraction and designed surface plasmons inperiodic structures:[PHD Thesis]. Stockholm: KTH School of Information andCommunication Technology,2007,31-35
    [116] Z. Y. Li, L. L. Lin. Evaluation of lensing in photonic crystal slabs exhibiting negativerefraction. Phy. Rev. B,2003,68(24):245110
    [117] E. Schonbrun, M. Abashin, J. Blair, Q. Wu, W. Park, et al. Total internal reflection photoniccrystal prism. OPTICS EXPRESS,2007,15(13):8065-8075
    [118] P. Jiang, K Xie, H. J. Yang, Z. H. Wu. Light propagation in two dimensional hexagonallattices photonic crystal. JOURNAL OF OPTOELECTRONICS AND ADVANCEDMATERIALS,2011,13(7):748-754
    [119] C. Y. Luo, Steven G. Johnson, J. D. Joannopoulos. Negative refraction without negative indexin metallic photonic crystals. OPTICS EXPRESS,2003,11(7):746-754
    [120] M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. Martijn de Sterke, A. Norton, P. Bassi, B.J. Eggleton. Analytic properties of photonic crystal superprism parameters. Phy. Rev. E,2005,71(5):056608
    [121] T. Matsumoto, T. Baba. Photonic crystal k-vector superprism. J LIGHTWAVE TECHNOL,2004,22(3):917-922
    [122] L. M. Qi, Z. Q. Yang, X. Gao, Z. Liang. Analysis of two-dimensional photonic band gapstructure with a rhombus lattice. CHINESE OPTICS LETTERS,2008,6(4):279-281
    [123] P. Jiang, K. Xie, H. J. Yang, Z. H. Wu. Light propagation in two dimensional rhombuslattices photonic crystal. JOURNAL OF OPTOELECTRONICS AND ADVANCEDMATERIALS.2011,13(9):1071-1076
    [124] C. Y. Luo, S. G. Johnson, J.D. Joannopoulos. Subwavelength imaging in photonic crystal. Phy.Rev. B,2003,68(4):045115
    [125] L. Garcia-Pomar, M. Nieto-Vesperinas. Imaging properties of photonic crystals. OpticsExpress,2007,15(12):7786-7801
    [126] F. Ramos-Mendieta, Mexico P. Halevi. Surface electromagnetic waves in two-dimensionalphotonic crystals: Effect of the position of the surface plane. Phys. Rev. B,1999,59(23):15112-15120
    [127] S. Foteinopoulou, M. Kafesaki, E. N. Economou, C. M. Soukoulis. Backward surface wavesat photonic crystals. Phys. Rev. B.2007,75(24):245116
    [128] B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, C. M. Soukoulis1. Surfacewaves in photonic crystal slabs. Phy. Rev. B,2006,74(19):195104
    [129] E. Cubukcu, K. Aydin, E. Ozbay. Subwavelength resolution in a two-dimensionalphotonic-crystal-based superlens. Phy. Rev. Lett.,2003,91(20):207401
    [130] J. D. Joannopoulos. Steven G. Johnson. Joshua N. Winn. Robert D. Meade. Photonic crystals:molding the flow of light. Second Edition, Princeton unicersity Press, Princeton and Ocford,2008,89-91
    [131] W. Jiang, R. T. Chen. Theory of light refraction at the surface of a photonic crystal. Phys. Rev.B,2005,71(24):245115
    [132] J. Li, Z. Liu, C. Qiu, Negative refraction imaging of acoustic waves by a two-dimensionalthree-component phononic crystal. Phys. Rev. B,2006,73(5):054302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700